1
|
Ho C, Wang C, Wu T, Kuan C, Liu Y, Wang T. Peptide-functionalized double network hydrogel with compressible shape memory effect for intervertebral disc regeneration. Bioeng Transl Med 2023; 8:e10447. [PMID: 36925718 PMCID: PMC10013763 DOI: 10.1002/btm2.10447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
As a prominent approach to treat intervertebral disc (IVD) degeneration, disc transplantation still falls short to fully reconstruct and restore the function of native IVD. Here, we introduce an IVD scaffold consists of a cellulose-alginate double network hydrogel-based annulus fibrosus (AF) and a cellulose hydrogel-based nucleus pulposus (NP). This scaffold mimics native IVD structure and controls the delivery of Growth Differentiation Factor-5 (GDF-5), which induces differentiation of endogenous mesenchymal stem cells (MSCs). In addition, this IVD scaffold has modifications on MSC homing peptide and RGD peptide which facilitate the recruitment of MSCs to injured area and enhances their cell adhesion property. The benefits of this double network hydrogel are high compressibility, shape memory effect, and mechanical strength comparable to native IVD. In vivo animal study demonstrates successful reconstruction of injured IVD including both AF and NP. These findings suggest that this double network hydrogel can serve as a promising approach to IVD regeneration with other potential biomedical applications.
Collapse
Affiliation(s)
- Chia‐Yu Ho
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Chen‐Chie Wang
- Department of Orthopedic SurgeryTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Department of Orthopedics, School of MedicineTzu Chi UniversityHualienTaiwan
| | - Tsung‐Chiao Wu
- Department of Orthopedic SurgeryTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Chen‐Hsiang Kuan
- Division of Plastic Surgery, Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Clinical Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Research Center for Developmental Biology and Regenerative MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Tzu‐Wei Wang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
2
|
Xu H, Liu X, George MN, Lee Miller A, Park S, Xu H, Terzic A, Lu L. Black phosphorus incorporation modulates nanocomposite hydrogel properties and subsequent MC3T3 cell attachment, proliferation, and differentiation. J Biomed Mater Res A 2021; 109:1633-1645. [PMID: 33650768 PMCID: PMC8890905 DOI: 10.1002/jbm.a.37159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
A promising strategy that emerged in tissue engineering is to incorporate two-dimensional (2D) materials into polymer scaffolds, producing materials with desirable mechanical properties and surface chemistries, which also display broad biocompatibility. Black phosphorus (BP) is a 2D material that has sparked recent scientific interest due to its unique structure and electrochemical characteristics. In this study, BP nanosheets (BPNSs) were incorporated into a cross-linkable oligo[poly(ethylene glycol) fumarate] (OPF) hydrogel to produce a new nanocomposite for bone regeneration. BPNSs exhibited a controllable degradation rate coupled with the release of phosphate in vitro. MTS assay results together with live/dead images confirmed that the introduction of BPNSs into OPF hydrogels enhanced MC3T3-E1 cell proliferation. Moreover, the morphology parameters indicated better attachments of cells in the BPNSs containing group. Immunofluorescence images as well as intercellular ALP and OCN activities showed that adding a certain amount of BPNSs to OPF hydrogel could greatly improve differentiation of pre-osteoblasts on the hydrogel. Additionally, embedding black phosphorous into a neutral polymer network helped to control its cytotoxicity, with optimal cell growth observed at BP concentrations as high as 500 ppm. These results reinforced that the supplementation of OPF with BPNSs can increase the osteogenic capacity of polymer scaffolds for use in bone tissue engineering.
