1
|
Venkatesan J, Anchan RV, Murugan SS, Anil S, Kim SK. Natural hydroxyapatite-based nanobiocomposites and their biomaterials-to-cell interaction for bone tissue engineering. DISCOVER NANO 2024; 19:169. [PMID: 39375246 PMCID: PMC11458869 DOI: 10.1186/s11671-024-04119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Hydroxyapatite (HA) is an extensively used biomaterial for dental and orthopaedic applications because of its biocompatibility and biomimetic nature. HA is extensively used as a bone-graft substitute. HA bone graft substitutes of bovine or synthetic origins have been extensively studied. However, caprine-based HA has not been explored. In this study, we aimed to determine the utilization of goat bone-derived HA for commercial applications. HA from caprine bone and teeth was isolated using thermal calcination. The developed HA can be used as a bone graft substitute. Chemical characterization of the isolated HA was carried out using Fourier transform infrared spectroscopy, X-Ray Diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The biocompatibility and apatite formation of isolated HA were assessed using MG-63 cells, MC3T3-E1, L929 cells, MSCs, adipose derived stem cells, human dermal tissue derived fibroblast cells and osteoblast-like cell line, The studies demonstrate that HA support cell adhesion and osteogenic properties. To improve sheep, lamp, or caprine bone-derived HA, several other composites have been developed with MgO2, ZrO2, ZnO2, and other polymeric substances. 3D printed technology was used to develop a bioink using sheep-derived HA and printed the composite scaffold as a bone graft substitute. Furthermore, the biomedical applications of sheep-derived HA been studied in terms of their antimicrobial activity, bone-forming ability, and wound healing applications. Sheep-, goat-, and caprine-derived HA are still underutilized and require further research to develop commercial possibilities and sustainable raw materials for HA-based bone graft substitutes.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangaluru, 575018, India
| | - Rowena Valeen Anchan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangaluru, 575018, India
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangaluru, 575018, India
| | - Sukumaran Anil
- Oral Health Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- College of Dental Medicine, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang University ERICA Campus, Ansan, 11558, Republic of Korea.
| |
Collapse
|
2
|
Li C, Su M, Mai M, Guo Z, Li Y, Chen S, Liu Q, Chen D, Wu X, Chen Z, Chen Z, Wu S. Calcium enrichment activity initiates extracellular calcium influx-dependent inflammatory response of biologically-derived hydroxyapatite. Mater Today Bio 2024; 28:101231. [PMID: 39296358 PMCID: PMC11409067 DOI: 10.1016/j.mtbio.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Biologically-derived hydroxyapatite is a widely used biomaterial in various clinical applications including bone augmentation. However, the osteogenic application of biological hydroxyapatite is limited by inflammatory responses, and the underlying mechanism remains unknown. The current study aimed to elucidate the molecular mechanisms underlying the inflammatory response to biological hydroxyapatite. Porcine-derived hydroxyapatite (PHA) with two sintering temperatures (800 and 1600 °C), PHA800 and PHA1600, respectively, were prepared. A PHA/macrophage co-culture model was established. Transcriptome, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) analyses were used to determine the inflammatory effects and the main pathways activated by PHA800 and PHA1600. Intracellular calcium level, PHA-induced calcium enrichment, and related biological effects were used to determine the molecular mechanism at the PHA-cell interface. PHA800 significantly upregulated a TLR4 mediated inflammatory pathway in a calcium influx-dependent manner, and the calcium enrichment activity on the surface of PHA800 promoted calcium influx. In contrast, the calcium enrichment activity on the surfaces of the PHA1600 and PHA800 pretreated groups was attenuated, resulting in decreased calcium influx and mild inflammatory effects. Our results provide a fundamental basis for the development of novel bone substitutes that elicit low levels of inflammation response.
