1
|
Mainali BB, Yoo JJ, Ladd MR. Tissue engineering and regenerative medicine approaches in colorectal surgery. Ann Coloproctol 2024; 40:336-349. [PMID: 39228197 PMCID: PMC11375227 DOI: 10.3393/ac.2024.00437.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Tissue engineering and regenerative medicine (TERM) is an emerging field that has provided new therapeutic opportunities by delivering innovative solutions. The development of nontraditional therapies for previously unsolvable diseases and conditions has brought hope and excitement to countless individuals globally. Many regenerative medicine therapies have been developed and delivered to patients clinically. The technology platforms developed in regenerative medicine have been expanded to various medical areas; however, their applications in colorectal surgery remain limited. Applying TERM technologies to engineer biological tissue and organ substitutes may address the current therapeutic challenges and overcome some complications in colorectal surgery, such as inflammatory bowel diseases, short bowel syndrome, and diseases of motility and neuromuscular function. This review provides a comprehensive overview of TERM applications in colorectal surgery, highlighting the current state of the art, including preclinical and clinical studies, current challenges, and future perspectives. This article synthesizes the latest findings, providing a valuable resource for clinicians and researchers aiming to integrate TERM into colorectal surgical practice.
Collapse
Affiliation(s)
- Bigyan B Mainali
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA
| | - Mitchell R Ladd
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Singh DK, Miller CM, Orgel KA, Dave M, Mackay S, Good M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front Pediatr 2023; 10:1107404. [PMID: 36714655 PMCID: PMC9874231 DOI: 10.3389/fped.2022.1107404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating, multifactorial disease mainly affecting the intestine of premature infants. Recent discoveries have significantly enhanced our understanding of risk factors, as well as, cellular and genetic mechanisms of this complex disease. Despite these advancements, no essential, single risk factor, nor the mechanism by which each risk factor affects NEC has been elucidated. Nonetheless, recent research indicates that maternal factors, antibiotic exposure, feeding, hypoxia, and altered gut microbiota pose a threat to the underdeveloped immunity of preterm infants. Here we review predisposing factors, status of unwarranted immune responses, and microbial pathogenesis in NEC based on currently available scientific evidence. We additionally discuss novel techniques and models used to study NEC and how this research translates from the bench to the bedside into potential treatment strategies.
Collapse
Affiliation(s)
- Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mili Dave
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
4
|
Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids. Polymers (Basel) 2022; 14:polym14101990. [PMID: 35631874 PMCID: PMC9143980 DOI: 10.3390/polym14101990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate—P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.
Collapse
|
5
|
Ge Y, Lalitharatne TD, Nanayakkara T. Origami Inspired Design for Capsule Endoscope to Retrograde Using Intestinal Peristalsis. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3157406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
7
|
Agarwal T, Onesto V, Lamboni L, Ansari A, Maiti TK, Makvandi P, Vosough M, Yang G. Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Boys AJ, Barron SL, Tilev D, Owens RM. Building Scaffolds for Tubular Tissue Engineering. Front Bioeng Biotechnol 2020; 8:589960. [PMID: 33363127 PMCID: PMC7758256 DOI: 10.3389/fbioe.2020.589960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing. Production of tubular scaffolds for different tissue engineering applications possesses many commonalities, such as the necessity for producing an intact tubular opening and for formation of semi-permeable epithelia or endothelia. As such, the field has converged on a series of manufacturing techniques for producing these structures. In this review, we discuss some of the most common tissue engineered applications within the context of tubular tissues and the methods by which these structures can be produced. We provide an overview of the general structure and anatomy for these tissue systems along with a series of general design criteria for tubular tissue engineering. We categorize methods for manufacturing tubular scaffolds as follows: casting, electrospinning, rolling, 3D printing, and decellularization. We discuss state-of-the-art models within the context of vascular, intestinal, and tracheal tissue engineering. Finally, we conclude with a discussion of the future for these fields.