Collapse
Affiliation(s)
- Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N. George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hao Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Liu X, Gaihre B, George MN, Li Y, Tilton M, Yaszemski MJ, Lu L. 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomater Sci 2021; 9:2768-2803. [PMID: 33620047 PMCID: PMC9009269 DOI: 10.1039/d0bm01972k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorene, also known as black phosphorus (BP), is a two-dimensional (2D) material that has gained significant attention in several areas of current research. Its unique properties such as outstanding surface activity, an adjustable bandgap width, favorable on/off current ratios, infrared-light responsiveness, good biocompatibility, and fast biodegradation differentiate this material from other two-dimensional materials. The application of BP in the biomedical field has been rapidly emerging over the past few years. This article aimed to provide a comprehensive review of the recent progress on the unique properties and extensive medical applications for BP in bone, nerve, skin, kidney, cancer, and biosensing related treatment. The details of applications of BP in these fields were summarized and discussed.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Rezaei A, Giambini H, Miller Ii AL, Xu H, Xu H, Li Y, Yaszemski MJ, Lu L. CT-based structural analyses of vertebral fractures with polymeric augmentation: A study of cadaveric three-level spine segments. Comput Biol Med 2021; 133:104395. [PMID: 33872967 DOI: 10.1016/j.compbiomed.2021.104395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Pathologic vertebral fractures due to metastasis can occur under normal physiologic activities, leading to pain and neurologic deficit. Prophylactic vertebroplasty is a technique used to augment vertebral strength and reduce the risk of fracture. Currently, no technique is available to objectively assess vertebral fracture risk in metastatically-involved vertebral bodies. The aim of the current study was to develop an image-based computational technique to estimate fracture force outcomes during bending. To this end, mechanical testing was performed on intact, simulated defect, PMMA-augmented, and PPF-augmented 3-level spine segments from both sexes under a compression/flexion-type loading condition. The augmentation performance of poly(methyl methacrylate) (PMMA) and poly(propylene fumarate) (PPF) were also evaluated and compared. Cylindrical defects were created in 3-level spine segments with attached posterior elements and ligaments. Using CT images of each segment, a rigidity analysis technique was developed and used for predicting fracture forces during bending. On average, PPF strengthened the segments by about 630 N, resulting in fracture forces similar to those observed in the intact and PMMA-augmented groups. Female spines fractured at about 1150 N smaller force than did male spines. Rigidity analysis, along with age, explained 66% variability in experimental outcomes. This number increased to 74% when vertebral size and age were added to the rigidity analysis as explanatory variables. Both PPF and PMMA similarly increased fracture strength to the level of intact specimens. The results suggest that PPF can be a suitable candidate for augmentation purposes and rigidity analysis can be a promising predicting tool for vertebral fracture forces.
Collapse
Affiliation(s)
- Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Hugo Giambini
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alan L Miller Ii
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Hao Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Rezaei A, Giambini H, Miller AL, Liu X, Elder BD, Yaszemski MJ, Lu L. OPF/PMMA cage system as an alternative approach for the treatment of vertebral corpectomy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:6912. [PMID: 33986953 PMCID: PMC8115301 DOI: 10.3390/app10196912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The spinal column is the most common site for bone metastasis. Vertebral metastases with instability have historically been treated with corpectomy of the affected vertebral body and adjacent intervertebral discs, and are more recently treated with separation surgery. With demographics shifting towards an elderly population, a less invasive surgical approach is necessary for the repair of vertebral defects. We have modified a previously reported expandable hollow cage composed of an oligo[poly(ethylene glycol) fumarate] (OPF) containment system that could be delivered via a posterior-only approach. Then, the polymer of interest, poly(methyl methacrylate) (PMMA) bone cement, was injected into the lumen of the cage after expansion to form an OPF/PMMA cage. We compared six different cage formulations to account for vertebral body and defect size, and performed a cage characterization via expansion kinetics and mechanical testing evaluations. Additionally, we investigated the feasibility of the OPF/PMMA cage in providing spine stability via kinematic analyses. The in-vitro placement of the implant using our OPF/PMMA cage system showed improvement and mechanical stability in a flexion motion. The results demonstrated that the formulation and technique presented in the current study have the potential to improve surgical outcomes in minimally invasive procedures on the spine.
