1
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Rougier G, Maistriaux L, Fievé L, Xhema D, Evrard R, Manon J, Olszewski R, Szmytka F, Thurieau N, Boisson J, Kadlub N, Gianello P, Behets C, Lengelé B. Decellularized vascularized bone grafts: A preliminary in vitro porcine model for bioengineered transplantable bone shafts. Front Bioeng Biotechnol 2023; 10:1003861. [PMID: 36743653 PMCID: PMC9890275 DOI: 10.3389/fbioe.2022.1003861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction: Durable reconstruction of critical size bone defects is still a surgical challenge despite the availability of numerous autologous and substitute bone options. In this paper, we have investigated the possibility of creating a living bone allograft, using the perfusion/decellularization/recellularization (PDR) technique, which was applied to an original model of vascularized porcine bone graft. Materials and Methods: 11 porcine bone forelimbs, including radius and ulna, were harvested along with their vasculature including the interosseous artery and then decellularized using a sequential detergent perfusion protocol. Cellular clearance, vasculature, extracellular matrix (ECM), and preservation of biomechanical properties were evaluated. The cytocompatibility and in vitro osteoinductive potential of acellular extracellular matrix were studied by static seeding of NIH-3T3 cells and porcine adipose mesenchymal stem cells (pAMSC), respectively. Results: The vascularized bone grafts were successfully decellularized, with an excellent preservation of the 3D morphology and ECM microarchitecture. Measurements of DNA and ECM components revealed complete cellular clearance and preservation of ECM's major proteins. Bone mineral density (BMD) acquisitions revealed a slight, yet non-significant, decrease after decellularization, while biomechanical testing was unmodified. Cone beam computed tomography (CBCT) acquisitions after vascular injection of barium sulphate confirmed the preservation of the vascular network throughout the whole graft. The non-toxicity of the scaffold was proven by the very low amount of residual sodium dodecyl sulfate (SDS) in the ECM and confirmed by the high live/dead ratio of fibroblasts seeded on periosteum and bone ECM-grafts after 3, 7, and 16 days of culture. Moreover, cell proliferation tests showed a significant multiplication of seeded cell populations at the same endpoints. Lastly, the differentiation study using pAMSC confirmed the ECM graft's potential to promote osteogenic differentiation. An osteoid-like deposition occurred when pAMSC were cultured on bone ECM in both proliferative and osteogenic differentiation media. Conclusion: Fully decellularized bone grafts can be obtained by perfusion decellularization, thereby preserving ECM architecture and their vascular network, while promoting cell growth and differentiation. These vascularized decellularized bone shaft allografts thus present a true potential for future in vivo reimplantation. Therefore, they may offer new perspectives for repairing large bone defects and for bone tissue engineering.
Collapse
Affiliation(s)
- Guillaume Rougier
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Oncological and Cervicofacial Reconstructive Surgery, Otorhinolaryngology, Maxillofacial Surgery—Institut Curie, Paris, France
| | - Louis Maistriaux
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,*Correspondence: Louis Maistriaux,
| | - Lies Fievé
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Daela Xhema
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Robin Evrard
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Julie Manon
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Raphael Olszewski
- Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Maxillofacial Surgery and Stomatology—Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Fabien Szmytka
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Nicolas Thurieau
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean Boisson
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Natacha Kadlub
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France,Department of Maxillofacial and Reconstructive Surgery—Necker Enfants Malades, Paris, France
| | - Pierre Gianello
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Benoît Lengelé
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Plastic and Reconstructive Surgery—Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
3
|
Erica G, Edi S, Giovanna A, Mariarita C, Deborah S, Filippo R, Alessandro M, Piero N, Laura A. Characterization of a decellularized rat larynx: comparison between microscopy techniques. Ann Anat 2023; 245:152020. [PMID: 36367516 DOI: 10.1016/j.aanat.2022.152020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND No effective method has yet been developed to efficiently reconstruct the larynx and restore its function. Decellularization has recently been tested for this purpose with very promising results. The goal of decellularization is to remove cells leaving an intact scaffold made of an extracellular matrix (ECM). Although the use of hematoxylin/eosin and Masson trichrome stains is widely accepted to highlight tissue structure, the methods based on evaluation of collagen and elastin are considered highly variable. The aim of this study was to develop a whole organ decellularization protocol and compare the qualitative and quantitative efficiency of some microscopy techniques for collagen and elastin detection in paraffin-embedded tissues. METHODS H&E, Masson Trichrome and DAPI staining as well as DNA quantification were used to evaluate decellularization efficiency. Van Gieson stain, Picrosirius Red stain (PRS) and multiphoton laser scanning microscopy (MPM) were carried out for collagen detection and quantitative assessment. Polarized PRS was used to investigate collagen network, and Weigert stain and MPM were used to detect and estimate elastin content. RESULTS The decellularization process removed the cellular components without affecting glycosaminoglycan, collagen and elastin content. Concerning collagen quantification, Van Gieson stain underestimated collagen content, while PRS, apparently less fading, did not reach reliable results when used as quantitative method. MPM effectively quantified collagen content. Collagen fibers were visualized much better under polarized light microscopy, allowing to underline that decellularization process affects the homogeneity of 3D collagen network. Concerning elastin detection, Weigert stain and MPM produced overlapping results. CONCLUSIONS An efficient protocol to decellularize the whole larynx was developed, allowing the removal of cells without affecting ECM integrity. The results supported the use of non-polarized PRS to highlight collagen, even the thin fibers, second harmonic generation for major fibrillar collagens and polarized PRS for 3D collagen network. Concerning elastin, Weigert stain and MPM showed similar results, thus the use of MPM, rather than that of the Weigert stain, may be suitable to avoid the additional time and costs of a histological staining.
