1
|
Brown TK, Alharbi S, Ho KJ, Jiang B. Prosthetic vascular grafts engineered to combat calcification: Progress and future directions. Biotechnol Bioeng 2023; 120:953-969. [PMID: 36544433 PMCID: PMC10023339 DOI: 10.1002/bit.28316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Calcification in prosthetic vascular conduits is a major challenge in cardiac and vascular surgery that compromises the long-term performance of these devices. Significant research efforts have been made to understand the etiology of calcification in the cardiovascular system and to combat calcification in various cardiovascular devices. Novel biomaterial design and tissue engineering strategies have shown promise in preventing or delaying calcification in prosthetic vascular grafts. In this review, we highlight recent advancements in the development of acellular prosthetic vascular grafts with preclinical success in attenuating calcification through advanced biomaterial design. We also discuss the mechanisms of action involved in the designs that will contribute to the further understanding of cardiovascular calcification. Lastly, recent insights into the etiology of vascular calcification will guide the design of future prosthetic vascular grafts with greater potential for translational success.
Collapse
Affiliation(s)
- Taylor K. Brown
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
| | - Sara Alharbi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Karen J. Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bin Jiang
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
2
|
Volkova E, Procell L, Kong L, Santhanam L, Gerecht S. Vascular stiffening in aging females with a hypertension-induced HIF2A gain-of-function mutation. Bioeng Transl Med 2023; 8:e10403. [PMID: 36925716 PMCID: PMC10013765 DOI: 10.1002/btm2.10403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/09/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is more prevalent in females than males; the causes of this sex difference have not been adequately explored. Gain-of-function (GOF) mutations in hypoxia-inducible factor 2α (HIF2A) lead to PAH and thrombotic consequences in patients and mice. Additionally, multiple emerging studies suggest that elevated systemic arterial stiffening (SAS) occurs in PAH; this could have critical prognostic value. Here, we utilized a HIF2A GOF mouse model to determine how SAS can be used as a prognosticator in sex-divergent PAH. We analyzed survival, vascular mechanics, and vascular phenotypes in young adult (8-16 weeks) and middle age (9-12 months) Hif2a GOF mice. We find that Hif2a heterozygous (HT) female mice, but not Hif2a HT male mice, exhibit poor survival, SAS upon aging, and decreased ability to withstand repeated physiological strain. Hif2a HT female mice also display thickening of the adventitial intima and increased collagen I and collagen III in all layers of the thoracic aorta. Our findings demonstrate differing PAH progression in female and male Hif2a GOF mice. Specifically, alterations in extracellular matrix (ECM) content led to vascular stiffening in aged females, resulting in poor survival. Moreover, we show that SAS emerges early in mice with PAH by coupling studies of vascular mechanics and analyzing vascular structure and composition. Importantly, we present a model for assessing sex differences in hereditary PAH progression and sex-specific prognosis, proposing that aortic stiffening can be used to prognosticate future poor outcomes in PAH.
Collapse
Affiliation(s)
- Eugenia Volkova
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Institute for NanoBioTechnology, Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Linda Procell
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Lingyang Kong
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Lakshmi Santhanam
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Institute for NanoBioTechnology, Johns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
3
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
4
|
Fayon A, Menu P, El Omar R. Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard. NPJ Regen Med 2021; 6:46. [PMID: 34385472 PMCID: PMC8361171 DOI: 10.1038/s41536-021-00155-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the lack of efficacy of synthetic vascular substitutes in the replacement of small-caliber arteries, vascular tissue engineering (VTE) has emerged as a promising solution to produce viable small-caliber tissue-engineered vascular grafts (TEVG). Previous studies have shown the importance of a cellular intimal layer at the luminal surface of TEVG to prevent thrombotic events. However, the cellularization of a TEVG seems to be a critical approach to consider in the development of a TEVG. To date, no standard cellularization method or cell type has been established to create the ideal TEVG by promoting its long-term patency and function. In this review, advances in VTE are described and discussed with a particular focus on the construction approaches of cellularized small-caliber TEVGs, the cell types used, as well as their preclinical and clinical applications.
