1
|
Liu YD, Peng X, Chen HR, Liu XS, Peng LH. Nervonic acid as novel therapeutics initiates both neurogenesis and angiogenesis for comprehensive wound repair and healing. Front Pharmacol 2024; 15:1487183. [PMID: 39502529 PMCID: PMC11534657 DOI: 10.3389/fphar.2024.1487183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Rapid tissue reconstruction in acute and chronic injuries are challengeable, the inefficient repair mainly due to the difficulty in simultaneous promoting the regeneration of peripheral nerves and vascular, which are closely related. Main clinical medication strategy of tissue repair depends on different cytokines to achieve nerves, blood vessels or granulation tissue regeneration, respectively. However, their effect is still limited to single aspect with biorisk exists upon long-time use. Herein, for the first time, we have demonstrated that NA isolated from Malania oleifera has potential to simultaneously promote both neurogenesis and angiogenesis in vitro and in vivo. First, NA was identified by NMR and FTIR structural characterization analysis. In a model of oxidative stress in neural cells induced by hydrogen peroxide, the cells viability of RSC96 and PC12 were protected from oxidative stress injury by NA. Similarly, based on the rat wound healing model, effective blood vessel formation and wound healing can be observed in tissue staining under NA treatment. In addition, according to the identification of nerve and vascular related markers in the wound tissue, the mechanism of NA promoting nerve regeneration lies in the upregulation of the secretion NGF, NF-200 and S100 protein, and NA treatment was also able to up-regulate VEGF and CD31 to directly promote angiogenesis during wound healing. This study provides an important candidate drug molecules for acute or chronic wound healing and nerve vascular synchronous regeneration.
Collapse
Affiliation(s)
- Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiao Peng
- Jinhua Institute, Zhejiang University, Jinhua, Zhejiang, China
| | - Hao-Ran Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Song Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute, Zhejiang University, Jinhua, Zhejiang, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute, Zhejiang University, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Xu M, Zhu M, Qin Q, Xing X, Archer M, Ramesh S, Cherief M, Li Z, Levi B, Clemens TL, James AW. Neuronal regulation of bone and tendon injury repair: a focused review. J Bone Miner Res 2024; 39:1045-1060. [PMID: 38836494 DOI: 10.1093/jbmr/zjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, United States
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, United States
- Department of Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
3
|
Sun J, Xie W, Wu Y, Li Z, Li Y. Accelerated Bone Healing via Electrical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404190. [PMID: 39115981 DOI: 10.1002/advs.202404190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Piezoelectric effect produces an electrical signal when stress is applied to the bone. When the integrity of the bone is destroyed, the biopotential within the defect site is reduced and several physiological responses are initiated to facilitate healing. During the healing of the bone defect, the bioelectric potential returns to normal levels. Treatment of fractures that exceed innate regenerative capacity or exhibit delayed healing requires surgical intervention for bone reconstruction. For bone defects that cannot heal on their own, exogenous electric fields are used to assist in treatment. This paper reviews the effects of exogenous electrical stimulation on bone healing, including osteogenesis, angiogenesis, reduction in inflammation and effects on the peripheral nervous system. This paper also reviews novel electrical stimulation methods, such as small power supplies and nanogenerators, that have emerged in recent years. Finally, the challenges and future trends of using electrical stimulation therapy for accelerating bone healing are discussed.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
4
|
Gu K, Tan Y, Li S, Chen S, Lin K, Tang Y, Zhu M. Sensory Nerve Regulation via H3K27 Demethylation Revealed in Akermanite Composite Microspheres Repairing Maxillofacial Bone Defect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400242. [PMID: 38874525 PMCID: PMC11321702 DOI: 10.1002/advs.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Maxillofacial bone defects exhibit intricate anatomy and irregular morphology, presenting challenges for effective treatment. This study aimed to address these challenges by developing an injectable bioactive composite microsphere, termed D-P-Ak (polydopamine-PLGA-akermanite), designed to fit within the defect site while minimizing injury. The D-P-Ak microspheres biodegraded gradually, releasing calcium, magnesium, and silicon ions, which, notably, not only directly stimulated the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) but also activated sensory nerve cells to secrete calcitonin gene-related peptide (CGRP), a key factor in bone repair. Moreover, the released CGRP enhanced the osteogenic differentiation of BMSCs through epigenetic methylation modification. Specifically, inhibition of EZH2 and enhancement of KDM6A reduced the trimethylation level of histone 3 at lysine 27 (H3K27), thereby activating the transcription of osteogenic genes such as Runx2 and Osx. The efficacy of the bioactive microspheres in bone repair is validated in a rat mandibular defect model, demonstrating that peripheral nerve response facilitates bone regeneration through epigenetic modification. These findings illuminated a novel strategy for constructing neuroactive osteo-inductive biomaterials with potential for further clinical applications.
