1
|
Tan Z, Chen P, Dong X, Guo S, Leung VYL, Cheung JPY, Chan D, Richardson SM, Hoyland JA, To MKT, Cheah KSE. Progenitor-like cells contributing to cellular heterogeneity in the nucleus pulposus are lost in intervertebral disc degeneration. Cell Rep 2024; 43:114342. [PMID: 38865240 DOI: 10.1016/j.celrep.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The nucleus pulposus (NP) in the intervertebral disc (IVD) arises from embryonic notochord. Loss of notochordal-like cells in humans correlates with onset of IVD degeneration, suggesting that they are critical for healthy NP homeostasis and function. Comparative transcriptomic analyses identified expression of progenitor-associated genes (GREM1, KRT18, and TAGLN) in the young mouse and non-degenerated human NP, with TAGLN expression reducing with aging. Lineage tracing using Tagln-CreERt2 mice identified peripherally located proliferative NP (PeriNP) cells in developing and postnatal NP that provide a continuous supply of cells to the entire NP. PeriNP cells were diminished in aged mice and absent in puncture-induced degenerated discs. Single-cell transcriptomes of postnatal Tagln-CreERt2 IVD cells indicate enrichment for TGF-β signaling in Tagln descendant NP sub-populations. Notochord-specific removal of TGF-β/BMP mediator Smad4 results in loss of Tagln+ cells and abnormal NP morphologies. We propose Tagln+ PeriNP cells are potential progenitors crucial for NP homeostasis.
Collapse
Affiliation(s)
- Zhijia Tan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Shenzhen Clinical Research Center for Rare Diseases, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China; Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peikai Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Shenzhen Clinical Research Center for Rare Diseases, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China; Artificial Intelligence and Big Data Lab, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xiaonan Dong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuang Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jason P Y Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Michael K T To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Shenzhen Clinical Research Center for Rare Diseases, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China; Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn S E Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Molinos M, Fiordalisi MF, Caldeira J, Almeida CR, Barbosa MA, Gonçalves RM. Alterations of bovine nucleus pulposus cells with aging. Aging Cell 2023; 22:e13873. [PMID: 37254638 PMCID: PMC10410011 DOI: 10.1111/acel.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.
Collapse
Affiliation(s)
- Maria Molinos
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Morena F. Fiordalisi
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Joana Caldeira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
| | - Catarina R. Almeida
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- iBiMED – Institute of Biomedicine, Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Mário A. Barbosa
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Raquel M. Gonçalves
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
3
|
Fiordalisi MF, Ferreira JR, Pinto ML, Ribeiro-Machado C, Teixeira Pinto M, Oliveira MJ, Barbosa MA, Madeira Gonçalves R, Caldeira J. The impact of matrix age on intervertebral disc regeneration. BIOMATERIALS ADVANCES 2022; 143:213192. [PMID: 36403438 DOI: 10.1016/j.bioadv.2022.213192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the lack of effective treatments for low back pain, the use of extracellular matrix (ECM)-based biomaterials have emerged with undeniable promise for IVD regeneration. Decellularized scaffolds can recreate an ideal microenvironment inducing tissue remodeling and repair. In particular, fetal tissues have a superior regenerative capacity given their ECM composition. In line with this, we unraveled age-associated alterations of the nucleus pulposus (NP) matrisome. Thus, the aim of the present work was to evaluate the impact of ECM donor age on IVD de/regeneration. Accordingly, we optimized an SDS (0.1 %, 1 h)-based decellularization protocol that preserves ECM cues in bovine NPs from different ages. After repopulation with adult NP cells, younger matrices showed the highest repopulation efficiency. Most importantly, cells seeded on younger scaffolds produced healthy ECM proteins suggesting an increased capacity to restore a functional IVD microenvironment. In vivo, only fetal matrices decreased neovessel formation, showing an anti-angiogenic potential. Our findings demonstrate that ECM donor age has a strong influence on angiogenesis and ECM de novo synthesis, opening new avenues for novel therapeutic strategies for the IVD. Additionally, more appropriate 3D models to study age-associated IVD pathology were unveiled.
