1
|
Bellingrath JS, Li KV, Aziz K, Izzi JM, Liu YV, Singh MS. Large animal model species in pluripotent stem cell therapy research and development for retinal diseases: a systematic review. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1377098. [PMID: 39253560 PMCID: PMC11381226 DOI: 10.3389/fopht.2024.1377098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024]
Abstract
Aim Retinal cell therapy modalities, in the category of advanced therapy medicinal products (ATMPs), are being developed to target several retinal diseases. Testing in large animal models (LAMs) is a crucial step in translating retinal ATMPs into clinical practice. However, challenges including budgetary and infrastructure constraints can hinder LAM research design and execution. Here, to facilitate the comparison of the various LAMs in pluripotent retinal cell therapy research, we aimed to systematically evaluate the species distribution, reported scientific utility, and methodology of a range of LAMs. Methods A systematic search using the words retina, stem cell, transplantation, large animal, pig, rabbit, dog, and nonhuman primate was conducted in the PubMed, Embase, Science Direct and GoogleScholar databases in February 2023. Results We included 22 studies involving pluripotent stem cells (induced pluripotent stem cells or human embryonic stem cells) in LAMs, including non-human primates (NHP), pigs, dogs, and rabbits. Nearly half of the studies utilized wild-type animal models. In other studies, retinal degeneration features were simulated via laser, chemical, or genetic insult. Transplants were delivered subretinally, either as cell suspensions or pre-formed monolayers (with or without biodegradable scaffolding). The transplanted cells dose per eye varied widely (40,000 - 4,000,000 per dose). Cells were delivered via vitrectomy surgery in 15 studies and by an "ab externo" approach in one study. Structural outcomes were assessed using confocal scanning laser ophthalmoscopy imaging. Functional outcomes included multifocal electroretinogram and, in one case, a measure of visual acuity. Generally, cell suspension transplants exhibited low intraretinal incorporation, while monolayer transplants incorporated more efficiently. Immune responses posed challenges for allogeneic transplants, suggesting that autologous iPSC-derived transplants may be required to decrease the likelihood of rejection. Conclusion The use of appropriate LAMs helps to advance the development of retinal ATMPs. The anatomical similarity of LAM and human eyes allows the implementation of clinically-relevant surgical techniques. While the FDA Modernization Act 2.0 has provided a framework to consider alternative methods including tissue-on-a-chip and human cell culture models for pharmacologic studies, LAM testing remains useful for cell and tissue replacement studies to inform the development of clinical trial protocols.
Collapse
Affiliation(s)
- Julia-Sophia Bellingrath
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Kang V Li
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kanza Aziz
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jessica M Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
2
|
Casado C, Cepeda-Franco C, Pereira Arenas S, Suarez MD, Gómez-Bravo MÁ, Alaminos M, Chato-Astrain J, Fernández-Muñoz B, Campos-Cuerva R. Cryopreserved nanostructured fibrin-agarose hydrogels are efficient and safe hemostatic agents. Sci Rep 2024; 14:19411. [PMID: 39169092 PMCID: PMC11339259 DOI: 10.1038/s41598-024-70456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Uncontrolled bleeding during surgery is associated with high mortality and prolonged hospital stay, necessitating the use of hemostatic agents. Fibrin sealant patches offer an efficient solution to achieve hemostasis and improve patient outcomes in liver resection surgery. We have previously demonstrated the efficacy of a nanostructured fibrin-agarose hydrogel (NFAH). However, for the widespread distribution and commercialization of the product, it is necessary to develop an optimal preservation method that allows for prolonged stability and facilitates storage and distribution. We investigated cryopreservation as a potential method for preserving NFAH using trehalose. Structural changes in cryopreserved NFAH (Cryo-NFAH) were investigated and comparative in vitro and in vivo efficacy and safety studies were performed with freshly prepared NFAH. We also examined the long-term safety of Cryo-NFAH versus TachoSil in a rat partial hepatectomy model, including time to hemostasis, intra-abdominal adhesion, hepatic hematoma, inflammatory factors, histopathological variables, temperature and body weight, hemocompatibility and cytotoxicity. Structural analyses demonstrated that Cryo-NFAH retained most of its macro- and microscopic properties after cryopreservation. Likewise, hemostatic efficacy assays showed no significant differences with fresh NFAH. Safety evaluations indicated that Cryo-NFAH had a similar overall profile to TachoSil up to 40 days post-surgery in rats. In addition, Cryo-NFAH demonstrated superior hemostatic efficacy compared with TachoSil while also demonstrating lower levels of erythrolysis and cytotoxicity than both TachoSil and other commercially available hemostatic agents. These results indicate that Cryo-NFAH is highly effective hemostatic patch with a favorable safety and tolerability profile, supporting its potential for clinical use.