Collapse
Affiliation(s)
- Kaijun Gu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Yu Tan
- Department of Orthodontics, Shanghai Stomatological Hospital and School of StomatologyFudan University Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan UniversityShanghai200001China
| | - Sitong Li
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Siyue Chen
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
- Department of OrthodonticsShanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yanmei Tang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Min Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| |
Collapse
|
5
|
Damiati LA, El Soury M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review. Front Med (Lausanne) 2024; 11:1386683. [PMID: 38690172 PMCID: PMC11059066 DOI: 10.3389/fmed.2024.1386683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Neuro bone tissue engineering is a multidisciplinary field that combines both principles of neurobiology and bone tissue engineering to develop innovative strategies for repairing and regenerating injured bone tissues. Despite the fact that regeneration and development are considered two distinct biological processes, yet regeneration can be considered the reactivation of development in later life stages to restore missing tissues. It is noteworthy that the regeneration capabilities are distinct and vary from one organism to another (teleost fishes, hydra, humans), or even in the same organism can vary dependent on the injured tissue itself (Human central nervous system vs. peripheral nervous system). The skeletal tissue is highly innervated, peripheral nervous system plays a role in conveying the signals and connecting the central nervous system with the peripheral organs, moreover it has been shown that they play an important role in tissue regeneration. Their regeneration role is conveyed by the different cells' resident in it and in its endoneurium (fibroblasts, microphages, vasculature associated cells, and Schwann cells) these cells secrete various growth factors (NGF, BDNF, GDNF, NT-3, and bFGF) that contribute to the regenerative phenotype. The peripheral nervous system and central nervous system synchronize together in regulating bone homeostasis and regeneration through neurogenic factors and neural circuits. Receptors of important central nervous system peptides such as Serotonin, Leptin, Semaphorins, and BDNF are expressed in bone tissue playing a role in bone homeostasis, metabolism and regeneration. This review will highlight the crosstalk between peripheral nerves and bone in the developmental stages as well as in regeneration and different neuro-bone tissue engineering strategies for repairing severe bone injuries.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
6
|
Zhang H, Qin C, Shi Z, Xue J, Hao J, Huang J, Du L, Lu H, Wu C. Bioprinting of inorganic-biomaterial/neural-stem-cell constructs for multiple tissue regeneration and functional recovery. Natl Sci Rev 2024; 11:nwae035. [PMID: 38463933 PMCID: PMC10924618 DOI: 10.1093/nsr/nwae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Tissue regeneration is a complicated process that relies on the coordinated effort of the nervous, vascular and immune systems. While the nervous system plays a crucial role in tissue regeneration, current tissue engineering approaches mainly focus on restoring the function of injury-related cells, neglecting the guidance provided by nerves. This has led to unsatisfactory therapeutic outcomes. Herein, we propose a new generation of engineered neural constructs from the perspective of neural induction, which offers a versatile platform for promoting multiple tissue regeneration. Specifically, neural constructs consist of inorganic biomaterials and neural stem cells (NSCs), where the inorganic biomaterials endows NSCs with enhanced biological activities including proliferation and neural differentiation. Through animal experiments, we show the effectiveness of neural constructs in repairing central nervous system injuries with function recovery. More importantly, neural constructs also stimulate osteogenesis, angiogenesis and neuromuscular junction formation, thus promoting the regeneration of bone and skeletal muscle, exhibiting its versatile therapeutic performance. These findings suggest that the inorganic-biomaterial/NSC-based neural platform represents a promising avenue for inducing the regeneration and function recovery of varying tissues and organs.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhe Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jianxin Hao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhou Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxu Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Kong Q, Gao S, Li P, Sun H, Zhang Z, Yu X, Deng F, Wang T. Calcitonin gene-related peptide-modulated macrophage phenotypic alteration regulates angiogenesis in early bone healing. Int Immunopharmacol 2024; 130:111766. [PMID: 38452411 DOI: 10.1016/j.intimp.2024.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of calcitonin gene-related peptide (CGRP) on the temporal alteration of macrophage phenotypes and macrophage-regulated angiogenesis duringearlybonehealing and preliminarily elucidate the mechanism. METHODS In vivo, the rat mandibular defect models were established with inferior alveolar nerve transection (IANT) or CGRP receptor antagonist injection. Radiographicandhistologic assessments for osteogenesis, angiogenesis, and macrophage phenotypic alteration within bone defects were performed. In vitro, the effect and mechanism of CGRP on macrophage polarization and phenotypic alteration were analyzed. Then the conditioned medium (CM) from CGRP-treated M1 or M2 macrophages was used to culture human umbilical vein endothelial cells (HUVECs), and the CGRP's effect on macrophage-regulated angiogenesis was detected. RESULTS Comparable changes following IANT and CGRP blockade within bone defects were observed, including the suppression of early osteogenesis and angiogenesis, the prolonged M1 macrophage infiltration and the prohibited transition toward M2 macrophages around vascular endothelium. In vitro experiments showed that CGRP promoted M2 macrophage polarization while upregulating the expression of interleukin 6 (IL-6), a major cytokine that facilitates the transition from M1 to M2-dominant stage, in M1 macrophages via the activation of Yes-associated protein 1. Moreover, CGRP-treated macrophage-CM showed an anabolic effect on HUVECs angiogenesis compared with macrophage-CM and might prevail over the direct effect of CGRP on HUVECs. CONCLUSIONS Collectively, our results reveal the effect of CGRP on M1 to M2 macrophage phenotypic alteration possibly via upregulating IL-6 in M1 macrophages, and demonstrate the macrophage-regulated pro-angiogenic potential of CGRP in early bone healing.
Collapse
Affiliation(s)
- Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Siyong Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Pugeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hanyu Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaolin Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Tianlu Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
8
|
Zhu Z, Jiang Y, Li Z, Du Y, Chen Q, Guo Q, Ban Y, Gong P. Sensory neuron transient receptor potential vanilloid-1 channel regulates angiogenesis through CGRP in vivo. Front Bioeng Biotechnol 2024; 12:1338504. [PMID: 38576442 PMCID: PMC10991839 DOI: 10.3389/fbioe.2024.1338504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Angiogenesis plays a key role in bone regeneration. The role of neurons of peripheral nerves involved in angiogenesis of bone defects needs to be explored. The transient receptor potential vanilloid 1 (TRPV1), a nociceptor of noxious stimuli, is expressed on sensory neurons. Apart from nociception, little is known about the role of sensory innervation in angiogenesis. Calcitonin gene-related peptide (CGRP), a neuropeptide secreted by sensory nerve terminals, has been associated with vascular regeneration. We characterized the reinnervation of vessels in bone repair and assessed the impact of TRPV1-CGRP signaling on early vascularization. We investigated the pro-angiogenic effect of neuronal TRPV1 in the mouse model of femur defect. Micro-CT analysis with Microfil® reagent perfusion demonstrated neuronal TRPV1 activation enhanced angiogenesis by increasing vessel volume, number, and thickness. Meanwhile, TRPV1 activation upregulated the mRNA and protein expression of vascular endothelial growth factor A (VEGF-A), cell adhesion molecule-1 (CD31), and CGRP. Immunostaining revealed the co-localization of TRPV1 and CGRP in dorsal root ganglia (DRG) sensory neurons. By affecting neuronal TRPV1 channels, the release of neuronal and local CGRP was controlled. We demonstrated that TRPV1 influenced on blood vessel development by promoting CGRP release from sensory nerve terminals. Our results showed that neuronal TRPV1 played a crucial role in regulating angiogenesis during bone repair and provided important clinical implications for the development of novel therapeutic approaches for angiogenesis.