Collapse
Affiliation(s)
- Chuangji Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Mengxi Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Meihua Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Zefeng Guo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Ye Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Shoucheng Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Quan Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Danying Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xiayi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Shiyu Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| |
Collapse
|
3
|
Chen K, Ha S, Xu L, Liu C, Liu Y, Wu X, Li Z, Wu S, Yang B, Chen Z. Fluorinated hydroxyapatite conditions a favorable osteo-immune microenvironment via triggering metabolic shift from glycolysis to oxidative phosphorylation. J Transl Med 2024; 22:437. [PMID: 38720345 PMCID: PMC11077739 DOI: 10.1186/s12967-024-05261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.
Collapse
Affiliation(s)
- Kaidi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Seongmin Ha
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Leyao Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chengwu Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yuanxiang Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiayi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Zou Y, Shan Z, Han Z, Yang J, Lin Y, Gong Z, Xie L, Xu J, Xie R, Chen Z, Chen Z. Regulating Blood Clot Fibrin Films to Manipulate Biomaterial-Mediated Foreign Body Responses. RESEARCH (WASHINGTON, D.C.) 2023; 6:0225. [PMID: 37719049 PMCID: PMC10503960 DOI: 10.34133/research.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023]
Abstract
The clinical efficacy of implanted biomaterials is often compromised by host immune recognition and subsequent foreign body responses (FBRs). During the implantation, biomaterials inevitably come into direct contact with the blood, absorbing blood protein and forming blood clot. Many studies have been carried out to regulate protein adsorption, thus manipulating FBR. However, the role of clot surface fibrin films formed by clotting shrinkage in host reactions and FBR is often ignored. Because of the principle of fibrin film formation being relevant to fibrinogen or clotting factor absorption, it is feasible to manipulate the fibrin film formation via tuning the absorption of fibrinogen and clotting factor. As biological hydroxyapatite reserved bone architecture and microporous structure, the smaller particle size may expose more microporous structures and adsorb more fibrinogen or clotting factor. Therefore, we set up 3 sizes (small, <0.2 mm; medium, 1 to 2 mm; large, 3 to 4 mm) of biological hydroxyapatite (porcine bone-derived hydroxyapatite) with different microporous structures to investigate the absorption of blood protein, the formation of clot surface fibrin films, and the subsequent FBR. We found that small group adsorbed more clotting factors because of more microporous structures and formed the thinnest and sparsest fibrin films. These thinnest and sparsest fibrin films increased inflammation and profibrosis of macrophages through a potential signaling pathway of cell adhesion-cytoskeleton-autophagy, leading to the stronger FBR. Large group adsorbed lesser clotting factors, forming the thickest and densest fibrin films, easing inflammation and profibrosis of macrophages, and finally mitigating FBR. Thus, this study deepens the understanding of the role of fibrin films in host recognition and FBR and demonstrates the feasibility of a strategy to regulate FBR by modulating fibrin films via tuning the absorption of blood proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| |
Collapse
|
5
|
Xing Y, Zhong X, Chen S, Wu S, Chen K, Li X, Su M, Liu X, Zhong J, Chen Z, Pan H, Chen Z, Liu Q. Optimized osteogenesis of porcine bone-derived xenograft through surface coating of magnesium-doped nanohydroxyapatite. Biomed Mater 2023; 18:055025. [PMID: 37604162 DOI: 10.1088/1748-605x/acf25e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
As one of the key factors influencing the outcome of guided bone regeneration, the currently used xenografts possess insufficient capability in osteogenesis. With the aim of improving the osteogenic performance of xenografts, porcine bone-derived hydroxyapatite (PHA) was prepared and subsequently coated by magnesium-doped nano hydroxyapatite (nMgHA, 10%, 20%, and 30% of Mg/Ca + Mg) through a straightforward and cost-efficient approach. The physiochemical and biological properties of nMgHA/PHAs were examinedin vitroandin vivo. The inherent three-dimensional (3D) porous framework with the average pore size of 300 μm was well preserved in nMgHA/PHAs. Meanwhile, excess magnesium released from the so-called 'surface pool' of PHA was verified. In contrast, slower release of magnesium at lower concentrations was detected for nMgHA/PHAs. Significantly more newly-formed bone and microvessels were observed in 20%nMgHA/PHA than the other specimens. With the limitations of the present study, it could be concluded that PHA coated by 20%nMgHA may have the optimized osteogenic performance due to the elimination of the excess magnesium from the 'surface pool', the preservation of the inherent 3D porous framework with the favorable pore size, and the release of magnesium at an appropriate concentration that possessed osteoimmunomodulatory effects on macrophages.