Collapse
Affiliation(s)
- Carlos Casado
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain
| | - Carmen Cepeda-Franco
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Sheila Pereira Arenas
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Dolores Suarez
- Servicio de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Ángel Gómez-Bravo
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Facultad de Medicina Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Facultad de Medicina Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain.
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Transfusiones, Tejidos y Células de Sevilla, Seville, Spain.
| |
Collapse
|
3
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
4
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Arribas-Arribas B, Fernández-Muñoz B, Campos-Cuerva R, Montiel-Aguilera MÁ, Bermejo-González M, Lomas-Romero I, Martín-López M, Alcázar-Caballero RM, Del Mar Macías-Sánchez M, Campos F, Alaminos M, Gómez-Cía T, Gacto P, Carmona G, Santos-González M. Nanostructured fibrin-agarose hydrogels loaded with allogeneic fibroblasts as bio-dressings for acute treatment of massive burns. Biomed Pharmacother 2023; 168:115769. [PMID: 39491860 DOI: 10.1016/j.biopha.2023.115769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024] Open
Abstract
The prompt management of patients with massive burns is essential to maximize survival by preventing infection, hemorrhage, fluid and heat loss, and to optimally prepare the wound bed for the application of autografts or cultured tissue-engineered artificial autologous skin. Acute treatments are typically based on temporary bio-dressings, commonly cadaveric skin allografts, but supply challenges, high costs and increasingly stringent regulatory requirements preclude their widespread use. Nanostructured fibrin-agarose hydrogels (NFAH) have been proven to be safe and effective biomaterials in preclinical and clinical studies, and show good hemostatic and biomechanical properties. Here we generated and tested NFAH with embedded allogeneic dermal fibroblasts (NFAH-F) under Good Manufacturing Practice (GMP) conditions. Fibroblasts were first expanded and characterized to create a GMP bank and the NFAH-F was manufactured on demand. Three patients with major burns were treated with this product as a temporary bio-dressing under compassionate use. Our results suggest that NFAH-F product was a safe product and no adverse reactions were observed. In all cases, the patients survived until definitive treatment. Therefore, the application of NFAH-F might be a temporary bio-dressing for patients with massive burns when cadaveric skin allografts are not available.
Collapse
Affiliation(s)
- Blanca Arribas-Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain; Programa doctorado Tecnología y Ciencias del Medicamento, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Miguel Ángel Montiel-Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain
| | - María Bermejo-González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain
| | - Isabel Lomas-Romero
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - María Martín-López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Instituto de Investigaciones Biomédicas de Sevilla (IBIS), Seville, Spain
| | - Rosario Mata Alcázar-Caballero
- Red Andaluza de diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud-FPS, Seville, Spain
| | - María Del Mar Macías-Sánchez
- Red Andaluza de diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud-FPS, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group. Facultad de Medicina, Universidad de Granada, Granada, Spain and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group. Facultad de Medicina, Universidad de Granada, Granada, Spain and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Tomás Gómez-Cía
- Unidad de Gestión Clínica de Cirugía Plástica y Grandes Quemados, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Purificación Gacto
- Unidad de Gestión Clínica de Cirugía Plástica y Grandes Quemados, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Gloria Carmona
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; PhD program in Biomedicine, University of Granada, Spain
| | - Mónica Santos-González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain.