Collapse
Affiliation(s)
- Zhanfeng Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zixia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Ban
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Lian M, Qiao Z, Qiao S, Zhang X, Lin J, Xu R, Zhu N, Tang T, Huang Z, Jiang W, Shi J, Hao Y, Lai H, Dai K. Nerve Growth Factor-Preconditioned Mesenchymal Stem Cell-Derived Exosome-Functionalized 3D-Printed Hierarchical Porous Scaffolds with Neuro-Promotive Properties for Enhancing Innervated Bone Regeneration. ACS NANO 2024; 18:7504-7520. [PMID: 38412232 DOI: 10.1021/acsnano.3c11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The essential role of the neural network in enhancing bone regeneration has often been overlooked in biomaterial design, leading to delayed or compromised bone healing. Engineered mesenchymal stem cells (MSCs)-derived exosomes are becoming increasingly recognized as potent cell-free agents for manipulating cellular behavior and improving therapeutic effectiveness. Herein, MSCs are stimulated with nerve growth factor (NGF) to regulate exosomal cargoes to improve neuro-promotive potential and facilitate innervated bone regeneration. In vitro cell experiments showed that the NGF-stimulated MSCs-derived exosomes (N-Exos) obviously improved the cellular function and neurotrophic effects of the neural cells, and consequently, the osteogenic potential of the osteo-reparative cells. Bioinformatic analysis by miRNA sequencing and pathway enrichment revealed that the beneficial effects of N-Exos may partly be ascribed to the NGF-elicited multicomponent exosomal miRNAs and the subsequent regulation and activation of the MAPK and PI3K-Akt signaling pathways. On this basis, N-Exos were delivered on the micropores of the 3D-printed hierarchical porous scaffold to accomplish the sustained release profile and extended bioavailability. In a rat model with a distal femoral defect, the N-Exos-functionalized hierarchical porous scaffold significantly induced neurovascular structure formation and innervated bone regeneration. This study provided a feasible strategy to modulate the functional cargoes of MSCs-derived exosomes to acquire desirable neuro-promotive and osteogenic potential. Furthermore, the developed N-Exos-functionalized hierarchical porous scaffold may represent a promising neurovascular-promotive bone reparative scaffold for clinical translation.
Collapse
Affiliation(s)
- Meifei Lian
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Zhiguang Qiao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Shichong Qiao
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xing Zhang
- State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieming Lin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Ruida Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Naifeng Zhu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Tianhong Tang
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhuoli Huang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Junyu Shi
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yongqiang Hao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hongchang Lai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
10
|
Masuyama T, Sato I, Ueda Y, Kawata S, Yakura T, Itoh M. Neurotransmission, Vasculogenesis, and Osteogenesis Activities are Altered in the Aging Temporomandibular Joint of the Senescence-Accelerated Prone 8 Mouse Model. J Oral Maxillofac Surg 2024; 82:19-35. [PMID: 37832598 DOI: 10.1016/j.joms.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Alterations in neurotransmission, vasculogenesis, and osteogenesis pathways that may play pivotal roles in age-related changes in the temporomandibular joint (TMJ) are poorly understood. PURPOSE This study aimed to measure the associations between gene and protein profiles in senescence-accelerated prone 8 (SAMP8) mice. STUDY DESIGN The investigators designed and used 3 groups of 2 mouse models: 1) early aging SAMP8 at 24 weeks of age and control SAMR1 at 12 and 24 weeks (each stage n = 12). PREDICTOR/EXPOSURE/INDEPENDENT VARIABLE The independent variable was investigated using 3 mouse models: an early aging mouse model and a control mouse model (12 and 24 weeks). MAIN OUTCOME VARIABLE(S) The primary outcome variables were CGRP, VEGF-A, CD31, LYVE-1, osteocalcin, osteopontin, type I and II collagen, and MMP-2. The secondary outcome variables were histological characteristics. COVARIATES Not applicable. ANALYSES The gene and protein expression profiles of neurotransmitters, vasculogenesis, and osteogenesis were identified by quantitative real-time polymerase chain reaction and dot blot analysis, respectively. The cellular localization of these events was verified by in situ hybridization and immunohistochemistry. Bivariate statistics were computed for each of the outcome variables. Statistical significance was set to a P value < .05. RESULTS The expression of CGRP mRNA in the bony mandibular condyle (BMC) of SAMP8 mice (SAMP8, 3.3 ± 0.39 vs SAMR1, 0.001 ± 0.0001) was high at 24 weeks of age (24 weeks) (P < .001). Higher numbers of cells positive percentage for CGRP (MF, SAMP8, 28.67 ± 1.60 vs SAMR 1, 6.36 ± 1.10; CMC, 27.5 ± 2.12 vs 9.00 ± 1.21; BMC, 31.31 ± 2.81 vs 7.85 ± 1.14) and VEGF-A (MF, 34.43 ± 2.45 vs 14.01 ± 1.28; MD, 32.69 ± 1.86 vs 8.00 ± 0.91; CMC, 36.60 ± 2.05 vs 14.19 ± 1.25 BMC 36.49 vs 12.59 ± 1.41) antibodies were found in the 24 weeks TMJ (P < .01). CONCLUSIONS AND RELEVANCE The neurotransmitter, vasculogenesis, and osteogenesis pathways are associated with TMJ aging in the SAMP8 mouse model. In the future, the SAMP8 mouse model may prove to be a robust model for identifying molecular and biochemical events underlying the effects of feeding, occlusal changes, and tooth loss in the aging TMJ.