Collapse
Affiliation(s)
- Gentilin Erica
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129 Padua, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padua, Italy.
| | - Simoni Edi
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129 Padua, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padua, Italy
| | - Albertin Giovanna
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padua, Italy; Section of Human Anatomy, Department of Neuroscience, University of Padua, Italy, University of Padua, Italy
| | - Candito Mariarita
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129 Padua, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padua, Italy
| | - Sandrin Deborah
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padua, Italy; Department of Physics and Astronomy "G. Galilei", University of Padua, via Marzolo 8, 35131 Padua, Italy
| | - Romanato Filippo
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padua, Italy; Department of Physics and Astronomy "G. Galilei", University of Padua, via Marzolo 8, 35131 Padua, Italy; Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy
| | - Martini Alessandro
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129 Padua, Italy
| | - Nicolai Piero
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129 Padua, Italy; Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129 Padua, Italy
| | - Astolfi Laura
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129 Padua, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padua, Italy.
| |
Collapse
|
4
|
Adil A, Xu M, Haykal S. Recellularization of Bioengineered Scaffolds for Vascular Composite Allotransplantation. Front Surg 2022; 9:843677. [PMID: 35693318 PMCID: PMC9174637 DOI: 10.3389/fsurg.2022.843677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Traumatic injuries or cancer resection resulting in large volumetric soft tissue loss requires surgical reconstruction. Vascular composite allotransplantation (VCA) is an emerging reconstructive option that transfers multiple, complex tissues as a whole subunit from donor to recipient. Although promising, VCA is limited due to side effects of immunosuppression. Tissue-engineered scaffolds obtained by decellularization and recellularization hold great promise. Decellularization is a process that removes cellular materials while preserving the extracellular matrix architecture. Subsequent recellularization of these acellular scaffolds with recipient-specific cells can help circumvent adverse immune-mediated host responses and allow transplantation of allografts by reducing and possibly eliminating the need for immunosuppression. Recellularization of acellular tissue scaffolds is a technique that was first investigated and reported in whole organs. More recently, work has been performed to apply this technique to VCA. Additional work is needed to address barriers associated with tissue recellularization such as: cell type selection, cell distribution, and functionalization of the vasculature and musculature. These factors ultimately contribute to achieving tissue integration and viability following allotransplantation. The present work will review the current state-of-the-art in soft tissue scaffolds with specific emphasis on recellularization techniques. We will discuss biological and engineering process considerations, technical and scientific challenges, and the potential clinical impact of this technology to advance the field of VCA and reconstructive surgery.
