1
|
Kalia VC, Patel SKS, Lee JK. Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers (Basel) 2023; 15:polym15081937. [PMID: 37112084 PMCID: PMC10144186 DOI: 10.3390/polym15081937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Cordoves EM, Vunjak-Novakovic G, Kalfa DM. Designing Biocompatible Tissue Engineered Heart Valves In Situ: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:994-1003. [PMID: 36889879 PMCID: PMC10666973 DOI: 10.1016/j.jacc.2022.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 03/08/2023]
Abstract
Valvular heart disease is a globally prevalent cause of morbidity and mortality, with both congenital and acquired clinical presentations. Tissue engineered heart valves (TEHVs) have the potential to radically shift the treatment landscape for valvular disease by functioning as life-long valve replacements that overcome the current limitations of bioprosthetic and mechanical valves. TEHVs are envisioned to meet these goals by functioning as bioinstructive scaffolds that guide the in situ generation of autologous valves capable of growth, repair, and remodeling within the patient. Despite their promise, clinical translation of in situ TEHVs has proven challenging largely because of the unpredictable and patient-specific nature of the TEHV and host interaction following implantation. In light of this challenge, we propose a framework for the development and clinical translation of biocompatible TEHVs, wherein the native valvular environment actively informs the valve's design parameters and sets the benchmarks by which it is functionally evaluated.
Collapse
Affiliation(s)
- Elizabeth M Cordoves
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Medicine, Columbia University, New York, New York, USA.
| | - David M Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian-Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
3
|
Performance of Polydioxanone-Based Membrane in Association with 3D-Printed Bioceramic Scaffolds in Bone Regeneration. Polymers (Basel) 2022; 15:polym15010031. [PMID: 36616379 PMCID: PMC9823904 DOI: 10.3390/polym15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the bioactivity of 3D-printed β-tricalcium phosphate (β-TCP) scaffolds or hydroxyapatite (HA) scaffolds associated with polydioxanone (PDO) membrane (Plenum® Guide) for guided bone regeneration in rats. Fifty-four rats were divided into three groups (n = 18 animals): autogenous bone + PDO membrane (Auto/PG); 3D-printed β-TCP + PDO membrane (TCP/PG); and 3D-printed HA + PDO membrane (HA/PG). A surgical defect in the parietal bone was made and filled with the respective scaffolds and PDO membrane. The animals were euthanized 7, 30, and 60 days after the surgical procedure for micro-CT, histomorphometric, and immunolabeling analyses. Micro-CT showed an increase in trabecular thickness and a decrease in trabecular separation, even with similar bone volume percentages between TCP/PG and HA/PG vs. Auto/PG. Histometric analysis showed increased bone formation at 30 days in the groups compared to 7 days postoperatively. Immunolabeling analysis showed an increase in proteins related to bone formation at 30 days, and both groups showed a similar immunolabeling pattern. This study concludes that 3D-printed scaffolds associated with PDO membrane (Plenum® Guide) present similar results to autogenous bone for bone regeneration.
Collapse
|
4
|
Kalfa D. Novel Valve Choices for Pulmonary Valve Replacement. Semin Thorac Cardiovasc Surg 2022; 35:523-529. [PMID: 35032644 DOI: 10.1053/j.semtcvs.2021.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Affiliation(s)
- David Kalfa
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital and Cardiac Surgery, Morgan Stanley Children Hospital -New York Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York.