Collapse
Affiliation(s)
| | - Iwao Sato
- Visiting Professor, Department of Anatomy, Tokyo Medical University, Tokyo, Japan.
| | - Yoko Ueda
- Research, Associate Professor, Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shinichi Kawata
- Assistant Professor, Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Tomiko Yakura
- Associate Professor, Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Itoh
- Chief Professor, Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Zhan C, Huang M, Chen J, Lu Y, Yang X, Hou J. Sensory nerves, but not sympathetic nerves, promote reparative dentine formation after dentine injury via CGRP-mediated angiogenesis: An in vivo study. Int Endod J 2024; 57:37-49. [PMID: 37874659 DOI: 10.1111/iej.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
AIM Dental pulp is richly innervated by nerve fibres, which are mainly involved in the sensation of pain. Aside from pain sensation, little is known regarding the role of dental innervation in reparative dentine formation. We herein generated a mouse model of experimental dentine injury to examine nerve sprouting within the odontoblast and subodontoblastic layers and investigated the potential effects of this innervation in reparative dentinogenesis. METHODOLOGY Mouse tooth cavity model (bur preparation + etching) was established, and then nerve sprouting, angiogenesis and reparative dentinogenesis were determined by histological and immunofluorescent staining at 1, 3, 7, 14 and 28 days postoperatively. We also established the mouse-denervated molar models to determine the role of sensory and sympathetic nerves in reparative dentinogenesis, respectively. Finally, we applied calcitonin gene-related peptide (CGRP) receptor antagonist to analyse the changes in angiogenesis and reparative dentinogenesis. RESULTS Sequential histological results from dentine-exposed teeth revealed a significant increase in innervation directly beneath the injured area on the first day after dentine exposure, followed by vascularisation and reparative dentine production at 3 and 7 days, respectively. Intriguingly, abundant type H vessels (CD31+ Endomucin+ ) were present in the innervated area, and their formation precedes the onset of reparative dentine formation. Additionally, we found that sensory denervation led to blunted angiogenesis and impaired dentinogenesis, while sympathetic denervation did not affect dentinogenesis. Moreover, a marked increase in the density of CGRP+ nerve fibres was seen on day 3, which was reduced but remained elevated over the baseline level on day 14, whereas the density of substance P-positive nerve fibres did not change significantly. CGRP receptor antagonist-treated mice showed similar results as those with sensory denervation, including impairments in type H angiogenesis, which confirms the importance of CGRP in the formation of type H vessels. CONCLUSIONS Dental pulp sensory nerves act as an essential upstream mediator to promote angiogenesis, including the formation of type H vessels, and reparative dentinogenesis. CGRP signalling governs the nerve-vessel-reparative dentine network, which is mostly produced by newly dense sensory nerve fibres within the dental pulp.
Collapse
Affiliation(s)
- Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyang Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanli Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Liu Q, Yu M, Liao M, Ran Z, Tang X, Hu J, Su B, Fu G, Wu Q. The ratio of alpha-calcitonin gene-related peptide to substance P is associated with the transition of bone metabolic states during aging and healing. J Mol Histol 2023; 54:689-702. [PMID: 37857924 DOI: 10.1007/s10735-023-10167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP) are functionally correlated sensory neuropeptides deeply involved in bone homeostasis. However, they are usually studied individually rather than as an organic whole. To figure out whether they are interdependent, we firstly recorded the real-time αCGRP and SP levels in aging bone and healing fracture, which revealed a moderate to high level of αCGRP coupled with a low αCGRP/SP ratio in an anabolic state, and a high level of αCGRP coupled with a high αCGRP/SP ratio in a catabolic state, suggesting the importance of αCGRP/SP ratio in driving aging and healing scenarios. During facture healing, increase in αCGRP/SP ratio by adding αCGRP led to better callus formation and faster callus remodeling, while simultaneous addition of αCGRP and SP resulted in hypertrophic callus and delayed remodeling. The characteristics in inflammation and osteoclast activation further confirmed the importance of high αCGRP/SP ratio during catabolic bone remodeling. In vitro assays using different mixtures of αCGRP-SP proved that the osteogenic potential of the mixtures depended mostly on αCGRP, while their effects on osteoclasts and neutrophils relied on both peptides. These results demonstrated that αCGRP and SP were spatiotemporally interdependent. The αCGRP/SP ratio may be more important than the dose of a single neuropeptide in managing age-related and trauma-related bone diseases.