Collapse
Affiliation(s)
- Yihan Xing
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xinyi Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Shiyu Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Kaidi Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xiyan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Mengxi Su
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xingchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, People's Republic of China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Quan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| |
Collapse
|
6
|
Li X, Li C, Su M, Zhong X, Xing Y, Shan Z, Chen S, Liu X, Wu X, Liu Q, Li Y, Wu S, Chen Z. Optimizing the biodegradability and osteogenesis of biogenic collagen membrane via fluoride-modified polymer-induced liquid precursor process. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2186690. [PMID: 36926201 PMCID: PMC10013244 DOI: 10.1080/14686996.2023.2186690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Biogenic collagen membranes (BCM) have been widely used in guided bone regeneration (GBR) owing to their biodegradability during tissue integration. However, their relatively high degradation rate and lack of pro-osteogenic properties limit their clinical outcomes. It is of great importance to endow BCM with tailored degradation as well as pro-osteogenic properties. In this study, a fluoride-modified polymer-induced liquid precursor (PILP) based biomineralization strategy was used to convert the collagen membrane from an organic phase to an apatite-based inorganic phase, thus achieving enhanced anti-degradation performance as well as osteogenesis. As a result, three phases of collagen membranes were prepared. The original BCM in the organic phase induced the mildest inflammatory response and was mostly degraded after 4 weeks. The organic-inorganic mixture phase of the collagen membrane evoked a prominent inflammatory response owing to the fluoride-containing amorphous calcium phosphate (F-ACP) nanoparticles, resulting in active angiogenesis and fibrous encapsulation, whereas the inorganic phase induced a mild inflammatory response and degraded the least owing to the transition of F-ACP particles into calcium phosphate with high crystallinity. Effective control of ACP is key to building novel apatite-based barrier membranes. The current results may pave the way for the development of advanced apatite-based membranes with enhanced barrier performances.
Collapse
Affiliation(s)
- Xiyan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuangji Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Mengxi Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yihan Xing
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhengjie Shan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shoucheng Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xingchen Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiayi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Quan Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ye Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Liu G, Zhou X, Zhang L, Zou Y, Xue J, Xia R, Abuduxiku N, Xuejing Gan, Liu R, Chen Z, Cao Y, Chen Z. Cell-free immunomodulatory biomaterials mediated in situ periodontal multi-tissue regeneration and their immunopathophysiological processes. Mater Today Bio 2022; 16:100432. [PMID: 36204216 PMCID: PMC9530615 DOI: 10.1016/j.mtbio.2022.100432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022]
Abstract
Cell-free biomaterials-inducing endogenous in situ multi-tissue regeneration is very challenging and applying advanced immunomodulatory biomaterials can be an effective strategy to overcome it. In-depth knowledge of the immunopathophysiological mechanisms should be acquired before applying such an immunomodulation strategy. In this study, we implanted different immunoregulatory cell-free biomaterials into periodontal multi-tissue defects and showed that the outcome of multi-tissue regeneration is closely regulated by the immune reaction. The underlying immunopathophysiological processes, including the blood clotting response and fibrinoid necrosis, innate and adaptive immune response, local and systemic immune reaction, growth factors release, and stem cells recruitment, were revealed. The implantation of biomaterials with anti-inflammatory properties could direct the immunopathophysiological process and make it more favorable for in situ multi-tissue regeneration, ultimately enabling the regeneration of the periodontal ligament, the acellular cementum matrix, and the alveolar bone in the periodontium. These findings further confirm the effectiveness of immunomodulatory based strategy and the unveiling of their immunopathophysiological processes could provide some favorable theoretical bases for the development of advanced cell-free immunomodulatory multi-tissue regenerative biomaterials.