| |
Collapse
|
5
|
Saska S, Pilatti L, Silva ESDS, Nagasawa MA, Câmara D, Lizier N, Finger E, Dyszkiewicz Konwińska M, Kempisty B, Tunchel S, Blay A, Shibli JA. Polydioxanone-Based Membranes for Bone Regeneration. Polymers (Basel) 2021; 13:polym13111685. [PMID: 34064251 PMCID: PMC8196877 DOI: 10.3390/polym13111685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Resorbable synthetic and natural polymer-based membranes have been extensively studied for guided tissue regeneration. Alloplastic biomaterials are often used for tissue regeneration due to their lower immunoreactivity when compared with allogeneic and xenogeneic materials. Plenum® Guide is a synthetic membrane material based on polydioxanone (PDO), whose surface morphology closely mimics the extracellular matrix. In this study, Plenum® Guide was compared with collagen membranes as a barrier material for bone-tissue regeneration in terms of acute and subchronic systemic toxicity. Moreover, characterizations such as morphology, thermal analysis (Tm = 107.35 °C and crystallinity degree = 52.86 ± 2.97 %, final product), swelling (thickness: 0.25 mm ≅ 436% and 0.5 mm ≅ 425% within 24 h), and mechanical tests (E = 30.1 ± 6.25 MPa; σ = 3.92 ± 0.28 MPa; ε = 287.96 ± 34.68%, final product) were performed. The in vivo results revealed that the PDO membranes induced a slightly higher quantity of newly formed bone tissue than the control group (score: treated group = 15, control group = 13) without detectable systemic toxicity (clinical signs and evaluation of the membranes after necropsy did not result in differences between groups, i.e., non-reaction -> tissue-reaction index = 1.3), showing that these synthetic membranes have the essential characteristics for an effective tissue regeneration. Human adipose-derived stem cells (hASCs) were seeded on PDO membranes; results demonstrated efficient cell migration, adhesion, spread, and proliferation, such that there was a slightly better hASC osteogenic differentiation on PDO than on collagen membranes. Hence, Plenum® Guide membranes are a safe and efficient alternative for resorbable membranes for tissue regeneration.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Correspondence: (S.S.); (J.A.S.); Tel.: +55-11-3109-9045 (J.A.S.)
| | - Livia Pilatti
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Edvaldo Santos de Sousa Silva
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Magda Aline Nagasawa
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Diana Câmara
- Nicell—Pesquisa e Desenvolvimento Ltd.a, 2721 Av. Indianápolis, São Paulo 04063-005, Brazil;
| | - Nelson Lizier
- CCB—Centro de Criogenia Brasil, 1861 Av. Indianápolis, São Paulo 04063-003, Brazil;
| | - Eduardo Finger
- Hospital Israelita Albert Einstein, 627 Av. Albert Einstein, São Paulo 05652-900, Brazil;
| | | | - Bartosz Kempisty
- Department of Histology and Embryology, Poznań University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - Samy Tunchel
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Alberto Blay
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil
- Correspondence: (S.S.); (J.A.S.); Tel.: +55-11-3109-9045 (J.A.S.)
| |
Collapse
|
6
|
Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. BIORESOURCE TECHNOLOGY 2021; 326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Plastics are an integral part of most of the daily requirements. Indiscriminate usage and disposal have led to the accumulation of massive quantities of waste. Their non-biodegradable nature makes it increasingly difficult to manage and dispose them. To counter this impending disaster, biodegradable polymers, especially polyhydroxy-alkanoates (PHAs), have been envisaged as potential alternatives. Owing to their unique physicochemical characteristics, PHAs are gaining importance for versatile applications in the agricultural and medical sectors. Applications in the medical sector are more promising because of their commercial viability and sustainability. Despite such potential, their production and commercialization are significant challenges. The major limitations are their poor mechanical strength, production in small quantities, costly feed, and lack of facilities for industrial production. This article provides an overview of the contemporary progress in the field, to attract researchers and stakeholders to further exploit these renewable resources to produce biodegradable plastics on a commercial scale.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Rashid M, Dudhia J, Dakin SG, Snelling SJB, De Godoy R, Mouthuy PA, Smith RKW, Morrey M, Carr AJ. Histopathological and immunohistochemical evaluation of cellular response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch for tendon repair. Sci Rep 2020; 10:4754. [PMID: 32179829 PMCID: PMC7076042 DOI: 10.1038/s41598-020-61725-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/02/2020] [Indexed: 01/25/2023] Open
Abstract
We investigated endogenous tissue response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch intended for tendon repair. A sheep tendon injury model characterised by a natural history of consistent failure of healing was chosen to assess the biological potential of woven and aligned electrospun fibres to induce a reparative response. Patches were implanted into 8 female adult English Mule sheep. Significant infiltration of tendon fibroblasts was observed within the electrospun component of the patch but not within the woven component. The cellular infiltrate into the electrospun fibres was accompanied by an extensive network of new blood vessel formation. Tendon fibroblasts were the most abundant scaffold-populating cell type. CD45+, CD4+ and CD14+ cells were also present, with few foreign body giant cells. There were no local or systemic signs of excessive inflammation with normal hematology and serology for inflammatory markers three months after scaffold implantation. In conclusion, we demonstrate that an endogenous healing response can be safely induced in tendon by means of biophysical cues using a woven and electrospun patch.