| |
Collapse
|
6
|
Martín-López M, Rosell-Valle C, Arribas-Arribas B, Fernández-Muñoz B, Jiménez R, Nogueras S, García-Delgado AB, Campos F, Santos-González M. Bioengineered tissue and cell therapy products are efficiently cryopreserved with pathogen-inactivated human platelet lysate-based solutions. Stem Cell Res Ther 2023; 14:69. [PMID: 37024935 PMCID: PMC10079488 DOI: 10.1186/s13287-023-03300-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND There remains much interest in improving cryopreservation techniques for advanced therapy medicinal products (ATMPs). Recently, human platelet lysate (hPL) has emerged as a promising candidate to replace fetal bovine serum (FBS) as a xeno-free culture supplement for the expansion of human cell therapy products. Whether hPL can also substitute for FBS in cryopreservation procedures remains poorly studied. Here, we evaluated several cryoprotective formulations based on a proprietary hPL for the cryopreservation of bioengineered tissues and cell therapy products. METHODS We tested different xenogeneic-free, pathogen-inactivated hPL (ihPL)- and non-inactivated-based formulations for cryopreserving bioengineered tissue (cellularized nanostructured fibrin agarose hydrogels (NFAHs)) and common cell therapy products including bone marrow-derived mesenchymal stromal cells (BM-MSCs), human dermal fibroblasts (FBs) and neural stem cells (NSCs). To assess the tissue and cellular properties post-thaw of NFAHs, we analyzed their cell viability, identity and structural and biomechanical properties. Also, we evaluated cell viability, recovery and identity post-thaw in cryopreserved cells. Further properties like immunomodulation, apoptosis and cell proliferation were assessed in certain cell types. Additionally, we examined the stability of the formulated solutions. The formulations are under a bidding process with MD Bioproducts (Zurich, Switzerland) and are proprietary. RESULTS Amongst the tissue-specific solutions, Ti5 (low-DMSO and ihPL-based) preserved the viability and the phenotype of embedded cells in NFAHs and preserved the matrix integrity and biomechanical properties similar to those of the standard cryopreservation solution (70% DMEM + 20% FBS + 10% DMSO). All solutions were stable at - 20 °C for at least 3 months. Regarding cell-specific solutions, CeA maintained the viability of all cell types > 80%, preserved the immunomodulatory properties of BM-MSCs and promoted good recovery post-thaw. Besides, both tested solutions were stable at - 20 °C for 18 months. Finally, we established that there is a 3-h window in which thawed NFAHs and FBs maintain optimum viability immersed in the formulated solutions and at least 2 h for BM-MSCs. CONCLUSIONS Our results show that pathogen-inactivated solutions Ti5 allocated for bioengineered tissues and CeA allocated for cells are efficient and safe candidates to cryopreserve ATMPs and offer a xenogeneic-free and low-DMSO alternative to commercially available cryoprotective solutions.
Collapse
Affiliation(s)
- María Martín-López
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
- Programa de Doctorado en Biología Molecular, Biomedicina e Investigación Clínica, Universidad de Sevilla, Seville, Spain
| | - Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
| | - Blanca Arribas-Arribas
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
- Programa de Doctorado en Farmacia, Universidad de Sevilla, Seville, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
| | - Rosario Jiménez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, 14004, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004, Córdoba, Spain
| | - Sonia Nogueras
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, 14004, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004, Córdoba, Spain
| | - Ana Belén García-Delgado
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| | - Mónica Santos-González
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain.