Collapse
Affiliation(s)
- Morena Francesca Fiordalisi
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Joana Rita Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Marta Laranjeiro Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Cláudia Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal
| | - Marta Teixeira Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto 4200-135, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal; Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | - Mário Adolfo Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Raquel Madeira Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Joana Caldeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal.
| |
Collapse
|
4
|
van den Akker GGH, Cremers A, Surtel DAM, Voncken W, Welting TJM. Isolation of Nucleus Pulposus and Annulus Fibrosus Cells from the Intervertebral Disc. Methods Mol Biol 2021; 2221:41-52. [PMID: 32979197 DOI: 10.1007/978-1-0716-0989-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells isolated from the intervertebral disc are often used for in vitro experimentation. Correctly separating the intervertebral disc tissue in annulus fibrosus and nucleus pulposus is particularly challenging when working with surplus material from surgery or specimens from donors with an advanced age. Moreover, lineage controls are only sparsely reported to verify tissue of origin. Here we describe an approach to intervertebral disc cell isolation from human and bovine origin.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Donatus A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Willem Voncken
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Du J, Long R, Nakai T, Sakai D, Benneker L, Zhou G, Li B, Eglin D, Iatridis J, Alini M, Grad S, Li Z. Functional cell phenotype induction with TGF-β1 and collagen-polyurethane scaffold for annulus fibrosus rupture repair. Eur Cell Mater 2020; 39:1-17. [PMID: 31899537 PMCID: PMC7027376 DOI: 10.22203/ecm.v039a01] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Appropriate cell sources, bioactive factors and biomaterials for generation of functional and integrated annulus fibrosus (AF) tissue analogues are still an unmet need. In the present study, the AF cell markers, collagen type I, cluster of differentiation 146 (CD146), mohawk (MKX) and smooth muscle protein 22α (SM22α) were found to be suitable indicators of functional AF cell induction. In vitro 2D culture of human AF cells showed that transforming growth factor β1 (TGF-β1) upregulated the expression of the functional AF markers and increased cell contractility, indicating that TGF-β1-pre-treated AF cells were an appropriate cell source for AF tissue regeneration. Furthermore, a tissue engineered construct, composed of polyurethane (PU) scaffold with a TGF-β1-supplemented collagen type I hydrogel and human AF cells, was evaluated with in vitro 3D culture and ex vivo preclinical bioreactor-loaded organ culture models. The collagen type I hydrogel helped maintaining the AF functional phenotype. TGF-β1 supplement within the collagen I hydrogel further promoted cell proliferation and matrix production of AF cells within in vitro 3D culture. In the ex vivo IVD organ culture model with physiologically relevant mechanical loading, TGF-β1 supplement in the transplanted constructs induced the functional AF cell phenotype and enhanced collagen matrix synthesis. In conclusion, TGF-β1-containing collagen-PU constructs can induce the functional cell phenotype of human AF cells in vitro and in situ. This combined cellular, biomaterial and bioactive agent therapy has a great potential for AF tissue regeneration and rupture repair.
Collapse
Affiliation(s)
- J. Du
- AO Research Institute Davos, Davos, Switzerland
| | - R.G. Long
- AO Research Institute Davos, Davos, Switzerland,Icahn School of Medicine at Mount Sinai, New York, USA,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - T. Nakai
- Tokai University School of Medicine, Isehara, Japan,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - D. Sakai
- Tokai University School of Medicine, Isehara, Japan,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - L.M. Benneker
- Inselspital, University of Bern, Bern, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - G. Zhou
- Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Centre, Shenzhen University, Shenzhen, China
| | - B. Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - D. Eglin
- AO Research Institute Davos, Davos, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - J.C. Iatridis
- Icahn School of Medicine at Mount Sinai, New York, USA,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - M. Alini
- AO Research Institute Davos, Davos, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - S. Grad
- AO Research Institute Davos, Davos, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - Z. Li
- AO Research Institute Davos, Davos, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland,Address for correspondence: Zhen Li, PhD, AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland. Telephone number: +41 814142325
| |
Collapse
|
6
|
Identification of Aberrantly Expressed Genes during Aging in Rat Nucleus Pulposus Cells. Stem Cells Int 2019; 2019:2785207. [PMID: 31379949 PMCID: PMC6652086 DOI: 10.1155/2019/2785207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleus pulposus cells (NPCs) play a vital role in maintaining the homeostasis of the intervertebral disc (IVD). Previous studies have discovered that NPCs exhibited malfunction due to cellular senescence during disc aging and degeneration; this might be one of the key factors of IVD degeneration. Thus, we conducted this study in order to investigate the altered biofunction and the underlying genes and pathways of senescent NPCs. We isolated and identified NPCs from the tail discs of young (2 months) and old (24 months) SD rats and confirmed the senescent phenotype through SA-β-gal staining. CCK-8 assay, transwell assay, and cell scratch assay were adopted to detect the proliferous and migratory ability of two groups. Then, a rat Gene Chip Clariom™ S array was used to detect differentially expressed genes (DEGs). After rigorous bioinformatics analysis of the raw data, totally, 1038 differentially expressed genes with a fold change > 1.5 were identified out of 23189 probes. Among them, 617 were upregulated and 421 were downregulated. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted and revealed numerous number of enriched GO terms and signaling pathways associated with senescence of NPCs. A protein-protein interaction (PPI) network of the DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. Module analysis was conducted for the PPI network using the MCODE plugin in Cytoscape. Hub genes were identified by the CytoHubba plugin in Cytoscape. Derived 5 hub genes and most significantly up- or downregulated genes were further verified by real-time PCR. The present study investigated underlying mechanisms in the senescence of NPCs on a genome-wide scale. The illumination of molecular mechanisms of NPCs senescence may assist the development of novel biological methods to treat degenerative disc diseases.