Collapse
|
8
|
Xing Y, Zhong X, Chen Z, Liu Q. Optimized osteogenesis of biological hydroxyapatite-based bone grafting materials by ion doping and osteoimmunomodulation. Biomed Mater Eng 2022; 34:195-213. [DOI: 10.3233/bme-221437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Biological hydroxyapatite (BHA)-based bone grafting materials have been widely used for bone regeneration in implant surgery. Much effort has been made in the improvement of their osteogenic property as it remains unsatisfactory for clinical use. Osteoimmunomodulation plays a significant role in bone regeneration, which is highly related to active inorganic ions. Therefore, attempts have been made to obtain osteoimmunomodulatory BHA-based bone grafting materials with optimized osteogenic property by ion doping. OBJECTIVE: To summarize and discuss the active inorganic ions doped into BHA and their effects on BHA-based bone grafting materials. METHOD: A literature search was performed in databases including Google Scholar, Web of Science and PubMed, with the elementary keywords of “ion doped” and “biological hydroxyapatite”, as well as several supplementary keywords. All document types were included in this search. The searching period and language were not limited and kept updated to 2022. RESULTS: A total of 32 articles were finally included, of which 32 discussed the physiochemical properties of BHA-based biomaterials, while 12 investigated their biological features in vitro, and only three examined their biological performance in vivo. Various ions were doped into BHA, including fluoride, zinc, magnesium and lithium. Such ions improved the biological performance of BHA-based biomaterials, which was attributed to their osteoimmunomodulatory effect. CONCLUSION: The doping of active inorganic ions is a reliable strategy to endow BHA-based biomaterials with osteoimmunomodulatory property and promote bone regeneration. Further studies are still in need to explore more ions and their effects in the crosstalk between the skeletal and immune systems.
Collapse
Affiliation(s)
| | | | | | - Quan Liu
- , Sun Yat-sen University, , China
| |
Collapse
|
9
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
10
|
Lodoso-Torrecilla I, Klein Gunnewiek R, Grosfeld EC, de Vries RBM, Habibović P, Jansen JA, van den Beucken JJJP. Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve in vivo performance: a systematic review and meta-analysis of animal studies. Biomater Sci 2020; 8:4792-4809. [PMID: 32729591 DOI: 10.1039/d0bm00599a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supplementation of CaP-based bone graft substitutes with bioinorganics such as strontium, zinc or silicon is an interesting approach to increase the biological performance in terms of bone regenerative potential of calcium phosphate (CaP)-based bone substitutes. However, the in vivo efficacy of this approach has not been systematically analyzed, yet. Consequently, we performed a systematic review using the available literature regarding the effect of bioinorganic supplementation in CaP-based biomaterials on new bone formation and material degradation in preclinical animal bone defect models and studied this effect quantitatively by performing a meta-analysis. Additional subgroup analyses were used to study the effect of different bioinorganics, animal model, or phase category of CaP-based biomaterial on bone formation or material degradation. Results show that bioinorganic supplementation increases new bone formation (standardized mean difference [SMD]: 1.43 SD, confidence interval [CI]: 1.13-1.73). Additional subgroup analysis showed that strontium, magnesium and silica significantly enhanced bone formation, while zinc did not have any effect. This effect of bioinorganic supplementation on new bone formation was stronger for DCPD or β-TCP and biphasic CaPs than for HA or α-TCP (p < 0.001). In general, material degradation was slightly hindered by bioinorganic supplementation (mean difference [MD]: 0.84%, CI: 0.01-1.66), with the exception of strontium that significantly enhanced degradation. Overall, bioinorganic supplementation represents an effective approach to enhance the biological performance of CaP-based bone substitutes.