Collapse
Affiliation(s)
- Mustafa Rashid
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, North Mymms, UK
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Sarah J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Roberta De Godoy
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, North Mymms, UK
| | - Pierre-Alexis Mouthuy
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Roger K W Smith
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, North Mymms, UK
| | - Mark Morrey
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK. .,NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
8
|
Bonartsev AP, Bonartseva GA, Reshetov IV, Kirpichnikov MP, Shaitan KV. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate). Acta Naturae 2019; 11:4-16. [PMID: 31413875 PMCID: PMC6643351 DOI: 10.32607/20758251-2019-11-2-4-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Biodegradable and biocompatible polymers, polyhydroxyalkanoates (PHAs), are actively used in medicine to produce a wide range of medical devices and dosage formulations. The medical industry mainly utilizes PHAs obtained by chemical synthesis, but interest in the medical application of natural PHAs obtained biotechnologically is also growing. Synthetic PHAs are the biomimetic analogs of bacterial poly(3-hydroxybutyrate) (PHB) and other natural PHAs. This paper addresses the issue of the presence of biological activity in synthetic and natural PHAs (stimulation of cell proliferation and differentiation, tissue regeneration) and their possible association with various biological functions of PHB in bacteria and eukaryotes, including humans.
Collapse
Affiliation(s)
- A. P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bldg. 2, Moscow, 119071, Russia
| | - G. A. Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bldg. 2, Moscow, 119071, Russia
| | - I. V. Reshetov
- Sechenov First Moscow State University, Trubetskaya Str. 8, bldg. 2, Moscow, 119991, Russia
| | - M. P. Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
| | - K. V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
| |
Collapse
|
9
|
Pontailler M, Bernard C, Gaudin R, Moreau de Bellaing A, Mostefa Kara M, Haydar A, Barbanti C, Bonnet D, Vouhé P, Raisky O. Tetralogy of Fallot and abnormal coronary artery: use of a prosthetic conduit is outdated. Eur J Cardiothorac Surg 2019; 56:94-100. [DOI: 10.1093/ejcts/ezz030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 11/13/2022] Open
Abstract
AbstractOBJECTIVESRepair of tetralogy of Fallot (ToF) can be challenging in the presence of an abnormal coronary artery (CA) in 5–12% of cases. The aim of this study was to report our experience with ToF repair without the systematic use of a right ventricle-to-pulmonary artery (RV-PA) conduit.METHODSWe conducted a monocentric retrospective study from 2000 to 2016, including 943 patients with ToF who underwent biventricular repair, of whom 8% (n = 76) presented with an abnormal CA. Mean follow-up time was 50 months (1 month–18 years).RESULTSThe most frequent CA anomaly was the left descending artery arising from the right CA (n = 47, 61.8%). The median age at repair was 7.7 months (1.8 months–16 years). Thirteen patients (17%) required prior palliation, mostly systemic pulmonary shunts for anoxic spells in the neonatal period. Surgical repair allowed us to preserve the annulus in 40 patients (53%) by combining PA trunk plasty, commissurotomy and infundibulotomy under the abnormal CA. If the annulus had to be opened (n = 35, 46%), a transannular patch was inserted after a vertical incision of the PA trunk and extended obliquely on the RV over the anomalous crossing CA (with an infundibulotomy under the abnormal CA). Three patients (4%) required the insertion of an RV-PA conduit (1 valved tube and 2 RV-PA GORE-TEX tubes with annulus conservation). The early mortality rate was 4% (n = 3); none of the deaths was coronary related. Four patients (5%) required reoperation (2 early and 2 late reoperations) for residual pulmonary stenosis, 3 of whom had annulus preservation during the initial repair. The mean RV/left ventricle (LV) pressure ratio and an RV/LV pressure ratio >2/3 were identified as risk factors for right ventricular outflow tract (RVOT) reinterventions (P = 0.0026, P = 0.0085, respectively), RVOT reoperations (P = 0.0002 for both) and reoperation for RVOT residual stenosis (P = 0.0002, P = 0.0014, respectively). Two patients underwent pulmonary valve replacement. Freedom from late reoperation was 100% at 1 year, 97% at 5 years and 84% at 10 and 15 years.CONCLUSIONSRepair of ToF and abnormal CA can be performed without an RV-PA conduit, with an acceptable low reintervention rate. The high early mortality rate in this series remains a concern. If any doubt remains about the surgical relief of the RVOT obstruction, the RV/LV pressure ratio should always be measured in the operating room.