Collapse
Affiliation(s)
- Qianzi Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Minxuan Yu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Menglin Liao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Zhiyue Ran
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Xiaofeng Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Jun Hu
- Department of Stomatology, Qijiang District People's Hospital, Chongqing, 401420, China
| | - Beiju Su
- Chongqing Dazu District Hospital of Traditional Chinese Medicine, Chongqing, 402360, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| |
Collapse
|
13
|
Zhang H, Zhang M, Zhai D, Qin C, Wang Y, Ma J, Zhuang H, Shi Z, Wang L, Wu C. Polyhedron-Like Biomaterials for Innervated and Vascularized Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302716. [PMID: 37434296 DOI: 10.1002/adma.202302716] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Neural-vascular networks are densely distributed through periosteum, cortical bone, and cancellous bone, which is of great significance for bone regeneration and remodeling. Although significant progress has been made in bone tissue engineering, ineffective bone regeneration, and delayed osteointegration still remains an issue due to the ignorance of intrabony nerves and blood vessels. Herein, inspired by space-filling polyhedra with open architectures, polyhedron-like scaffolds with spatial topologies are prepared via 3D-printing technology to mimic the meshwork structure of cancellous bone. Benefiting from its spatial topologies, polyhedron-like scaffolds greatly promoted the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via activating PI3K-Akt signals, and exhibiting satisfactory performance on angiogenesis and neurogenesis. Computational fluid dynamic (CFD) simulation elucidates that polyhedron-like scaffolds have a relatively lower area-weighted average static pressure, which is beneficial to osteogenesis. Furthermore, in vivo experiments further demonstrate that polyhedron-like scaffolds obviously promote bone formation and osteointegration, as well as inducing vascularization and ingrowth of nerves, leading to innervated and vascularized bone regeneration. Taken together, this work offers a promising approach for fabricating multifunctional scaffolds without additional exogenous seeding cells and growth factors, which holds great potential for functional tissue regeneration and further clinical translation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Zhuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhe Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Liang Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Wang Q, Qin H, Deng J, Xu H, Liu S, Weng J, Zeng H. Research Progress in Calcitonin Gene-Related Peptide and Bone Repair. Biomolecules 2023; 13:biom13050838. [PMID: 37238709 DOI: 10.3390/biom13050838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) has 37 amino acids. Initially, CGRP had vasodilatory and nociceptive effects. As research progressed, evidence revealed that the peripheral nervous system is closely associated with bone metabolism, osteogenesis, and bone remodeling. Thus, CGRP is the bridge between the nervous system and the skeletal muscle system. CGRP can promote osteogenesis, inhibit bone resorption, promote vascular growth, and regulate the immune microenvironment. The G protein-coupled pathway is vital for its effects, while MAPK, Hippo, NF-κB, and other pathways have signal crosstalk, affecting cell proliferation and differentiation. The current review provides a detailed description of the bone repair effects of CGRP, subjected to several therapeutic studies, such as drug injection, gene editing, and novel bone repair materials.
Collapse
Affiliation(s)
- Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Clinical Medicine, Department of Medicine, Shenzhen University, Shenzhen 518061, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huihui Xu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| |
Collapse
|
15
|
Irfan D, Ahmad I, Patra I, Margiana R, Rasulova MT, Sivaraman R, Kandeel M, Mohammad HJ, Al-Qaim ZH, Jawad MA, Mustafa YF, Ansari MJ. Stem cell-derived exosomes in bone healing: focusing on their role in angiogenesis. Cytotherapy 2023; 25:353-361. [PMID: 36241491 DOI: 10.1016/j.jcyt.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022]
Abstract
Fractures in bone, a tissue critical in protecting other organs, affect patients' quality of life and have a heavy economic burden on societies. Based on regenerative medicine and bone tissue engineering approaches, stem cells have become a promising and attractive strategy for repairing bone fractures via differentiation into bone-forming cells and production of favorable mediators. Recent evidence suggests that stem cell-derived exosomes could mediate the therapeutic effects of their counterpart cells and provide a cell-free therapeutic strategy in bone repair. Since bone is a highly vascularized tissue, coupling angiogenesis and osteogenesis is critical in bone fracture healing; thus, developing therapeutic strategies to promote angiogenesis will facilitate bone regeneration and healing. To this end, stem cell-derived exosomes with angiogenic potency have been developed to improve fracture healing. This review summarizes the effects of stem cell-derived exosomes on the repair of bone tissue, focusing on the angiogenesis process.
Collapse
Affiliation(s)
- Daniyal Irfan
- School of Management, Guangzhou University, Guangzhou, China
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia; Dr Soetomo General Academic Hospital, Surabaya, Indonesia.
| | | | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai, India
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt.
| | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
16
|
Tao R, Mi B, Hu Y, Lin S, Xiong Y, Lu X, Panayi AC, Li G, Liu G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res 2023; 11:6. [PMID: 36599828 PMCID: PMC9813170 DOI: 10.1038/s41413-022-00240-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions, fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration.
Collapse
Affiliation(s)
- Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02215, MA, USA
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China.
| |
Collapse
|
17
|
Mizuta H, Takakusaki A, Suzuki T, Otake K, Dohmae N, Simizu S. C-mannosylation regulates stabilization of RAMP1 protein and RAMP1-mediated cell migration. FEBS J 2023; 290:196-208. [PMID: 35942636 DOI: 10.1111/febs.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
C-mannosylation is a unique type of protein glycosylation via C-C linkage between an α-mannose and a tryptophan residue. This modification has been identified in about 30 proteins and regulates several functions, such as protein secretion and intracellular localization, as well as protein stability. About half of C-mannosylated proteins are categorized as proteins containing thrombospondin type 1 repeat domain or type I cytokine receptors. To evaluate whether C-mannosylation broadly affects protein functions regardless of protein domain or family, we have sought to identify other types of C-mannosylated protein and analyse their functions. In this study, we focused on receptor activity modifying protein 1, which neither contains thrombospondin type 1 repeat domain nor belongs to the type I cytokine receptors. Our mass spectrometry analysis demonstrated that RAMP1 is C-mannosylated at Trp56 . It has been shown that RAMP1 transports to the plasma membrane after dimerization with calcitonin receptor-like receptor and is important for ligand-dependent downstream signalling activation. Our results showed that C-mannosylation has no effect on this transport activity. On the other hand, C-mannosylation did enhance protein stability and cell migration activity. Our data may provide new insight into both C-mannosylation research and novel RAMP1 analysis.