Collapse
|
7
|
Regenerative potential of human nucleus pulposus resident stem/progenitor cells declines with ageing and intervertebral disc degeneration. Int J Mol Med 2018; 42:2193-2202. [PMID: 30015833 DOI: 10.3892/ijmm.2018.3766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have demonstrated the presence of resident nucleus pulposus stem/progenitor cells (NPSCs) in the tissue of the intervertebral disc (IVD). However, the cellular identity of NPSCs during IVD degeneration and ageing are poorly defined at present, despite significant progress in the understanding of NPSC biology. In the present study, NPSCs were isolated from human degenerated IVD and were characterized by flow cytometry, gene expression assays and proliferation and multipotency analysis. The results of the present study demonstrated that NPSCs isolated from human degenerated IVD may be divided into two groups according to the expression of mesenchymal stem cell (MSC) surface markers: The high expression of MSC surface markers group (H‑NPSCs) was highly positive for CD29, CD44, CD73, CD90 and CD105 at rates >95%, and the low expression of MSC markers surface markers group (L‑NPSCs), with the expression of CD29 and CD105 exhibiting individual variability, however, all at rates <95%. The donors for H‑NPSCs were aged <20 years, while the majority of donors for L‑NPSCs were aged >25 years, with one exception aged <20 years. The results highlighted that the low expression of MSC surface markers in NPSCs from aged and degenerated NP tissues were associated with a low rate of proliferation and reduced differentiation potential, as well as downregulation of the NP progenitor marker Tie2 and higher expression of NP cell‑specific markers. These findings demonstrated that the regenerative potential of human NPSCs declines with ageing and degeneration of the IVD.
Collapse
|
8
|
Age-Correlated Phenotypic Alterations in Cells Isolated From Human Degenerated Intervertebral Discs With Contained Hernias. Spine (Phila Pa 1976) 2018; 43:E274-E284. [PMID: 28678109 DOI: 10.1097/brs.0000000000002311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Human intervertebral disc (hIVD) cells were isolated from 41 surgically excised samples and assessed for their phenotypic alterations with age. OBJECTIVE Toward the design of novel anti-aging strategies to overcome degenerative disc disease (DDD), we investigated age-correlated phenotypic alterations that occur on primary hIVD cells. SUMMARY OF BACKGROUND DATA Although regenerative medicine holds great hope, much is still to be unveiled on IVD cell biology and its intrinsic signaling pathways, which can lead the way to successful therapies for IDD. A greater focus on age-related phenotypic changes at the cell level would contribute to establish more effective anti-aging/degeneration targets. METHODS The study was subdivided in four main steps: i) optimization of primary cells isolation technique; ii) high-throughput cell morphology analysis, by imaging flow cytometry (FC) and subsequent validation by histological analysis; iii) analysis of progenitor cell surface markers expression, by conventional FC; and iv) statistical analysis and correlation of cells morphology and phenotype with donor age. RESULTS Three subsets of cells were identified on the basis of their diameter: small cell (SC), large cell (LC), and super LC (SLC). The frequency of SCs decreased nearly 50% with age, whereas that of LCs increased nearly 30%. Interestingly, the increased cells size was due to an enlargement of the pericellular matrix (PCM). Moreover, the expression pattern for CD90 and CD73 was a reflexion of age, where older individuals show reduced frequencies of positive cells for those markers. Nevertheless, the elevated percentages of primary positive cells for the mesenchymal stem cells (MSCs) marker CD146 found, even in some older donors, refreshed hope for the hypothetical activation of the self-renewal potential of the IVD. CONCLUSION These findings highlight the remarkable morphological alterations that occur on hIVD cells with aging and degeneration, while reinforcing previous reports on the gradual disappearance of an endogenous progenitor cell population. LEVEL OF EVIDENCE N/A.
Collapse
|
9
|
Matrisome Profiling During Intervertebral Disc Development And Ageing. Sci Rep 2017; 7:11629. [PMID: 28912585 PMCID: PMC5599645 DOI: 10.1038/s41598-017-11960-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is often the cause of low back pain. Degeneration occurs with age and is accompanied by extracellular matrix (ECM) depletion, culminating in nucleus pulpous (NP) extrusion and IVD destruction. The changes that occur in the disc with age have been under investigation. However, a thorough study of ECM profiling is needed, to better understand IVD development and age-associated degeneration. As so, iTRAQ LC-MS/MS analysis of foetus, young and old bovine NPs, was performed to define the NP matrisome. The enrichment of Collagen XII and XIV in foetus, Fibronectin and Prolargin in elder NPs and Collagen XI in young ones was independently validated. This study provides the first matrisome database of healthy discs during development and ageing, which is key to determine the pathways and processes that maintain disc homeostasis. The factors identified may help to explain age-associated IVD degeneration or constitute putative effectors for disc regeneration.