Collapse
Affiliation(s)
- Margaux Pontailler
- Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Chloé Bernard
- Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Régis Gaudin
- Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Anne Moreau de Bellaing
- Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Mansour Mostefa Kara
- Department of Pediatric Cardiology, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Ayman Haydar
- Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Claudio Barbanti
- Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Damien Bonnet
- Department of Pediatric Cardiology, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Pascal Vouhé
- Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| | - Olivier Raisky
- Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital-M3C, University Paris Descartes, Paris, France
| |
Collapse
|
10
|
Luetzow K, Hommes‐Schattmann PJ, Neffe AT, Ahmad B, Williams GR, Lendlein A. Perfluorophenyl azide functionalization of electrospun poly(
para
‐dioxanone). POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Karola Luetzow
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative TherapiesHelmholtz‐Zentrum Geesthacht 14513 Teltow Germany
| | - Paul J. Hommes‐Schattmann
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative TherapiesHelmholtz‐Zentrum Geesthacht 14513 Teltow Germany
| | - Axel T. Neffe
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative TherapiesHelmholtz‐Zentrum Geesthacht 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam 14476 Potsdam Germany
| | - Bilal Ahmad
- UCL School of PharmacyUniversity College London 29‐39 Brunswick Square London WC1N 1AX UK
| | - Gareth R. Williams
- UCL School of PharmacyUniversity College London 29‐39 Brunswick Square London WC1N 1AX UK
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative TherapiesHelmholtz‐Zentrum Geesthacht 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam 14476 Potsdam Germany
| |
Collapse
|
11
|
Ahmad BS, Blanchy M, Mbele G, Pidial L, Vanneaux V, Menasché P, Williams GR, Kalfa D. The influence of electrospinning parameters on polydioxanone scaffold properties. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa979f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Illangakoon UE, Mahalingam S, Matharu RK, Edirisinghe M. Evolution of Surface Nanopores in Pressurised Gyrospun Polymeric Microfibers. Polymers (Basel) 2017; 9:polym9100508. [PMID: 30965811 PMCID: PMC6418950 DOI: 10.3390/polym9100508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/09/2023] Open
Abstract
The selection of a solvent or solvent system and the ensuing polymer–solvent interactions are crucial factors affecting the preparation of fibers with multiple morphologies. A range of poly(methylmethacrylate) fibers were prepared by pressurised gyration using acetone, chloroform, N,N-dimethylformamide (DMF), ethyl acetate and dichloromethane as solvents. It was found that microscale fibers with surface nanopores were formed when using chloroform, ethyl acetate and dichloromethane and poreless fibers were formed when using acetone and DMF as the solvent. These observations are explained on the basis of the physical properties of the solvents and mechanisms of pore formation. The formation of porous fibers is caused by many solvent properties such as volatility, solubility parameters, vapour pressure and surface tension. Cross-sectional images show that the nanopores are only on the surface of the fibers and they were not inter-connected. Further, the results show that fibers with desired nanopores (40–400 nm) can be prepared by carefully selecting the solvent and applied pressure in the gyration process.
Collapse
Affiliation(s)
- U Eranka Illangakoon
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.
| | | | - Rupy K Matharu
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
13
|
Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasché P. Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomater 2017; 48:20-40. [PMID: 27826001 DOI: 10.1016/j.actbio.2016.11.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Cardiac cell therapy holds a real promise for improving heart function and especially of the chronically failing myocardium. Embedding cells into 3D biodegradable scaffolds may better preserve cell survival and enhance cell engraftment after transplantation, consequently improving cardiac cell therapy compared with direct intramyocardial injection of isolated cells. The primary objective of a scaffold used in tissue engineering is the recreation of the natural 3D environment most suitable for an adequate tissue growth. An important aspect of this commitment is to mimic the fibrillar structure of the extracellular matrix, which provides essential guidance for cell organization, survival, and function. Recent advances in nanotechnology have significantly improved our capacities to mimic the extracellular matrix. Among them, electrospinning is well known for being easy to process and cost effective. Consequently, it is becoming increasingly popular for biomedical applications and it is most definitely the cutting edge technique to make scaffolds that mimic the extracellular matrix for industrial applications. Here, the desirable physico-chemical properties of the electrospun scaffolds for cardiac therapy are described, and polymers are categorized to natural and synthetic.Moreover, the methods used for improving functionalities by providing cells with the necessary chemical cues and a more in vivo-like environment are reported.