Collapse
Affiliation(s)
- Adrien Fayon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Patrick Menu
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France.
| | - Reine El Omar
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France
| |
Collapse
|
5
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
6
|
A hybrid vascular graft harnessing the superior mechanical properties of synthetic fibers and the biological performance of collagen filaments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111418. [PMID: 33255019 DOI: 10.1016/j.msec.2020.111418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/14/2023]
Abstract
Tissue-engineered small caliber vascular grafts have attracted much research attention as a viable alternative to traditional vascular grafts with their biocompatibility and potential to achieve complete healing. However, the major challenge is to fabricate a scaffold with both satisfactory mechanical properties and fast endothelialization. In this study, a hybrid tubular vascular tissue engineered scaffold has been circular-knitted using novel electrochemically aligned collagen (ELAC) filaments plied together with traditional poly(lactic acid) (PLA) yarn. The collagen component was able to promote the recruitment and proliferation of endothelial cells by increasing the initial cell adhesion 10-fold and the eventual cell population 3.2 times higher than the PLA scaffold alone. At the same time, the PLA yarn was able to provide sufficient mechanical strength and structural stability, as well as facilitate scaffold fabrication on high speed textile production equipment. The tubular hybrid scaffold exhibited excellent bursting strength (1.89 ± 0.43 MPa) and suture retention strength (10.86 ± 0.49 N), and had comparable compliance (3.98 ± 1.94%/100 mmHg) to that of the coronary artery (3.8 ± 0.3%/100 mmHg) under normotensive pressure. With its excellent mechanical and biological performance, this prototype hybrid scaffold is a promising candidate for the construction of a clinically successful and easily translatable tissue-engineered small caliber vascular graft.
Collapse
|
7
|
Zbinden JC, Blum KM, Berman AG, Ramachandra AB, Szafron JM, Kerr KE, Anderson JL, Sangha GS, Earl CC, Nigh NR, Mirhaidari GJM, Reinhardt JW, Chang Y, Yi T, Smalley R, Gabriele PD, Harris JJ, Humphrey JD, Goergen CJ, Breuer CK. Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development. Adv Healthc Mater 2020; 9:e2001093. [PMID: 33063452 DOI: 10.1002/adhm.202001093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/17/2020] [Indexed: 01/06/2023]
Abstract
Tissue engineered vascular grafts (TEVGs) using scaffolds fabricated from braided poly(glycolic acid) (PGA) fibers coated with poly(glycerol sebacate) (PGS) are developed. The approach relies on in vivo tissue engineering by which neotissue forms solely within the body after a scaffold has been implanted. Herein, the impact of altering scaffold braid design and scaffold coating on neotissue formation is investigated. Several combinations of braiding parameters are manufactured and evaluated in a Beige mouse model in the infrarenal abdominal aorta. Animals are followed with 4D ultrasound analysis, and 12 week explanted vessels are evaluated for biaxial mechanical properties as well as histological composition. Results show that scaffold parameters (i.e., braiding angle, braiding density, and presence of a PGS coating) have interdependent effects on the resulting graft performance, namely, alteration of these parameters influences levels of inflammation, extracellular matrix production, graft dilation, neovessel distensibility, and overall survival. Coupling carefully designed in vivo experimentation with regression analysis, critical relationships between the scaffold design and the resulting neotissue that enable induction of favorable cellular and extracellular composition in a controlled manner are uncovered. Such an approach provides a potential for fabricating scaffolds with a broad range of features and the potential to manufacture optimized TEVGs.