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), 41013, Seville, Spain.
| |
Collapse
|
7
|
Cehajic-Kapetanovic J, Singh MS, Zrenner E, MacLaren RE. Bioengineering strategies for restoring vision. Nat Biomed Eng 2023; 7:387-404. [PMID: 35102278 DOI: 10.1038/s41551-021-00836-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Late-stage retinal degenerative disease involving photoreceptor loss can be treated by optogenetic therapy, cell transplantation and retinal prostheses. These approaches aim to restore light sensitivity to the retina as well as visual perception by integrating neuronal responses for transmission to the cortex. In age-related macular degeneration, some cell-based therapies also aim to restore photoreceptor-supporting tissue to prevent complete photoreceptor loss. In the earlier stages of degeneration, gene-replacement therapy could attenuate retinal-disease progression and reverse loss of function. And gene-editing strategies aim to correct the underlying genetic defects. In this Review, we highlight the most promising gene therapies, cell therapies and retinal prostheses for the treatment of retinal disease, discuss the benefits and drawbacks of each treatment strategy and the factors influencing whether functional tissue is reconstructed and repaired or replaced with an electronic device, and summarize upcoming technologies for enhancing the restoration of vision.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | | | - Eberhart Zrenner
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
8
|
Fabrication and Evaluation of Gellan Gum/Hyaluronic Acid Hydrogel for Retinal Tissue Engineering Biomaterial and the Influence of Substrate Stress Relaxation on Retinal Pigment Epithelial Cells. Molecules 2022; 27:molecules27175512. [PMID: 36080277 PMCID: PMC9458149 DOI: 10.3390/molecules27175512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Cell therapies for age-related macular degeneration (AMD) treatment have been developed by integrating hydrogel-based biomaterials. Until now, cell activity has been observed only in terms of the modulus of the hydrogel. In addition, cell behavior has only been observed in the 2D environment of the hydrogel and the 3D matrix. As time-dependent stress relaxation is considered a significant mechanical cue for the control of cellular activities, it is important to optimize hydrogels for retinal tissue engineering (TE) by applying this viewpoint. Herein, a gellan Gum (GG)/Hyaluronic acid (HA) hydrogel was fabricated using a facile physical crosslinking method. The physicochemical and mechanical properties were controlled by forming a different composition of GG and HA. The characterization was performed by conducting a mass swelling study, a sol fraction study, a weight loss test, a viscosity test, an injection force study, a compression test, and a stress relaxation analysis. The biological activity of the cells encapsulated in 3D constructs was evaluated by conducting a morphological study, a proliferation test, a live/dead analysis, histology, immunofluorescence staining, and a gene expression study to determine the most appropriate material for retinal TE biomaterial. Hydrogels with moderate amounts of HA showed improved physicochemical and mechanical properties suitable for injection into the retina. Moreover, the time-dependent stress relaxation property of the GG/HA hydrogel was enhanced when the appropriate amount of HA was loaded. In addition, the cellular compatibility of the GG/HA hydrogel in in vitro experiments was significantly improved in the fast-relaxing hydrogel. Overall, these results demonstrate the remarkable potential of GG/HA hydrogel as an injectable hydrogel for retinal TE and the importance of the stress relaxation property when designing retinal TE hydrogels. Therefore, we believe that GG/HA hydrogel is a prospective candidate for retinal TE biomaterial.