Collapse
Affiliation(s)
- Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Giambini
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Alan L. Miller
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin D. Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J. Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Liu X, George MN, Li L, Gamble D, Miller AL, Gaihre B, Waletzki BE, Lu L. Injectable Electrical Conductive and Phosphate Releasing Gel with Two-Dimensional Black Phosphorus and Carbon Nanotubes for Bone Tissue Engineering. ACS Biomater Sci Eng 2020; 6:4653-4665. [PMID: 33455193 PMCID: PMC9009275 DOI: 10.1021/acsbiomaterials.0c00612] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Injectable hydrogels have unique advantages for the repair of irregular tissue defects. In this study, we report a novel injectable carbon nanotube (CNT) and black phosphorus (BP) gel with enhanced mechanical strength, electrical conductivity, and continuous phosphate ion release for tissue engineering. The gel utilized biodegradable oligo(poly(ethylene glycol) fumarate) (OPF) polymer as the cross-linking matrix, with the addition of cross-linkable CNT-poly(ethylene glycol)-acrylate (CNTpega) to grant mechanical support and electric conductivity. Two-dimensional (2D) black phosphorus nanosheets were also infused to aid in tissue regeneration through the steady release of phosphate that results from environmental oxidation of phosphorus in situ. This newly developed BP-CNTpega-gel was found to enhance the adhesion, proliferation, and osteogenic differentiation of MC3T3 preosteoblast cells. With electric stimulation, the osteogenesis of preosteoblast cells was further enhanced with elevated expression of several key osteogenic pathway genes. As monitored with X-ray imaging, the BP-CNTpega-gel demonstrated excellent in situ gelation and cross-linking to fill femur defects, vertebral body cavities, and posterolateral spinal fusion sites in the rabbit. Together, these results indicate that this newly developed injectable BP-CNTpega-gel owns promising potential for future bone and broad types of tissue engineering applications.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N. George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Darian Gamble
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Liu X, Gaihre B, George MN, Miller AL, Xu H, Waletzki BE, Lu L. 3D bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. J Biomed Mater Res A 2020; 109:6-17. [PMID: 32418273 DOI: 10.1002/jbm.a.37002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 01/02/2023]
Abstract
3D bioprinting is a promising new tissue restoration technique that enables the precise deposition of cells and growth factors in order to more closely mimic the structure and function of native organs. In this study, we report the development of a new bioink using oligo(poly[ethylene glycol] fumarate) (OPF), a photo-crosslinkable, and biodegradable polymer, for 3D bioprinting. In addition to OPF, a small portion of gelatin was also incorporated into the bioink to make it bio-printable. After immersion in the cell medium, gelatin was eluted away to create a bioprinted scaffold of pure OPF. Excellent cell viability, spreading, and long-term proliferation of encapsulated cells was observed using both bone and nerve cells as examples. These results demonstrate that OPF bioink has great potential in future 3D bioprinting applications that aim to replicate complex, layered tissues, and/or organs.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian E Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Liu X, Miller AL, Xu H, Waletzki BE, Lu L. Injectable Catalyst-Free Poly(Propylene Fumarate) System Cross-Linked by Strain Promoted Alkyne-Azide Cycloaddition Click Chemistry for Spine Defect Filling. Biomacromolecules 2019; 20:3352-3365. [PMID: 31398020 PMCID: PMC9009285 DOI: 10.1021/acs.biomac.9b00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new PPF-BCN/hyPCL32-N3 injectable system that can be cross-linked by catalyst-free, strain promoted alkyne-azide cycloaddition (SPAAC) click chemistry was developed for tissue engineering applications. The system consisted of two components: PPF-BCN, poly(propylene fumarate) (PPF) functionalized with (1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN-OH), and hyPCL32-N3, a hyper-branched 32-arm poly(ε-caprolactone) (PCL) dendrimer functionalized with azide as the cross-linker core. Fast SPAAC click reaction allowed the desired gelation of the system without using any toxic initiator or catalyst. Compared to the conventional injectable formulation, e.g., poly(methyl methacrylate) (PMMA), our PPF-BCN/hyPCL32-N3 (abbreviated as PFCL-Click) injectable system showed enhanced biocompatibility and low heat generation during cross-linking. After reaction, the cross-linked PFCL-Click scaffolds supported excellent proliferation and differentiation of preosteoblast cells on the surface. The PFCL-Click system can be successfully injected into vertebral bodies of rabbit spine and can be monitored by X-ray imaging after incorporating zirconium dioxide (ZrO2) powder. With these unique advantages, this injectable system has promising potential for bone defect repair and other tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Hao Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Vertebral Reconstruction with Customized 3-Dimensional-Printed Spine Implant Replacing Large Vertebral Defect with 3-Year Follow-up. World Neurosurg 2019; 126:90-95. [PMID: 30797911 DOI: 10.1016/j.wneu.2019.