Collapse
|
14
|
Affiliation(s)
- David Kalfa
- Pediatric Cardiac Surgery, Morgan Stanley Children's Hospital - NewYork-Presbyterian, Columbia University Medical Center, New York, USA
| |
Collapse
|
15
|
Effects of isothermal crystallization on the mechanical properties of a elastomeric medium chain length polyhydroxyalkanoate. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Hommes-Schattmann PJ, Neffe AT, Ahmad B, Williams GR, M'Bele G, Vanneaux V, Menasché P, Kalfa D, Lendlein A. RGD constructs with physical anchor groups as polymer co-electrospinnable cell adhesives. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paul J. Hommes-Schattmann
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht; Teltow Germany
| | - Axel T. Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht; Teltow Germany
- Institute of Chemistry; University of Potsdam; Potsdam Germany
| | - Bilal Ahmad
- UCL School of Pharmacy, 29-39 Brunswick Square; London WC1N 1AX UK
| | | | - Gael M'Bele
- Assistance Publique-Hôpitaux de Paris; Unité de thérapie cellulaire et CIC de Biothérapies, Hôpital Saint Louis; France
- UMR1160, Institut Universitaire d'Hématologie; 75475 Paris Cedex 10 France
| | - Valérie Vanneaux
- Assistance Publique-Hôpitaux de Paris; Unité de thérapie cellulaire et CIC de Biothérapies, Hôpital Saint Louis; France
- UMR1160, Institut Universitaire d'Hématologie; 75475 Paris Cedex 10 France
| | - Philippe Menasché
- Department of Cardiovascular Surgery and INSERM U 970, Hôpital Européen Georges Pompidou; University Paris Descartes; Sorbonne Paris Cité Paris France
| | - David Kalfa
- TEH Tube consortium coordinator; New York NY USA
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht; Teltow Germany
- Institute of Chemistry; University of Potsdam; Potsdam Germany
| |
Collapse
|
17
|
Vallejo-Giraldo C, Pugliese E, Larrañaga A, Fernandez-Yague MA, Britton JJ, Trotier A, Tadayyon G, Kelly A, Rago I, Sarasua JR, Dowd E, Quinlan LR, Pandit A, Biggs MJP. Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine (Lond) 2016; 11:2547-63. [DOI: 10.2217/nnm-2016-0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Medium chain length-polyhydroxyalkanoate/multi-walled carbon nanotube (MWCNTs) nanocomposites with a range of mechanical and electrochemical properties were fabricated via assisted dispersion and solvent casting, and their suitability as neural interface biomaterials was investigated. Materials & methods: Mechanical and electrical properties of medium chain length-polyhydroxyalkanoate/MWCNTs nanocomposite films were evaluated by tensile test and electrical impedance spectroscopy, respectively. Primary rat mesencephalic cells were seeded on the composites and quantitative immunostaining of relevant neural biomarkers, and electrical stimulation studies were performed. Results: Incorporation of MWCNTs to the polymeric matrix modulated the mechanical and electrical properties of resulting composites, and promoted differential cell viability, morphology and function as a function of MWCNT concentration. Conclusion: This study demonstrates the feasibility of a green thermoplastic MWCNTs nanocomposite for potential use in neural interfacing applications.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Eugenia Pugliese
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Aitor Larrañaga
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Mining-Metallurgy Engineering & Materials Science & POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) 480130 Bilbao, Spain
| | - Marc A Fernandez-Yague
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - James J Britton
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Alexandre Trotier
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Ghazal Tadayyon
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Adriona Kelly
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Ilaria Rago
- Department of Physics, University of Trieste, Via Valerio 2-34127, Trieste, Italy
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering & Materials Science & POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) 480130 Bilbao, Spain
| | - Eilís Dowd
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Physics, University of Trieste, Via Valerio 2-34127, Trieste, Italy
| | - Leo R Quinlan
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Manus JP Biggs
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| |
Collapse
|
18
|
Smits AI, Bonito V, Stoddart M. In Situ Tissue Engineering: Seducing the Body to Regenerate. Tissue Eng Part A 2016; 22:1061-2. [DOI: 10.1089/ten.tea.2016.0247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anthal I.P.M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Valentina Bonito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | |
Collapse
|
19
|
Rowland DCL, Aquilina T, Klein A, Hakimi O, Alexis-Mouthuy P, Carr AJ, Snelling SJB. A comparative evaluation of the effect of polymer chemistry and fiber orientation on mesenchymal stem cell differentiation. J Biomed Mater Res A 2016; 104:2843-53. [PMID: 27399850 PMCID: PMC5053290 DOI: 10.1002/jbm.a.35829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/26/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022]
Abstract