Collapse
|
9
|
Rosell-Valle C, Martín-López M, Campos F, Chato-Astrain J, Campos-Cuerva R, Alaminos M, Santos González M. Inactivation of human plasma alters the structure and biomechanical properties of engineered tissues. Front Bioeng Biotechnol 2022; 10:908250. [PMID: 36082161 PMCID: PMC9445835 DOI: 10.3389/fbioe.2022.908250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fibrin is widely used for tissue engineering applications. The use of blood derivatives, however, carries a high risk of transmission of infectious agents, necessitating the application of pathogen reduction technology (PRT). The impact of this process on the structural and biomechanical properties of the final products is unknown. We used normal plasma (PLc) and plasma inactivated by riboflavin and ultraviolet light exposure (PLi) to manufacture nanostructured cellularized fibrin-agarose hydrogels (NFAHs), and then compared their structural and biomechanical properties. We also measured functional protein C, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and coagulation factors [fibrinogen, Factor (F) V, FVIII, FX, FXI, FXIII] in plasma samples before and after inactivation. The use of PLi to manufacture cellularized NFAHs increased the interfibrillar spacing and modified their biomechanical properties as compared with cellularized NFAH manufactured with PLc. PLi was also associated with a significant reduction in functional protein C, FV, FX, and FXI, and an increase in the international normalized ratio (derived from the PT), APTT, and TT. Our findings demonstrate that the use of PRT for fibrin-agarose bioartificial tissue manufacturing does not adequately preserve the structural and biomechanical properties of the product. Further investigations into PRT-induced changes are warranted to determine the applications of NFAH manufactured with inactivated plasma as a medicinal product.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín-López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Escuela Internacional de Doctorado Universidad de Sevilla, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
- *Correspondence: Mónica Santos González,
| |
Collapse
|
10
|
Mano F, Gandhi JK, da Silva RP, Silva ADA, Iezzi L, Iezzi R, Pulido JS, Marmorstein AD. Methodological Approach to Improve Surgical Outcomes of a Pig Subretinal Implantation Model. Transl Vis Sci Technol 2022; 11:24. [PMID: 35486039 PMCID: PMC9055557 DOI: 10.1167/tvst.11.4.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose To improve outcomes for subretinal implantation surgery in pigs. Methods Analysis of variables affecting the success of subretinal implantation surgery was performed on videos of 37 surgeries. Ex vivo experiments were conducted to measure intraocular pressure (IOP) and test various prototyped implanters for effectiveness at maintaining IOP. Results A video analysis revealed a prolonged sclerotomy open time owing to a combination of uncontrolled bleeding and excessive fluid outflow often resulting in retinal prolapse. Precauterization of the choroid before full-thickness sclerotomy (n = 10) resulted in a reduced incidence of uncontrolled bleeding from 39.1% (9/23) versus 0% (0/10) (P = 0.005) and improved implantation success from 73% to 90%. An ex vivo analysis of the IOP revealed a mean decrease in the IOP from 30.2 ± 3.0 mm Hg to 5.0 ± 2.1 mm Hg after a fully penetrating sclerotomy. To address this situation, we produced a series of plugs that integrated with a custom implant insertion device to seal the sclerotomy during implantation. The use of the plugs was cumbersome, however, and so we opted instead to increase the width of the inserter tip to fill the open sclerotomy. This improved device restored and maintained IOP during implantation (27.1 ± 1.9 mm Hg). Combined with precauterization the improved inserter resulted in 100% successful implantation (n = 4). Conclusions For subretinal implantation in pigs, a modified procedure to precauterize the choroid before sclerotomy combined with an instrument that better fills the scleral opening decreases bleeding, hypotony, and open sclerotomy time, improving the success rate. Translational Relevance Better management of IOP and bleeding from a sclerotomy will improve implant-based therapies.