Collapse
|
11
|
Liu G, Wang X, Zhou X, Zhang L, Mi J, Shan Z, Huang B, Chen Z, Chen Z. Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: a strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics 2020; 10:1074-1089. [PMID: 31938052 PMCID: PMC6956813 DOI: 10.7150/thno.37931] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The paradoxical effect of cobalt on biological processes has aroused controversy regarding the application of cobalt-based biomaterials in bone regeneration. Tuning the dose range of cobalt ions may be a valid strategy to resolve the controversies about cobalt use for orthopedic applications. Recent progress in bone biology has highlighted the effects of multisystem cooperation (especially of osteoimmune, skeletal, and vascular systems) on bone dynamics. Before the application of this dose-tuning strategy, a deeper understanding of its dose-dependent effect on the cooperation of osteoimmune, skeletal, and vascular systems is needed. However, due to the difficulties with investigating the interaction of multiple systems in vitro, the multimodal effects of cobalt on bone homeostasis were investigated here, in an in vivo scenario. Methods: In vitro CCK8 assay and cytoskeletal staining were preformed to detecte the cell cytotoxic reaction in response to 0.1-100 ppm cobalt stimulation. Blood clot containing 0.1 to 5 ppm of cobalt were implanted in the rat calvarium defect. The gene profile of osteoimmune, skeletal, and vascular system as well as the systemic toxicity were evaluated via RT-qPCR, histological analysis and inductively coupled plasma mass spectrometry. The bone regeneration, osteoclastogenesis and vascularization were assessed by micro-ct and histological analysis. Results: Cobalt concentration below 5 ppm did not cause cell toxicity in vitro. No systemic toxicity was observed in vivo at 0.1-5 ppm cobalt concentration. It was found that the early cytokine profiles of the multiple interacting systems were different in response to different cobalt doses. Most of the anti-inflammatory, osteogenic, and proangiogenic factors were upregulated in the 1 ppm cobalt group at the early stage. In the late stage, the 1ppm group was most superior in bone regenerative effect while the 5 ppm group displayed the strongest osteoclastogenesis activity. Conclusions: The 1 ppm concentration of cobalt yielded the most favorable cooperation of the osteoimmune, skeletal, and vascular systems and subsequently optimal bone regeneration outcomes. Tuning the cobalt dose range to manipulate the cooperation of osteoimmune, skeletal, and vascular systems could be a promising and valuable strategy to prevent paradoxical effects of cobalt while preserving its beneficial effects.
Collapse
Affiliation(s)
- Guanqi Liu
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoshuang Wang
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xuan Zhou
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Linjun Zhang
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Jiaomei Mi
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhengjie Shan
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Baoxin Huang
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhuofan Chen
- Zhujiang New Town Clinic, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zetao Chen
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
12
|
Animal Origin Bioactive Hydroxyapatite Thin Films Synthesized by RF-Magnetron Sputtering on 3D Printed Cranial Implants. METALS 2019. [DOI: 10.3390/met9121332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ti6Al4V cranial prostheses in the form of patterned meshes were 3D printed by selective laser melting in an argon environment; using a CO2 laser source and micron-sized Ti6Al4V powder as the starting material. The size and shape of prostheses were chosen based on actual computer tomography images of patient skull fractures supplied in the framework of a collaboration with a neurosurgery clinic. After optimizations of scanning speed and laser parameters, the printed material was defect-free (as shown by metallographic analyses) and chemically homogeneous, without elemental segregation or depletion. The prostheses were coated by radio-frequency magnetron sputtering (RF-MS) with a bioactive thin layer of hydroxyapatite using a bioceramic powder derived from biogenic resources (Bio-HA). Initially amorphous, the films were converted to fully-crystalline form by applying a post-deposition thermal-treatment at 500 °C/1 h in air. The X-ray diffraction structural investigations indicated the phase purity of the deposited films composed solely of a hexagonal hydroxyapatite-like compound. On the other hand, the Fourier transform infrared spectroscopic investigations revealed that the biological carbonatation of the bone mineral phase was well-replicated in the case of crystallized Bio-HA RF-MS implant coatings. The in vitro acellular assays, performed in both the fully inorganic Kokubo’s simulated body fluid and the biomimetic organic–inorganic McCoy’s 5A cell culture medium up to 21 days, emphasized both the good resistance to degradation and the biomineralization capacity of the films. Further in vitro tests conducted in SaOs-2 osteoblast-like cells showed a positive proliferation rate on the Bio-HA RF-MS coating along with a good adhesion developed on the biomaterial surface by elongated membrane protrusions.