Collapse
Affiliation(s)
| | | | | | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Thomas J, Patel S, Troop L, Guru R, Faist N, Bellott BJ, Esterlen BA. 3D Printed Model of Extrahepatic Biliary Ducts for Biliary Stent Testing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4788. [PMID: 33120964 PMCID: PMC7663029 DOI: 10.3390/ma13214788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/14/2023]
Abstract
Several inflammatory conditions of the bile ducts cause strictures that prevent the drainage of bile into the gastrointestinal tract. Non-pharmacological treatments to re-establish bile flow include plastic or self-expanding metal stents (SEMs) that are inserted in the bile ducts during endoscopic retrograde cholangiopancreatography (ERCP) procedures. The focus of this study was to 3D print an anatomically accurate model of the extrahepatic bile ducts (EHBDs) with tissue-like mechanical properties to improve in vitro testing of stent prototypes. Following generation of an EHBD model via computer aided design (CAD), we tested the ability of Formlabs SLA 3D printers to precisely print the model with polymers selected based on the desired mechanical properties. We found the printers were reliable in printing the dimensionally accurate EHBD model with candidate polymers. Next, we evaluated the mechanical properties of Formlabs Elastic (FE), Flexible (FF), and Durable (FD) resins pre- and post-exposure to water, saline, or bile acid solution at 37 °C for up to one week. FE possessed the most bile duct-like mechanical properties based on its elastic moduli, percent elongations at break, and changes in mass under all liquid exposure conditions. EHBD models printed in FE sustained no functional damage during biliary stent deployment or when tube connectors were inserted, and provided a high level of visualization of deployed stents. These results demonstrate that our 3D printed EHBD model facilitates more realistic pre-clinical in vitro testing of biliary stent prototypes.
Collapse
Affiliation(s)
- Joanna Thomas
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Sagar Patel
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Leia Troop
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Robyn Guru
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Nicholas Faist
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Brian J. Bellott
- Chemistry Department, Western Illinois University, Macomb, IL 61455, USA; (B.J.B.); (B.A.E.)
| | - Bethany A. Esterlen
- Chemistry Department, Western Illinois University, Macomb, IL 61455, USA; (B.J.B.); (B.A.E.)
| |
Collapse
|
10
|
Meran L, Massie I, Campinoti S, Weston AE, Gaifulina R, Tullie L, Faull P, Orford M, Kucharska A, Baulies A, Novellasdemunt L, Angelis N, Hirst E, König J, Tedeschi AM, Pellegata AF, Eli S, Snijders AP, Collinson L, Thapar N, Thomas GMH, Eaton S, Bonfanti P, De Coppi P, Li VSW. Engineering transplantable jejunal mucosal grafts using patient-derived organoids from children with intestinal failure. Nat Med 2020; 26:1593-1601. [PMID: 32895569 PMCID: PMC7116539 DOI: 10.1038/s41591-020-1024-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/17/2020] [Indexed: 11/08/2022]
Abstract
Intestinal failure, following extensive anatomical or functional loss of small intestine, has debilitating long-term consequences for children1. The priority of patient care is to increase the length of functional intestine, particularly the jejunum, to promote nutritional independence2. Here we construct autologous jejunal mucosal grafts using biomaterials from pediatric patients and show that patient-derived organoids can be expanded efficiently in vitro. In parallel, we generate decellularized human intestinal matrix with intact nanotopography, which forms biological scaffolds. Proteomic and Raman spectroscopy analyses reveal highly analogous biochemical profiles of human small intestine and colon scaffolds, indicating that they can be used interchangeably as platforms for intestinal engineering. Indeed, seeding of jejunal organoids onto either type of scaffold reliably reconstructs grafts that exhibit several aspects of physiological jejunal function and that survive to form luminal structures after transplantation into the kidney capsule or subcutaneous pockets of mice for up to 2 weeks. Our findings provide proof-of-concept data for engineering patient-specific jejunal grafts for children with intestinal failure, ultimately aiding in the restoration of nutritional autonomy.