Collapse
Affiliation(s)
- Hayato Mizuta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Ayane Takakusaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Keisuke Otake
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
18
|
Wu S, Zhang L, Zhang R, Yang K, Wei Q, Jia Q, Guo J, Ma C. Rat bone marrow mesenchymal stem cells induced by rrPDGF-BB promotes bone regeneration during distraction osteogenesis. Front Bioeng Biotechnol 2023; 11:1110703. [PMID: 36959901 PMCID: PMC10027703 DOI: 10.3389/fbioe.2023.1110703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Background: In the clinical treatment of large bone defects, distraction osteogenesis can be used. However, some patients may suffer from poor bone regeneration, or even delayed healing or non-union. Problems with the aggregation and proliferation of primary osteoblasts, or problems with the differentiation of primary osteoblasts will lead to poor bone regeneration. Therefore, supplementing exogenous primary osteoblasts and growth factors when using distraction osteogenesis may be a treatment plan with great potential. Methods: Bone marrow mesenchymal stem cells (BMSCs) were extracted from rats and cultured. Subsequently, Recombinant Rat Platelet-derived Growth Factor BB (rrPDGF-BB) was used to induce bone marrow mesenchymal stem cells. At the same time, male adult rats were selected to make the right femoral distraction osteogenesis model. During the mineralization period, phosphate buffer salt solution (control group), non-induction bone marrow mesenchymal stem cells (group 1) and recombinant rat platelet-derived growth factor BB intervened bone marrow mesenchymal stem cells (group 2) were injected into the distraction areas of each group. Then, the experimental results were evaluated with imaging and histology. Statistical analysis of the data showed that the difference was statistically significant if p < 0.05. Results: After intervention with recombinant rat platelet-derived growth factor BB on bone marrow mesenchymal stem cells, the cell morphology changed into a thin strip. After the cells were injected in the mineralization period, the samples showed that the callus in group 2 had greater hardness and the color close to the normal bone tissue; X-ray examination showed that there were more new callus in the distraction space of group 2; Micro-CT examination showed that there were more new bone tissues in group 2; Micro-CT data at week eight showed that the tissue volume, bone volume, percent bone volume, bone trabecular thickness, bone trabecular number and bone mineral density in group 2 were the largest, and the bone trabecular separation in group 2 was the smallest. There was a statistical difference between the groups (p < 0.05); HE staining confirmed that group 2 formed more blood vessels and chondrocytes earlier than the control group. At 8 weeks, the bone marrow cavity of group 2 was obvious, and some of them had been fused. Conclusion: The study confirmed that injecting bone marrow mesenchymal stem cellsBB into the distraction space of rats can promote the formation of new bone in the distraction area and promote the healing of distraction osteogenesis.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lijie Zhang
- Department of Neurology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ruidan Zhang
- Guangdong New Omega Medical Centre, Guangzhou, China
| | - Kang Yang
- Hand and foot microsurgery of the third people’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qin Wei
- Animal Experiment Center of Xinjiang Medical University, Urumqi, China
| | - Qiyu Jia
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian Guo
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuang Ma
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chuang Ma,
| |
Collapse
|
19
|
Li Q, Liu W, Hou W, Wu X, Wei W, Liu J, Hu Y, Dai H. Micropatterned photothermal double-layer periosteum with angiogenesis-neurogenesis coupling effect for bone regeneration. Mater Today Bio 2022; 18:100536. [PMID: 36632630 PMCID: PMC9826821 DOI: 10.1016/j.mtbio.2022.100536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
The abundant neurovascular network in the periosteal fibrous layer is essential for regulating bone homeostasis and repairing bone defects. However, the majority of the current studies only focus on the structure or function, and most of them merely involve osteogenesis and angiogenesis, lacking an in-depth study of periosteal neurogenesis. In this study, a photothermal double-layer biomimetic periosteum with neurovascular coupling was proposed. The outer layer of biomimetic periosteum is a conventional electrospinning membrane to prevent soft tissue invasion, and the inner layer is an oriented nanofiber membrane to promote cell recruitment and angiogenesis. From the perspective of functional bionics, based on the whitlockite (WH) similar to bone composition, we doped Nd (the trivalent form of neodymium element) in it as the inducing element of photothermal response to prepare photothermal whitlockite (Nd@WH). The sustained release of Mg2+ in Nd@WH can effectively promote the up-regulation of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). The release of Ca2+ and PO4 3- ions and photothermal osteogenesis jointly promote bone regeneration. Under the combined effect of structure and function, the formation of nerves, blood vessels, and related collagens greatly simulates the microenvironment of extracellular matrix and periosteum regeneration and ultimately promotes bone regeneration. In this study, physical and chemical characterization proved that the bionic periosteum has good flexibility and operability. The in vitro cell experiment and in vivo calvarial defect model verified that PPCL/Nd@WH biomimetic periosteum had excellent bone tissue regeneration function compared with other groups. Finally, PPCL/Nd@WH provides a new idea for the design of bionic periosteum.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410008, China
| | - Wen Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China,Corresponding author.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China,Shenzhen Institute of Wuhan University of Technology, Shenzhen, 518000, China,Corresponding author. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
20
|
Calcitonin Gene-Related Peptide Is Potential Therapeutic Target OF Osteoporosis. Heliyon 2022; 8:e12288. [DOI: 10.1016/j.heliyon.2022.e12288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
|
21
|
Tuan RS, Zhang Y, Chen L, Guo Q, Yung PSH, Jiang Q, Lai Y, Yu J, Luo J, Xia J, Xu C, Lei G, Su J, Luo X, Zou W, Qu J, Song B, Zhao X, Ouyang H, Li G, Ding C, Wan C, Chan BP, Yang L, Xiao G, Shi D, Xu J, Cheung LWH, Bai X, Xie H, Xu R, Li ZA, Chen D, Qin L. Current progress and trends in musculoskeletal research: Highlights of NSFC-CUHK academic symposium on bone and joint degeneration and regeneration. J Orthop Translat 2022; 37:175-184. [PMID: 36605329 PMCID: PMC9791426 DOI: 10.1016/j.jot.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rocky S. Tuan
- The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Lin Chen
- Daping Hospital, The Third Military (Army) Medical University, China