Collapse
Affiliation(s)
- Fukutaro Mano
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Jarel K Gandhi
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | | | | | - Lucas Iezzi
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Raymond Iezzi
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Alan D Marmorstein
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| |
Collapse
|
11
|
Rosell-Valle C, Martín-López M, Campos F, Chato-Astrain J, Campos-Cuerva R, Alaminos M, Santos González M. Inactivation of human plasma alters the structure and biomechanical properties of engineered tissues. Front Bioeng Biotechnol 2022. [PMID: 36082161 DOI: 10.3389/fbioe.2022.908250/full] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Fibrin is widely used for tissue engineering applications. The use of blood derivatives, however, carries a high risk of transmission of infectious agents, necessitating the application of pathogen reduction technology (PRT). The impact of this process on the structural and biomechanical properties of the final products is unknown. We used normal plasma (PLc) and plasma inactivated by riboflavin and ultraviolet light exposure (PLi) to manufacture nanostructured cellularized fibrin-agarose hydrogels (NFAHs), and then compared their structural and biomechanical properties. We also measured functional protein C, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and coagulation factors [fibrinogen, Factor (F) V, FVIII, FX, FXI, FXIII] in plasma samples before and after inactivation. The use of PLi to manufacture cellularized NFAHs increased the interfibrillar spacing and modified their biomechanical properties as compared with cellularized NFAH manufactured with PLc. PLi was also associated with a significant reduction in functional protein C, FV, FX, and FXI, and an increase in the international normalized ratio (derived from the PT), APTT, and TT. Our findings demonstrate that the use of PRT for fibrin-agarose bioartificial tissue manufacturing does not adequately preserve the structural and biomechanical properties of the product. Further investigations into PRT-induced changes are warranted to determine the applications of NFAH manufactured with inactivated plasma as a medicinal product.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín-López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Escuela Internacional de Doctorado Universidad de Sevilla, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
12
|
Brinks J, van Dijk EHC, Klaassen I, Schlingemann RO, Kielbasa SM, Emri E, Quax PHA, Bergen AA, Meijer OC, Boon CJF. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease. Prog Retin Eye Res 2021; 87:100994. [PMID: 34280556 DOI: 10.1016/j.preteyeres.2021.100994] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
The choroid is a key player in maintaining ocular homeostasis and plays a role in a variety of chorioretinal diseases, many of which are poorly understood. Recent advances in the field of single-cell RNA sequencing have yielded valuable insights into the properties of choroidal endothelial cells (CECs). Here, we review the role of the choroid in various physiological and pathophysiological mechanisms, focusing on the role of CECs. We also discuss new insights regarding the phenotypic properties of CECs, CEC subpopulations, and the value of measuring transcriptomics in primary CEC cultures derived from post-mortem eyes. In addition, we discuss key phenotypic, structural, and functional differences that distinguish CECs from other endothelial cells such as retinal vascular endothelial cells. Understanding the specific clinical and molecular properties of the choroid will shed new light on the pathogenesis of the broad clinical range of chorioretinal diseases such as age-related macular degeneration, central serous chorioretinopathy and other diseases within the pachychoroid spectrum, uveitis, and diabetic choroidopathy. Although our knowledge is still relatively limited with respect to the clinical features and molecular pathways that underlie these chorioretinal diseases, we summarise new approaches and discuss future directions for gaining new insights into these sight-threatening diseases and highlight new therapeutic strategies such as pluripotent stem cell‒based technologies and gene therapy.
Collapse
Affiliation(s)
- J Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - E H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - I Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - R O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - S M Kielbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - E Emri
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - P H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A A Bergen
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - O C Meijer
- Department of Medicine, Division of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, the Netherlands
| | - C J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Yin S, Cao Y. Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomater 2021; 128:1-20. [PMID: 33746032 DOI: 10.1016/j.actbio.2021.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Stem cells demonstrate considerable promise for various preclinical and clinical applications, including drug screening, disease treatments, and regenerative medicine. Producing high-quality and large amounts of stem cells is in demand for these applications. Despite challenges, as hydrogel-based cell culture technology has developed, tremendous progress has been made in stem cell expansion and directed differentiation. Hydrogels are soft materials with abundant water. Many hydrogel properties, including biodegradability, mechanical strength, and porosity, have been shown to play essential roles in regulating stem cell proliferation and differentiation. The biochemical and physical properties of hydrogels can be specifically tailored to mimic the native microenvironment that various stem cells reside in vivo. A few hydrogel-based systems have been developed for successful stem cell cultures and expansion in vitro. In this review, we summarize various types of hydrogels that have been designed to effectively enhance the proliferation of hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs), respectively. According to each stem cell type's preference, we also discuss strategies for fabricating hydrogels with biochemical and mechanical cues and other characteristics representing microenvironments of stem cells in vivo. STATEMENT OF SIGNIFICANCE: In this review article we summarize current progress on the construction of hydrogel systems for the culture and expansion of various stem cells, including hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs). The Significance includes: (1) Provide detailed discussion on the stem cell niches that should be considered for stem cell in vitro expansion. (2) Summarize various strategies to construct hydrogels that can largely recapture the microenvironment of native stem cells. (3) Suggest a few future directions that can be implemented to improve current in vitro stem cell expansion systems.