Collapse
Affiliation(s)
- Laween Meran
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Isobel Massie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Sara Campinoti
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anne E Weston
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Riana Gaifulina
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Peter Faull
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Michael Orford
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anna Kucharska
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Laura Novellasdemunt
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Elizabeth Hirst
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Julia König
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Alfonso Maria Tedeschi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alessandro Filippo Pellegata
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Susanna Eli
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ambrosius P Snijders
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Nikhil Thapar
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
- Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Geraint M H Thomas
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Simon Eaton
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paola Bonfanti
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Specialist Neonatal and Paediatric Service, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Snyder J, Wang CM, Zhang AQ, Li Y, Luchan J, Hosic S, Koppes R, Carrier RL, Koppes A. Materials and Microenvironments for Engineering the Intestinal Epithelium. Ann Biomed Eng 2020; 48:1916-1940. [DOI: 10.1007/s10439-020-02470-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
12
|
Gosztyla C, Ladd MR, Werts A, Fulton W, Johnson B, Sodhi C, Hackam DJ. A Comparison of Sterilization Techniques for Production of Decellularized Intestine in Mice. Tissue Eng Part C Methods 2020; 26:67-79. [PMID: 31802699 PMCID: PMC7041403 DOI: 10.1089/ten.tec.2019.0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/27/2019] [Indexed: 01/26/2023] Open
Abstract
Tissue-engineered small intestinal implants are being widely investigated as a potential treatment for children with short bowel syndrome, yet are currently limited by their growth potential and relatively low surface area. To address this gap in the field, several investigators have utilized whole organ decellularization of the small intestine as a platform for subsequent growth of intestinal tissue. However, such scaffold-cell constructs require sterilization as a prerequisite for implantation, and the effects of the different pathogen-clearance techniques used on the tissue architecture remains unknown. The effects of four different published protocols for pathogen clearance of decellularized intestine, namely 0.1% peracetic acid (PAA), 0.18% PAA +4.8% ethanol (EtOH), 0.08% PAA +1% hydrogen peroxide (H2O2), and ultraviolet (UV) sterilization were compared using qualitative and quantitative techniques to assess changes to the extracellular matrix, cytocompatibility, and biocompatibility. All methods of sterilization of decellularized intestine were found to be equally effective and each method had similar histologic and scanning electron microscopy appearance of the sterilized tissue. In addition, collagen and glycosaminoglycan quantities, and the ability to support cell growth were similar among all methods. This study provides insights into the change in crypt villous architecture of the extracellular matrix with all sterilization techniques studied. Our findings demonstrate that sterilization affects the microarchitecture significantly, which has not been well accounted for in studies to date, and we were unable to identify a single best agent to achieve tissue sterilization while preserving the microarchitectural features of the tissue.
Collapse
Affiliation(s)
- Carolyn Gosztyla
- Division of Pediatric, Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Mitchell R. Ladd
- Division of Pediatric, Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Adam Werts
- Department of Comparative Physiology, Johns Hopkins University, Baltimore, Maryland
| | - William Fulton
- Division of Pediatric, Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Blake Johnson
- Division of Pediatric, Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Chhinder Sodhi
- Division of Pediatric, Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - David J. Hackam
- Division of Pediatric, Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Abstract
The generation of tissue engineered organs from autologous cells will allow replacement of diseased or absent organs without the need for immunosuppression. Common steps of tissue engineering include isolation of pluripotent or multipotent stem cells, preparation of synthetic or biologic scaffold, and implantation into a host to support the proliferation of engineered tissue. Some organs have been successfully transplanted in human patients; gastrointestinal tract tissues are nearing clinical introduction. The state of the science has progressed rapidly and providers and researchers alike must take appropriate steps to ensure strict adherence to ethical standards before introduction to human therapy.
Collapse
Affiliation(s)
- Daniel Levin
- Division of Pediatric Surgery, Department of Surgery, University of Virginia, 1300 Jefferson Park Avenue, PO BOX 800709, Charlottesville, VA 22908-0709, USA.
| |
Collapse
|