| | - Quanyi Guo
- Chinese PLA General Hospital, Chinese PLA Medical School, China
| | - Patrick SH. Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing Jiang
- Nanjing Drum Tower Hospital, Nanjing University, China
| | - Yuxiao Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jiakuo Yu
- Peking University Third Hospital, China
| | - Jian Luo
- School of Medicine, Tongji University, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Guanghua Lei
- Xiangya Hospital Central South University, China
| | - Jiacan Su
- Changhai Hospital, People's Liberation Army Naval Medical University, China
| | | | - Weiguo Zou
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China
| | - Jing Qu
- Institute of Zoology, Chinese Academy of Sciences, China
| | - Bing Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Gang Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changhai Ding
- Zhujiang Hospital of Southern Medical University, Menzies Institute of Medical Research, University of Tasmania, Australia
| | - Chao Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Barbara P. Chan
- Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Liu Yang
- Institute of Orthopaedics, Xijing Hospital, Air Force Medical University, China
| | - Guozhi Xiao
- Department of Biology, Southern University of Science and Technology, China
| | - Dongquan Shi
- Nanjing Drum Tower Hospital, Nanjing University, China
| | - Jiankun Xu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis WH. Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaochun Bai
- School of Basic Medical Sciences, Southern Medical University, China
| | - Hui Xie
- Xiangya Hospital Central South University, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Di Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Yao Z, Yuan W, Xu J, Tong W, Mi J, Ho P, Chow DHK, Li Y, Yao H, Li X, Xu S, Guo J, Zhu Q, Bian L, Qin L. Magnesium-Encapsulated Injectable Hydrogel and 3D-Engineered Polycaprolactone Conduit Facilitate Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202102. [PMID: 35652188 PMCID: PMC9313484 DOI: 10.1002/advs.202202102] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Indexed: 05/02/2023]
Abstract
Peripheral nerve injury is a challenging orthopedic condition that can be treated by autograft transplantation, a gold standard treatment in the current clinical setting. Nevertheless, limited availability of autografts and potential morbidities in donors hampers its widespread application. Bioactive scaffold-based tissue engineering is a promising strategy to promote nerve regeneration. Additionally, magnesium (Mg) ions enhance nerve regeneration; however, an effectively controlled delivery vehicle is necessary to optimize their in vivo therapeutic effects. Herein, a bisphosphonate-based injectable hydrogel exhibiting sustained Mg2+ delivery for peripheral nerve regeneration is developed. It is observed that Mg2+ promoted neurite outgrowth in a concentration-dependent manner by activating the PI3K/Akt signaling pathway and Sema5b. Moreover, implantation of polycaprolactone (PCL) conduits filled with Mg2+ -releasing hydrogel in 10 mm nerve defects in rats significantly enhanced axon regeneration and remyelination at 12 weeks post-operation compared to the controls (blank conduits or conduits filled with Mg2+ -absent hydrogel). Functional recovery analysis reveals enhanced reinnervation in the animals treated with the Mg2+ -releasing hydrogel compared to that in the control groups. In summary, the Mg2+ -releasing hydrogel combined with the 3D-engineered PCL conduit promotes peripheral nerve regeneration and functional recovery. Thus, a new strategy to facilitate the repair of challenging peripheral nerve injuries is proposed.
Collapse
Affiliation(s)
- Zhi Yao
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Weihao Yuan
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jie Mi
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Pak‐Cheong Ho
- Department of Orthopaedics & TraumatologyPrince of Wales HospitalChinese University of Hong KongHong KongSAR999077China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Hao Yao
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Xu Li
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Qingtang Zhu
- Department of Microsurgery and Orthopedic TraumaFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong Province510080China
| | - Liming Bian
- School of Biomedical Sciences and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhouGuangdong Province510006China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| |
Collapse
|
23
|
Li L, Huang Y, Qin J, Honiball JR, Wen D, Xie X, Shi Z, Cui X, Li B. Development of a borosilicate bioactive glass scaffold incorporating calcitonin gene-related peptide for tissue engineering. BIOMATERIALS ADVANCES 2022; 138:212949. [PMID: 35913241 DOI: 10.1016/j.bioadv.2022.212949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Protein delivery and release from synthetic scaffold materials are major challenges within the field of bone tissue engineering. In this study, 13-93B1.5 borosilicate bioactive glass (BSG) base paste was 3D printed to produce BSG-based scaffolds with high porosity (59.85 ± 6.04%) and large pore sizes (350-400 μm) for functionalization with a sodium alginate (SA)/calcitonin gene-related peptide (CGRP) hydrogel mixture. SA/CGRP hydrogel was uniformly filled into the interconnected pores of 3D printed BSG constructs to produce BSG-SA/CGRP scaffolds which were subject to bioactivity and biocompatibility analysis. BSG scaffolds filled with SA hydrogel underwent dissolution in simulated body fluid (SBF), resulting in the precipitation of hydroxyapatite (HA) on the borosilicate glass evidenced by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Around 90% of CGRP was released from scaffolds after 7 days of immersion in SBF, reaching a final released concentration of 893.00 ± 63.30 ng/mL. Cellular adhesion, proliferation, and differentiation of human bone marrow mesenchymal stem cells (HBMSCs) cultured with BSG-SA/CGRP scaffolds revealed improved biocompatibility and osteogenic capabilities compared with BSG-SA scaffolds in the absence of CGRP. When subcutaneously implanted in rat models, BSG-SA/CGRP scaffolds induced low localized inflammation without causing bodily harm in vivo. Findings revealed that bioactive glass scaffolds incorporating CGRP met the scaffold requirements for bone regeneration and that the addition of CGRP promoted osteogenic differentiation where it may potentially be utilized for future regenerative applications.
Collapse
Affiliation(s)
- Li Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yonghua Huang
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China
| | - Jianguo Qin
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China
| | - John Robert Honiball
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Dingfu Wen
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China
| | - Xiangtao Xie
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China
| | - Zhanying Shi
- Department of Orthopaedics, Affiliated Liuzhou Hospital of Guangxi Medical University/Liuzhou People's Hospital, Liuzhou 545026, PR China.