Collapse
|
10
|
RNA in situ hybridization characterization of non-enzymatic derived bovine intervertebral disc cell lineages suggests progenitor cell potential. Acta Histochem 2017; 119:150-160. [PMID: 28063600 DOI: 10.1016/j.acthis.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Degeneration of the intervertebral disc (IVD) is a meritorious target for therapeutic cell based regenerative medicine approaches, however, controversy over what defines the precise identity of mature IVD cells and lack of single cell based quality control measures is of concern. Bos taurus and human IVDs are histologically more similar than is Mus musculus. The mature bovine IVD is well suited as model system for technology development to be translated into therapeutic cell based regenerative medicine applications. We present a reproducible non-enzymatic protocol to isolate cell progenitor populations of three distinct areas of the mature bovine IVD. Bovine specific RNA probes were validated in situ and employed to assess fate changes, heterogeneity, stem cell characteristics and differentiation potential of the cultures. Quality control measures with single cell resolution like RNA in situ hybridization to assess culture heterogeneity (PISH) followed by optimization of culture conditions could be translated to human IVD cell culture to increase the safety of cell based regenerative medicine.
Collapse
|
11
|
Bendtsen M, Bunger C, Colombier P, Le Visage C, Roberts S, Sakai D, Urban JPG. Biological challenges for regeneration of the degenerated disc using cellular therapies. Acta Orthop 2016; 87:39-46. [PMID: 28287303 PMCID: PMC5389430 DOI: 10.1080/17453674.2017.1297916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/07/2017] [Indexed: 02/08/2023] Open
Affiliation(s)
| | - Cody Bunger
- Department of Orthopaedics, Aarhus University Hospital, Denmark
| | - Pauline Colombier
- INSERM UMR 1229, Regenerative Medecine and Skeleton, University of Nantes, France
| | - Catherine Le Visage
- INSERM UMR 1229, Regenerative Medecine and Skeleton, University of Nantes, France
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Daisuke Sakai
- Department of Orthopaedics, Tokai University Hospital, Japan
| | - Jill P G Urban
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| |
Collapse
|
12
|
Cunha C, Almeida CR, Almeida MI, Silva AM, Molinos M, Lamas S, Pereira CL, Teixeira GQ, Monteiro AT, Santos SG, Gonçalves RM, Barbosa MA. Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration. Stem Cells Transl Med 2016; 6:1029-1039. [PMID: 28297581 PMCID: PMC5442789 DOI: 10.5966/sctm.2016-0033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022] Open
Abstract
Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site. MSC transplantation was performed 24 hours after injury, in parallel with dermal fibroblasts as a control; 2 weeks after transplantation, animals were killed. Disc height index and histological grading score indicated less degeneration for the MSC‐transplanted group, with no significant changes in extracellular matrix composition. Remarkably, MSC transplantation resulted in local downregulation of the hypoxia responsive GLUT‐1 and in significantly less herniation, with higher amounts of Pax5+ B lymphocytes and no alterations in CD68+ macrophages within the hernia. The systemic immune response was analyzed in the blood, draining lymph nodes, and spleen by flow cytometry and in the plasma by cytokine array. Results suggest an immunoregulatory effect in the MSC‐transplanted animals compared with control groups, with an increase in MHC class II+ and CD4+ cells, and also upregulation of the cytokines IL‐2, IL‐4, IL‐6, and IL‐10, and downregulation of the cytokines IL‐13 and TNF‐α. Overall, our results indicate a beneficial effect of systemically transplanted MSCs on in situ IVD regeneration and highlight the complex interplay between stromal cells and cells of the immune system in achieving successful tissue regeneration. Stem Cells Translational Medicine2017;6:1029–1039
Collapse
Affiliation(s)
- Carla Cunha
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Catarina R. Almeida
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences and Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Maria Inês Almeida
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Andreia M. Silva
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Molinos
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia Lamas
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC‐Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Catarina L. Pereira
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graciosa Q. Teixeira
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - António T. Monteiro
- Research Centre on Biodiversity and Genetic Resources, CIBIO‐InBIO Associate Laboratory, Vairão, Portugal
| | - Susana G. Santos
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel M. Gonçalves
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário A. Barbosa
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells. Stem Cells Int 2016; 2016:5457132. [PMID: 27746820 PMCID: PMC5056264 DOI: 10.1155/2016/5457132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023] Open
Abstract
In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM) and second harmonic generation (SHG) could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin.
Collapse
|