Collapse
Affiliation(s)
- Sheng Yin
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057.
| |
Collapse
|
14
|
Buono L, Corbacho J, Naranjo S, Almuedo-Castillo M, Moreno-Marmol T, de la Cerda B, Sanabria-Reinoso E, Polvillo R, Díaz-Corrales FJ, Bogdanovic O, Bovolenta P, Martínez-Morales JR. Analysis of gene network bifurcation during optic cup morphogenesis in zebrafish. Nat Commun 2021; 12:3866. [PMID: 34162866 PMCID: PMC8222258 DOI: 10.1038/s41467-021-24169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Sight depends on the tight cooperation between photoreceptors and pigmented cells, which derive from common progenitors through the bifurcation of a single gene regulatory network into the neural retina (NR) and retinal-pigmented epithelium (RPE) programs. Although genetic studies have identified upstream nodes controlling these networks, their regulatory logic remains poorly investigated. Here, we characterize transcriptome dynamics and chromatin accessibility in segregating NR/RPE populations in zebrafish. We analyze cis-regulatory modules and enriched transcription factor motives to show extensive network redundancy and context-dependent activity. We identify downstream targets, highlighting an early recruitment of desmosomal genes in the flattening RPE and revealing Tead factors as upstream regulators. We investigate the RPE specification network dynamics to uncover an unexpected sequence of transcription factors recruitment, which is conserved in humans. This systematic interrogation of the NR/RPE bifurcation should improve both genetic counseling for eye disorders and hiPSCs-to-RPE differentiation protocols for cell-replacement therapies in degenerative diseases.
Collapse
Affiliation(s)
- Lorena Buono
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Seville, Spain
| | - Jorge Corbacho
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | | | | | - Berta de la Cerda
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER (CSIC/US/UPO/JA), Seville, Spain
| | | | - Rocío Polvillo
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | | | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Seville, Spain.
- CIBERER, ISCIII, Madrid, Spain.
| | | |
Collapse
|
15
|
Borrego-González S, de la Cerda B, Díaz-Corrales FJ, Díaz-Cuenca A. Nanofibrous Matrix of Defined Composition Sustains Human Induced Pluripotent Stem Cell Culture. ACS APPLIED BIO MATERIALS 2021; 4:3035-3040. [DOI: 10.1021/acsabm.0c00425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Borrego-González
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, C/Américo Vespucio 49, Isla de la Cartuja, Seville 41092, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Berta de la Cerda
- Department of Cell Therapy and Regeneration, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville 41092, Spain
| | - Francisco J. Díaz-Corrales
- Department of Cell Therapy and Regeneration, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville 41092, Spain
| | - Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, C/Américo Vespucio 49, Isla de la Cartuja, Seville 41092, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
16
|
Koster C, Wever KE, Wagstaff EL, van den Hurk KT, Hooijmans CR, Bergen AA. A Systematic Review on Transplantation Studies of the Retinal Pigment Epithelium in Animal Models. Int J Mol Sci 2020; 21:E2719. [PMID: 32295315 PMCID: PMC7216090 DOI: 10.3390/ijms21082719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023] Open
Abstract
The retinal pigment epithelium (RPE) and the adjacent light-sensitive photoreceptors form a single functional unit lining the back of the eye. Both cell layers are essential for normal vision. RPE degeneration is usually followed by photoreceptor degeneration and vice versa. There are currently almost no effective therapies available for RPE disorders such as Stargardt disease, specific types of retinitis pigmentosa, and age-related macular degeneration. RPE replacement for these disorders, especially in later stages of the disease, may be one of the most promising future therapies. There is, however, no consensus regarding the optimal RPE source, delivery strategy, or the optimal experimental host in which to test RPE replacement therapy. Multiple RPE