Collapse
Affiliation(s)
- Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael Xu
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Correspondence: Siba Haykal
| |
Collapse
|
5
|
Cieśla J, Tomsia M. Cadaveric Stem Cells: Their Research Potential and Limitations. Front Genet 2022; 12:798161. [PMID: 35003228 PMCID: PMC8727551 DOI: 10.3389/fgene.2021.798161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of growing interest in stem cells, the availability of donors for transplantation has become a problem. The isolation of embryonic and fetal cells raises ethical controversies, and the number of adult donors is deficient. Stem cells isolated from deceased donors, known as cadaveric stem cells (CaSCs), may alleviate this problem. So far, it was possible to isolate from deceased donors mesenchymal stem cells (MSCs), adipose delivered stem cells (ADSCs), neural stem cells (NSCs), retinal progenitor cells (RPCs), induced pluripotent stem cells (iPSCs), and hematopoietic stem cells (HSCs). Recent studies have shown that it is possible to collect and use CaSCs from cadavers, even these with an extended postmortem interval (PMI) provided proper storage conditions (like cadaver heparinization or liquid nitrogen storage) are maintained. The presented review summarizes the latest research on CaSCs and their current therapeutic applications. It describes the developments in thanatotranscriptome and scaffolding for cadaver cells, summarizes their potential applications in regenerative medicine, and lists their limitations, such as donor’s unknown medical condition in criminal cases, limited differentiation potential, higher risk of carcinogenesis, or changing DNA quality. Finally, the review underlines the need to develop procedures determining the safe CaSCs harvesting and use.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Evangelista-Leite D, Carreira ACO, Gilpin SE, Miglino MA. Protective Effects of Extracellular Matrix-Derived Hydrogels in Idiopathic Pulmonary Fibrosis. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:517-530. [PMID: 33899554 DOI: 10.1089/ten.teb.2020.0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with significant gas exchange impairment owing to exaggerated extracellular matrix (ECM) deposition and myofibroblast activation. IPF has no cure, and although nintedanib and pirfenidone are two approved medications for symptom management, the total treatment cost is exuberant and prohibitive to a global uninsured patient population. New therapeutic alternatives with moderate costs are needed to treat IPF. ECM hydrogels derived from decellularized lungs are cost-effective therapeutic candidates to treat pulmonary fibrosis because of their reported antioxidant properties. Oxidative stress contributes to IPF pathophysiology by damaging macromolecules, interfering with tissue remodeling, and contributing to myofibroblast activation. Thus, preventing oxidative stress has beneficial outcomes in IPF. For this purpose, this review describes ECM hydrogel's properties to regulate oxidative stress and tissue remodeling in IPF.
Collapse
Affiliation(s)
- Daniele Evangelista-Leite
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,NUCEL (Cell and Molecular Therapy Center), University of São Paulo, São Paulo, Brazil
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Model L, Wiesel O. A narrative review of esophageal tissue engineering and replacement: where are we? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:910. [PMID: 34164544 PMCID: PMC8184476 DOI: 10.21037/atm-20-3906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-gap esophageal defects, whether congenital or acquired, are very difficult to manage. Any significant surgical peri-esophageal dissection that is performed to allow for potential stretching of two ends of a defect interrupts the esophageal blood supply and leads to complications such as leak and stricture, even in the youngest, healthiest patients. The term “congenital” applied to these defects refers mainly to long-gap esophageal atresia (LGA). Causes of acquired long-segment esophageal disruption include recurrent leaks and fistulae after primary repair, refractory GERD, caustic ingestions, cancer, and strictures. 5,000–10,000 patients per year in the US require esophageal replacement. Gastric, colonic, and jejunal pull-up surgeries are fraught with high rates of both short and long term complications thus creating a space for a better option. Since the 1970’s many groups around the world have been unsuccessfully attempting esophageal replacement with tissue-engineered grafts in various animal models. But, recent advances in these models are now combining novel technologic advances in materials bioscience, stem-cell therapies, and transplantation and are showing increasing promise to human translational application. Transplantation has been heretofore unsuccessful, but given modern improvements in transplant microsurgery and immunosuppressive medications, pioneering trials in animal models are being undertaken now. These rapidly evolving medical innovations will be reviewed here.
Collapse
Affiliation(s)
- Lynn Model
- Department of Pediatric Surgery, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Ory Wiesel
- Department of Thoracic Surgery, Maimonides Medical Center, Brooklyn, NY 11219, USA
| |
Collapse
|
8
|
Al-Qurayshi Z, Wafa EI, Hoffman H, Chang K, Salem AK. Tissue-engineering the larynx: Effect of decellularization on human laryngeal framework and the cricoarytenoid joint. J Biomed Mater Res B Appl Biomater 2021; 109:2030-2040. [PMID: 33872461 DOI: 10.1002/jbm.b.34851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Decellularization approaches have been commonly used as alternative techniques to reconstruct tissues. However, due to the complex tissue compartmentation of the larynx, the decellularization process may not retain the characteristics necessary for the successful recreation of the larynx. The aim of this study was to assess the effect of the decellularization process on the framework of the human cadaveric larynx generally and the cricoarytenoid joint specifically. In this work, five freshly frozen human cadaveric larynges were decellularized utilizing a protocol that was previously demonstrated to be effective in decellularizing a porcine larynx. The decellularization protocol included: biological, chemical, and physical decellularization methods. Each specimen served as its own control to assess changes after decellularization. Studies and measurements included: histological, using Hematoxylin and Eosin (H&E) and Live/Dead™ stains; DNA quantification; micro-computed tomography (μ-CT) imaging; and biomechanical testing of the cricoarytenoid joints. The decellularization protocol took 12 days for each specimen. Microscopy of H&E stained samples demonstrated substantial removal of cells with preservation of the extracellular matrix that was more evident in cartilage than muscle specimens. Confocal microscope images of Live/Dead™ stained specimens also demonstrated almost complete removal of cells. Pre-decellularization cartilage-DNA quantity range was 27.0 to 336.8 ng/mg while post-decellularization DNA quantity range was 0 to 30.4 ng/mg (p = 0.031). For muscles, pre-decellularization DNA quantity range was 150.0 to 3,384.6 ng/mg, while post-decellularization DNA quantity range was 0 to 45.5 ng/mg (p = 0.031). μ-CT demonstrated preservation of the cartilaginous framework with a slight reduction of cricoarytenoid joint space. Furthermore, μ-CT demonstrated no significant reduction in the Housefield unit (p = 0.25) and mineral density (p = 0.25) after decellularization. Biomechanical testing demonstrated a non-significant reduction of forces required for anterior displacement of the arytenoid (mean reduction of forces, 0.1 ± 0.2 N, p = 0.16) and forces required for posterior displacement of the arytenoid (mean reduction of forces, 0.2 ± 0.3 N, p = 0.05). This study demonstrates effective decellularization of human larynges as evidenced by significant DNA depletion and preservation of extracellular matrix, which are outcomes that are required for a biological scaffold to regenerate a non-immunogenic larynx. The decellularization process caused minimal weakness in the cricoarytenoid joints due to treatment with multiple detergents and enzymes in the decellularization protocol.