Collapse
Affiliation(s)
- Jacob C. Zbinden
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Kevin M. Blum
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Abhay B. Ramachandra
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Jason M. Szafron
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Katherine E. Kerr
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Jennifer L. Anderson
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Gurneet S. Sangha
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Noah R. Nigh
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Gabriel J. M. Mirhaidari
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - James W. Reinhardt
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Yu‐Chun Chang
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Tai Yi
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Ryan Smalley
- Secant Group, LLC 551 East Church Ave Telford PA 18969 USA
| | | | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Christopher K. Breuer
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| |
Collapse
|
8
|
Zhang F, King MW. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 2020; 9:e1901358. [PMID: 32424996 DOI: 10.1002/adhm.201901358] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/03/2020] [Indexed: 01/15/2023]
Abstract
Biodegradable polymers play a pivotal role in in situ tissue engineering. Utilizing various technologies, researchers have been able to fabricate 3D tissue engineering scaffolds using biodegradable polymers. They serve as temporary templates, providing physical and biochemical signals to the cells and determining the successful outcome of tissue remodeling. Furthermore, a biodegradable scaffold also presents the fourth dimension for tissue engineering, namely time. The properties of the biodegradable polymer change over time, presenting continuously changing features during the degradation process. These changes become more complicated when different materials are combined together to fabricate a composite or heterogeneous scaffold. This review undertakes a systematic analysis of the basic characteristics of biodegradable polymers and describe recent advances in making composite biodegradable scaffolds for in situ tissue engineering and regenerative medicine. The interaction between implanted biodegradable biomaterials and the in vivo environment are also discussed, including the properties and functional changes of the degradable scaffold, the local effect of degradation on the contiguous tissue and their evaluation using both in vitro and in vivo models.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
- College of TextilesDonghua University Songjiang District Shanghai 201620 China
| |
Collapse
|
9
|
Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020; 8:3574-3600. [PMID: 32555780 DOI: 10.1039/d0bm00157k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering (TE) provides a practicable method for tissue and organ repair or substitution. As the most important component of TE, a scaffold plays a critical role in providing a growing environment for cell proliferation and functional differentiation as well as good mechanical support. And the restorative effects are greatly dependent upon the nature of the scaffold including the composition, morphology, structure, and mechanical performance. Medical textiles have been widely employed in the clinic for a long time and are being extensively investigated as TE scaffolds. However, unfortunately, the advantages of textile technology cannot be fully exploited in tissue regeneration due to the ignoring of the diversity of fabric structures. Therefore, this review focuses on textile-based scaffolds, emphasizing the significance of the fabric design and the resultant characteristics of cell behavior and extracellular matrix reconstruction. The structure and mechanical behavior of the fabrics constructed by various textile techniques for different tissue repairs are summarized. Furthermore, the prospect of structural design in the TE scaffold preparation was anticipated, including profiled fibers and some unique and complex textile structures. Hopefully, the readers of this review would appreciate the importance of structural design of the scaffold and the usefulness of textile-based TE scaffolds in tissue regeneration.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Matyszczak G, Wrzecionek M, Gadomska-Gajadhur A, Ruśkowski P. Kinetics of Polycondensation of Sebacic Acid with Glycerol. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Grzegorz Matyszczak
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Michał Wrzecionek
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | | | - Paweł Ruśkowski
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
11
|
Kristen M, Ainsworth MJ. Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Adv Healthc Mater 2020; 9:e1900775. [PMID: 31603288 PMCID: PMC7116178 DOI: 10.1002/adhm.201900775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a leading cause of death worldwide. The most common conditions that lead to HF are coronary artery disease, myocardial infarction, valve disorders, high blood pressure, and cardiomyopathy. Due to the limited regenerative capacity of the heart, the only curative therapy currently available is heart transplantation. Therefore, there is a great need for the development of novel regenerative strategies to repair the injured myocardium, replace damaged valves, and treat occluded coronary arteries. Recent advances in manufacturing technologies have resulted in the precise fabrication of 3D fiber scaffolds with high architectural control that can support and guide new tissue growth, opening exciting new avenues for repair of the human heart. This review discusses the recent advancements in the novel research field of fiber patterning manufacturing technologies for cardiac tissue engineering (cTE) and to what extent these technologies could meet the requirements of the highly organized and structured cardiac tissues. Additionally, future directions of these novel fiber patterning technologies, designs, and applicability to advance cTE are presented.
Collapse
Affiliation(s)
- Marleen Kristen
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Madison J. Ainsworth
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|