Collapse
|
13
|
Plasma deposited poly-oxazoline nanotextured surfaces dictate osteoimmunomodulation towards ameliorative osteogenesis. Acta Biomater 2019; 96:568-581. [PMID: 31271882 DOI: 10.1016/j.actbio.2019.06.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
Developing "osteoimmune-smart" bone substitute materials have become the forefront of research in bone regeneration. Biocompatible polymer coatings are applied widely to improve the bioactivity of bone substitute materials. In this context, polyoxazolines (Pox) have attracted substantial attention recently due to properties such as biocompatibility, stability, and low biofouling. In view of these useful properties, it is interesting to explore the capacity of Pox as an osteoimmunomodulatory agent to generate a favorable osteoimmune environment for osteogenesis. We applied a technique called plasma polymerization and succeeded in preparing Pox-like coatings (Ppox) and engineered their nanotopography at the nanoscale. We found that Ppox switched macrophages towards M2 extreme, thus inhibiting the release of inflammatory cytokines. The underlying mechanism may be related to the suppression of TLR pathway. The generated osteoimmune environment improved osteogenesis while inhibited osteoclastogenesis. This may be related to the release of osteogenic factors, especially Wnt10b from macrophages. The addition of nanotopography (16 nm, 38 nm, 68 nm) can tune the Ppox-mediated inhibition on inflammation and osteoclastic activities, while no significant effects were observed within the tested nano sizes on the Ppox-mediated osteogenesis. These results collectively suggest that Ppox can be useful as an effective osteoiumunomodulatory agent to endow bone substitute materials with favourable osteoimmunomodulatory property. STATEMENT OF SIGNIFICANCE: In this study, we succeeded in preparing plasma deposited Pox-like nano-coatings (Ppox) via plasma polymerization and found that Ppox nanotopographies are useful osteoimmunomodulatory tools. Their osteoimmunodolatory effects and underlying mechanisms are unveiled. It is the first investigation into the feasibility of applying poly-oxazoline as an osteoimmunomodulatory agent. This expand the application of poly-oxazoline into the forefront in bone regeneration area for the development of advanced "osteoimmune-smart" bone substitute materials.
Collapse
|
14
|
Nasker P, Samanta A, Rudra S, Sinha A, Mukhopadhyay AK, Das M. Effect of fluorine substitution on sintering behaviour, mechanical and bioactivity of hydroxyapatite. J Mech Behav Biomed Mater 2019; 95:136-142. [PMID: 30995580 DOI: 10.1016/j.jmbbm.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 02/08/2023]
Abstract
Fluorine substituted hydroxyapatite (FAp) with different degree of fluorine (F) substitution, has been synthesized using hydrothermal synthesis method. In the present work, as synthesized powders were consolidated by sintering at 1200 °C in air for 1 h. The sintered specimens were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) for phase analysis. Further, fluorine intake in the sintered specimens was evaluated using ion chromatography (IC). XRD peaks clearly showed biphasic nature of the sintered specimen. However, the sintered samples containing more than ∼60% fluorine substitution showed no β-tricalcium phosphate (β-TCP) phase formation. The IC results revealed that the degree of fluoridation decreased significantly in the sintered specimen compare to the respective as synthesized powders. The effect of actual fluorine content in the sintered specimens was further evaluated in terms of sinterability, surface energy, mechanical properties and in vitro cytocompatibility study. The surface energy of the sintered specimen decreased from 51.8 mN/m to 42.5 mN/m, in which degree of fluoridation varies from 0% to 110%. The in vitro cytocompatibility of the sintered specimen were carried out against mouse osteoblast cell line (MC3T3-E1). In vitro study showed that all the samples were nontoxic but cell proliferation for the samples containing more than 40% fluorine substitution became significantly low.