Collapse
Affiliation(s)
- Zaid Al-Qurayshi
- Department of Otolaryngology - Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | - Henry Hoffman
- Department of Otolaryngology - Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Kristi Chang
- Department of Otolaryngology - Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Duisit J, Maistriaux L, Bertheuil N, Lellouch AG. Engineering Vascularized Composite Tissues by Perfusion Decellularization/Recellularization: Review. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Nayakawde NB, Methe K, Premaratne GU, Banerjee D, Olausson M. Combined Use of Detergents and Ultrasonication for Generation of an Acellular Pig Larynx. Tissue Eng Part A 2020; 27:362-371. [PMID: 32723005 DOI: 10.1089/ten.tea.2020.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The larynx is a fairly complex organ comprised of different muscles, cartilages, mucosal membrane, and nerves. Larynx cancer is generally the most common type of head and neck cancer. Treatment options are limited in patients with total or partial laryngectomy. Tissue-engineered organs have shown to be a promising alternative treatment for patients with laryngectomy. In this report we present an alternative and simple procedure to construct a whole pig larynx scaffold consisting of complete acellular structures of integrated muscle and cartilage. Larynges were decellularized (DC) using perfusion-agitation with detergents coupled with ultrasonication. DC larynges were then characterized to investigate the extracellular matrix (ECM) proteins, residual DNA, angiogenic growth factors, and morphological and ultrastructural changes to ECM fibers. After 17 decellularization cycles, no cells were observed in all areas of the larynx as confirmed by hematoxylin and eosin and DAPI (4',6-diamidino-2-phenylindole) staining. However, DC structures of dense thyroid and cricoid cartilage showed remnants of cells. All structures of DC larynges (epiglottis [p < 0.0001], muscle [p < 0.0001], trachea [p = 0.0045], and esophagus [p = 0.0008]) showed DNA <50 ng/mg compared with native larynx. Immunohistochemistry, Masson's trichrome staining, and Luminex analyses showed preservation of important ECM proteins and angiogenic growth factors in DC larynges. Compared with other growth factors, mostly retained growth factors in DC epiglottis, thyroid muscle, and trachea include granulocyte colony-stimulating factor, Leptin, fibroblast growth factor-1, Follistatin, hepatocyte growth factor, and vascular endothelial growth factor-A. Scanning electron microscopy and transmission electron microscopy analysis confirmed the structural arrangements of ECM fibers in larynges to be well preserved after DC. Our findings suggest that larynges can be effectively DC using detergent ultrasonication. ECM proteins and angiogenic growth factors appear to be better preserved using this method when compared with the native structures of larynges. This alternative DC method could be helpful in building scaffolds from dense tissue structures such as cartilage, tendon, larynx, or trachea for future in vitro recellularization studies or in vivo implantation studies in the clinic.
Collapse
Affiliation(s)
- Nikhil B Nayakawde
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ketaki Methe
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Goditha U Premaratne
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Debashish Banerjee
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Olausson
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Transplantation Surgery, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci 2020; 21:E5447. [PMID: 32751654 PMCID: PMC7432490 DOI: 10.3390/ijms21155447] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Raquel Ruiz-Hernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Sugoi Retegi-Carrion
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Beatriz Olalde-Graells
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
12
|
Rajab TK, O’Malley TJ, Tchantchaleishvili V. Decellularized scaffolds for tissue engineering: Current status and future perspective. Artif Organs 2020; 44:1031-1043. [DOI: 10.1111/aor.13701] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Thomas J. O’Malley
- Division of Cardiac Surgery Thomas Jefferson University Philadelphia PA USA
| | | |
Collapse
|