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Destruction of the spine is a huge complication of infectious spondylitis and surgical intervention is required. However, vertebral defect is a major problem after surgical intervention and numerous methods have been researched to solve this problem. There are known methods that use variously designed, patient-customized 3-dimensional (3D)-printed implants in various medical fields. The use of 3D-printed implants has also been attempted in treating defects in the spine. We present a case of failure of expandable titanium cage fusion after infection, treated using a 3D-printed implant. CASE DESCRIPTION The patient had undergone reconstruction surgery with expandable titanium cage due to infectious spondylitis and needed reoperation owing to recurrence of infections and failure of bone fusion. The problem we faced in this operation was a large vertebral defect, for which we used a 3D-printed implant. After 3 years of follow-up, the implant and bone fusion were intact and infection or mechanical complications were not seen. CONCLUSIONS A 3D-printed implant could be an acceptable and alternative treatment option for replacing a large vertebral defect.
Collapse
|
10
|
Liu X, Kim JC, Miller AL, Waletzki BE, Lu L. Electrically conductive nanocomposite hydrogels embedded with functionalized carbon nanotubes for spinal cord injury. NEW J CHEM 2018. [DOI: 10.1039/c8nj03038c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrically conductive hydrogels incorporated with CNTs support PC12 cell growth and differentiation and hold promise for nerve regeneration.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering
- Mayo Clinic
- Rochester
- USA
- Department of Orthopedic Surgery
| | - Joseph C. Kim
- Department of Physiology and Biomedical Engineering
- Mayo Clinic
- Rochester
- USA
| | - A. Lee Miller
- Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
| | | | - Lichun Lu
- Department of Physiology and Biomedical Engineering
- Mayo Clinic
- Rochester
- USA
- Department of Orthopedic Surgery
| |
Collapse
|
11
|
Liu X, Miller AL, Park S, Waletzki BE, Zhou Z, Terzic A, Lu L. Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14677-14690. [PMID: 28406608 DOI: 10.1021/acsami.7b02072] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nerve regeneration after injury is a critical medical issue. In previous work, we have developed an oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel incorporated with positive charges as a promising nerve conduit. In this study, we introduced cross-linkable bonds to graphene oxide and carbon nanotube to obtain the functionalized graphene oxide acrylate (GOa) and carbon nanotube poly(ethylene glycol) acrylate (CNTpega). An electrically conductive hydrogel was then fabricated by covalently embedding GOa and CNTpega within OPF hydrogel through chemical cross-linking followed by in situ reduction of GOa in l-ascorbic acid solution. Positive charges were incorporated by 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTAC) to obtain rGOaCNTpega-OPF-MTAC composite hydrogel with both surface charge and electrical conductivity. The distribution of CNTpega and GOa in the hydrogels was substantiated by transmission electron microscopy (TEM), and strengthened electrical conductivities were determined. Excellent biocompatibility was demonstrated for the carbon embedded composite hydrogels. Biological evaluation showed enhanced proliferation and spreading of PC12 cells on the conductive hydrogels. After induced differentiation using nerve growth factor (NGF), cells on the conductive hydrogels were effectively stimulated to have robust neurite development as observed by confocal microscope. A synergistic effect of electrical conductivity and positive charges on nerve cells was also observed in this study. Using a glass mold method, the composite hydrogel was successfully fabricated into conductive nerve conduits with surficial positive charges. These results suggest that rGOa-CNTpega-OPF-MTAC composite hydrogel holds great potential as conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - A Lee Miller
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Sungjo Park
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Brian E Waletzki
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Zifei Zhou
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Andre Terzic
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| |
Collapse
|