Bioengineered tissue scaffolds in combination with cells hold great promise for tissue regeneration. The aim of this study was to determine how the chemistry and fiber orientation of engineered scaffolds affect the differentiation of mesenchymal stem cells (MSCs). Adipogenic, chondrogenic, and osteogenic differentiation on aligned and randomly orientated electrospun scaffolds of Poly (lactic‐co‐glycolic) acid (PLGA) and Polydioxanone (PDO) were compared. MSCs were seeded onto scaffolds and cultured for 14 days under adipogenic‐, chondrogenic‐, or osteogenic‐inducing conditions. Cell viability was assessed by alamarBlue metabolic activity assays and gene expression was determined by qRT‐PCR. Cell‐scaffold interactions were visualized using fluorescence and scanning electron microscopy. Cells grew in response to scaffold fiber orientation and cell viability, cell coverage, and gene expression analysis showed that PDO supports greater multilineage differentiation of MSCs. An aligned PDO scaffold supports highest adipogenic and osteogenic differentiation whereas fiber orientation did not have a consistent effect on chondrogenesis. Electrospun scaffolds, selected on the basis of fiber chemistry and alignment parameters could provide great therapeutic potential for restoration of fat, cartilage, and bone tissue. This study supports the continued investigation of an electrospun PDO scaffold for tissue repair and regeneration and highlights the potential of optimizing fiber orientation for improved utility. © 2016 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2843–2853, 2016.
Collapse
Affiliation(s)
- David C L Rowland
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Thomas Aquilina
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Andrei Klein
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Osnat Hakimi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Pierre Alexis-Mouthuy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sarah J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
20
|
Antonova LV, Seifalian AM, Kutikhin AG, Sevostyanova VV, Krivkina EO, Mironov AV, Burago AY, Velikanova EA, Matveeva VG, Glushkova TV, Sergeeva EA, Vasyukov GY, Kudryavtseva YA, Barbarash OL, Barbarash LS. Bioabsorbable Bypass Grafts Biofunctionalised with RGD Have Enhanced Biophysical Properties and Endothelialisation Tested In vivo. Front Pharmacol 2016; 7:136. [PMID: 27252652 PMCID: PMC4879758 DOI: 10.3389/fphar.2016.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Small diameter arterial bypass grafts are considered as unmet clinical need since the current grafts have poor patency of 25% within 5 years. We have developed a 3D scaffold manufactured from natural and synthetic biodegradable polymers, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(𝜀-caprolactone) (PCL), respectively. Further to improve the biophysical properties as well as endothelialisation, the grafts were covalently conjugated with arginine-glycine-aspartic acid (RGD) bioactive peptides. The biophysical properties as well as endothelialisation of PHBV/PCL and PCL 2 mm diameter bypass grafts were assessed with and without biofunctionalisation with RGD peptides in vitro and in vivo. Morphology of the grafts was assessed by scanning electron microscopy, whereas physico-mechanical properties were evaluated using a physiological circulating system equipped with a state of art ultrasound vascular wall tracking system. Endothelialisation of the grafts in vitro and in vivo were assessed using a cell viability assay and rat abdominal aorta replacement model, respectively. The biofunctionalisation with RGD bioactive peptides decreased mean fiber diameter and mean pore area in PHBV/PCL grafts; however, this was not the case for PCL grafts. Both PHBV/PCL and PCL grafts with RGD peptides had lower durability compared to those without; these durability values were similar to those of internal mammary artery. Modification of PHBV/PCL and PCL grafts with RGD peptides increased endothelial cell viability in vitro by a factor of eight and enhanced the formation of an endothelial cell monolayer in vivo 1 month postimplantation. In conclusion, PHBV/PCL small-caliber graft can be a suitable 3D scaffold for the development of a tissue engineering arterial bypass graft.
Collapse
Affiliation(s)
- Larisa V Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Alexander M Seifalian
- Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, University College LondonLondon, UK; NanoRegMed LtdLondon, UK
| | - Anton G Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | | | - Evgeniya O Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Andrey V Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Andrey Y Burago
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Elena A Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Vera G Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Tatiana V Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Evgeniya A Sergeeva
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Georgiy Y Vasyukov
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | | | - Olga L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Leonid S Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| |
Collapse
|