Collapse
Affiliation(s)
- Purnendu Nasker
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India; Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aniruddha Samanta
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Sudip Rudra
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India; Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Arijit Sinha
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Anoop K Mukhopadhyay
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Mitun Das
- Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
15
|
Liu G, Guo Y, Zhang L, Wang X, Liu R, Huang P, Xiao Y, Chen Z, Chen Z. A standardized rat burr hole defect model to study maxillofacial bone regeneration. Acta Biomater 2019; 86:450-464. [PMID: 30605772 DOI: 10.1016/j.actbio.2018.12.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022]
Abstract
With high incidence rate and unique regeneration features, maxillofacial burr hole bone defects require a specially designed bone defect animal model for the evaluation of related bone regenerative approaches. Although some burr hole defect models have been developed in long bones or calvarial bones, the mandible has unique tissue development origins and regenerative environments. This suggests that the defect model should be prepared in the maxillofacial bone area. After dissecting the anatomic structures of rat mandibles, we found that creating defects in the anterior tooth area avoided damaging important organs and improved animal welfare. Furthermore, the available bone volume at the anterior tooth area was superior to that of the posterior tooth and ascending ramus areas. We then managed to standardize the model by controlling the age, weight and gender of the animal, creating standardized measurement instruments and reducing the variations derived from various operators. We also succeeded in deterring the self-rehabilitation of the proposed model by increasing the defect size. The 6 × 2 mm and 8 × 2 mm defects were found to meet the requirements of bone regenerative studies. This study provided a step-by-step standardized burr hole bone defect model with minimal tissue damage in small animals. The evaluations resulting from this model testify to the in vitro outcomes of the proposed regenerative approaches and provide preliminary screening data for further large animal and clinical trials. Therefore, the inclusion of this model may optimize the evaluation systems for maxillofacial burr hole bone defect regenerative approaches. STATEMENT OF SIGNIFICANCE: Unremitting effort has been devoted to the development of bone regenerative materials to restore maxillofacial burr hole bone defects because of their high clinical incidence rate. In the development of these biomaterials, in vivo testing in small animals is necessary to evaluate the effects of candidate biomaterials. However, little has been done to develop such defect models in small animals. In this study, we developed a standardized rat mandible burr hole bone defect model with minimal injury to the animals. A detailed description and supplementary video were provided to guide the preparation. The development of this model optimizes the maxillofacial bone regenerative approach evaluation system.
Collapse
Affiliation(s)
- Guanqi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yuanlong Guo
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Linjun Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoshuang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Runheng Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Peina Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Zhuofan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
16
|
Wu S, Xia B, Mai S, Feng Z, Wang X, Liu Y, Liu R, Li Z, Xiao Y, Chen Z, Chen Z. Sodium Fluoride under Dose Range of 2.4–24 μM, a Promising Osteoimmunomodulatory Agent for Vascularized Bone Formation. ACS Biomater Sci Eng 2018; 5:817-830. [PMID: 33405842 DOI: 10.1021/acsbiomaterials.8b00570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shiyu Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Binbin Xia
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Sui Mai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zhicai Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Xiaoshuang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Yudong Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Runheng Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zhipeng Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Zhuofan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| |
Collapse
|
17
|
Liu R, Lin Y, Lin J, Zhang L, Mao X, Huang B, Xiao Y, Chen Z, Chen Z. Blood Prefabrication Subcutaneous Small Animal Model for the Evaluation of Bone Substitute Materials. ACS Biomater Sci Eng 2018; 4:2516-2527. [PMID: 33435115 DOI: 10.1021/acsbiomaterials.8b00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Runheng Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yixiong Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Jinying Lin
- Xiamen Stomatological Hospital, Xiamen 361000, China
| | - Linjun Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xueli Mao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Baoxin Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Zhuofan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
18
|
Qiao W, Liu R, Li Z, Luo X, Huang B, Liu Q, Chen Z, Tsoi JKH, Su YX, Cheung KMC, Matinlinna JP, Yeung KWK, Chen Z. Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration. Biomater Sci 2018; 6:2951-2964. [DOI: 10.1039/c8bm00910d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluoride incorporation in porcine bone-derived biological apatite can change the surrounding microenvironment via in situ ionic exchange, which accelerates bone formation by activating Wnt/β-catenin pathway.
Collapse
|