sources, delivery methods, and recipient animal models have been investigated, with variable results. So far, a systematic evaluation of the (variables influencing) efficacy of experimental RPE replacement parameters is lacking. Here we investigate the effect of RPE transplantation on vision and vision-based behavior in animal models of retinal degenerated diseases. In addition, we aim to explore the effect of RPE source used for transplantation, the method of intervention, and the animal model which is used. METHODS In this study, we systematically identified all publications concerning transplantation of RPE in experimental animal models targeting the improvement of vision (e.g., outcome measurements related to the morphology or function of the eye). A variety of characteristics, such as species, gender, and age of the animals but also cell type, number of cells, and other intervention characteristics were extracted from all studies. A risk of bias analysis was performed as well. Subsequently, all references describing one of the following outcomes were analyzed in depth in this systematic review: a-, b-, and c-wave amplitudes, vision-based, thickness analyses based on optical coherence tomography (OCT) data, and transplant survival based on scanning laser ophthalmoscopy (SLO) data. Meta-analyses were performed on the a- and b-wave amplitudes from electroretinography (ERG) data as well as data from vision-based behavioral assays. RESULTS original research articles met the inclusion criteria after two screening rounds. Overall, most studies were categorized as unclear regarding the risk of bias, because many experimental details were poorly reported. Twenty-three studies reporting one or more of the outcome measures of interest were eligible for either descriptive (thickness analyses based on OCT data; n = 2) or meta-analyses. RPE transplantation significantly increased ERG a-wave (Hedges' g 1.181 (0.471-1.892), n = 6) and b-wave (Hedges' g 1.734 (1.295-2.172), n = 42) amplitudes and improved vision-based behavior (Hedges' g 1.018 (0.826-1.209), n = 96). Subgroup analyses revealed a significantly increased effect of the use of young and adolescent animals compared to adult animals. Moreover, transplanting more cells (in the range of 105 versus in the range of 104) resulted in a significantly increased effect on vision-based behavior as well. The origin of cells mattered as well. A significantly increased effect was found on vision-based behavior when using ARPE-19 and OpRegen® RPE. CONCLUSIONS This systematic review shows that RPE transplantation in animal models for retinal degeneration significantly increases a- and b- wave amplitudes and improves vision-related behavior. These effects appear to be more pronounced in young animals, when the number of transplanted cells is larger and when ARPE-19 and OpRegen® RPE cells are used. We further emphasize that there is an urgent need for improving the reporting and methodological quality of animal experiments, to make such studies more comparable.
Collapse
Affiliation(s)
- Céline Koster
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Kimberley E. Wever
- Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.E.W.); (C.R.H.)
| | - Ellie L. Wagstaff
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Koen T. van den Hurk
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Carlijn R. Hooijmans
- Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.E.W.); (C.R.H.)
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
- Department of Ophthalmology, AUMC, AMC, UvA, 1105 AZ Amsterdam, The Netherlands
- Department of Ophthalmogenetics, Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
17
|
Hu T, Yao B, Huang S, Fu X. Insight into cellular dedifferentiation in regenerative medicine. SCIENCE CHINA-LIFE SCIENCES 2019; 63:301-304. [PMID: 31187305 DOI: 10.1007/s11427-019-9571-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Tian Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Bin Yao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Sha Huang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China.
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China.
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China.
| |
Collapse
|