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Bing Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China.
| |
Collapse
|
24
|
Neural Peptide α-CGRP Coregulated Angiogenesis and Osteogenesis via Promoting the Cross-Talk between Mesenchymal Stem Cells and Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1585840. [PMID: 35757476 PMCID: PMC9225861 DOI: 10.1155/2022/1585840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
Background The coupled vascularization and bone remodeling are key steps during bone healing, during which the cross-talk between mesenchymal stem cells (MSCs) and endothelial cells plays vital roles. Evidence indicates the well-characterized neuropeptide Calcitonin Gene-Related Peptide-α (CGRP) is proven to play an important role during bone regeneration. However, the regulatory effects of αCGRP on angiogenesis and osteogenesis, as well as underlying cellular and molecular mechanisms, remain unclear. Aim The present study was performed to verify the availability of the CGRP for osteogenic capacity in MSCs and explore its potential underlying molecular mechanism. After that, the promoted angiogenic effect of CGRP as well as its underlying mechanisms was studied. Methods and Results The results showed that CGRP could significantly increase the cyclic adenosine monophosphate (cAMP) level and promote the osteogenesis ability of MSCs via cAMP/PKA signaling pathway. Direct exposure to CGRP increased nitric oxide synthase expression, the release of NO, tube formation, and wound healing of human umbilical vein endothelial cells (HUVEC). The CGRP-treated MSCs were observed with high expression levels of angiogenic factors, such as bFGF and VEGF-α; the conditioned medium derived from CGRP-treated MSCs was also able to promote tube formation and transmembrane migration of HUVECs. Conclusion These findings demonstrate the coregulated angiogenesis and osteogenesis effects of CGRP, especially for its regulation effects on the cross-talk between mesenchymal stem cells and endothelial cells.
Collapse
|
25
|
Zhu S, Zidan A, Pang K, Musayeva A, Kang Q, Yin J. Promotion of corneal angiogenesis by sensory neuron-derived calcitonin gene-related peptide. Exp Eye Res 2022; 220:109125. [PMID: 35618042 DOI: 10.1016/j.exer.2022.109125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
The normal cornea has no blood vessels but has abundant innervation. There is emerging evidence that sensory nerves, originated from the trigeminal ganglion (TG) neurons, play a key role in corneal angiogenesis. In the current study, we examined the role of TG sensory neuron-derived calcitonin gene-related peptide (CGRP) in promoting corneal neovascularization (CNV). We found that CGRP was expressed in the TG and cultured TG neurons. In the cornea, minimal CGRP mRNA was detected and CGRP immunohistochemical staining was exclusively co-localized with corneal nerves, suggesting corneal nerves are likely the source of CGRP in the cornea. In response to intrastromal suture placement and neovascularization in the cornea, CGRP expression was increased in the TG. In addition, we showed that CGRP was potently pro-angiogenic, leading to vascular endothelial cell (VEC) proliferation, migration, and tube formation in vitro and corneal hemangiogenesis and lymphangiogenesis in vivo. In a co-culture system of TG neurons and VEC, blocking CGRP signaling in the conditioned media of TG neurons led to decreased VEC migration and tube formation. More importantly, subconjunctival injection of a CGRP antagonist CGRP8-37 reduced suture-induced corneal hemangiogenesis and lymphangiogenesis in vivo. Taken together, our data suggest that TG sensory neuron and corneal nerve-derived CGRP promotes corneal angiogenesis.
Collapse
Affiliation(s)
- Shuyan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Asmaa Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kunpeng Pang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Aytan Musayeva
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Liu Z, Liu Q, Guo H, Liang J, Zhang Y. Overview of Physical and Pharmacological Therapy in Enhancing Bone Regeneration Formation During Distraction Osteogenesis. Front Cell Dev Biol 2022; 10:837430. [PMID: 35573673 PMCID: PMC9096102 DOI: 10.3389/fcell.2022.837430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Distraction osteogenesis (DO) is a kind of bone regeneration technology. The principle is to incise the cortical bone and apply continuous and stable distraction force to the fractured end of the cortical bone, thereby promoting the proliferation of osteoblastic cells in the tension microenvironment and stimulating new bone formation. However, the long consolidation course of DO presumably lead to several complications such as infection, fracture, scar formation, delayed union and malunion. Therefore, it is of clinical significance to reduce the long treatment duration. The current treatment strategy to promote osteogenesis in DO includes gene, growth factor, stem-cell, physical and pharmacological therapies. Among these methods, pharmacological and physical therapies are considered as safe, economical, convenience and effective. Recently, several physical and pharmacological therapies have been demonstrated with a decent ability to enhance bone regeneration during DO. In this review, we have comprehensively summarized the latest evidence for physical (Photonic, Waves, Gas, Mechanical, Electrical and Electromagnetic stimulation) and pharmacological (Bisphosphonates, Hormone, Metal compounds, Biologics, Chinese medicine, etc) therapies in DO. These evidences will bring novel and significant information for the bone healing during DO in the future.
Collapse
Affiliation(s)
- Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jieyu Liang, ; Yi Zhang,
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jieyu Liang, ; Yi Zhang,
| |
Collapse
|
27
|
Abdurahman A, Li X, Li J, Liu D, Zhai L, Wang X, Zhang Y, Meng Y, Yokota H, Zhang P. Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model. Bone 2022; 157:116346. [PMID: 35114427 DOI: 10.1016/j.bone.2022.116346] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Bone vasculature influences osteogenesis and haematopoiesis in the bone microenviroment. Mechanical loading has been shown to stimulate the formation of osteogenesis-related type H vessels in an ovariectomy (OVX)-induced osteoporosis mouse model. To determine the loading-driven mechanism of angiogenesis and the formation of type H vessels in bone, we evaluated the roles of PI3K/Akt signaling and erythropoiesis in the bone marrow. The daily application of mechanical loading (1 N at 5 Hz for 6 min/day) for 2 weeks on OVX mice inhibited osteoclast activity, associated with an increase in the number of osteoblasts and trabecular volume ratio. Mechanical loading enhanced bone vasculature and vessel formation, as well as PI3K/Akt phosphorylation and erythropoiesis in the bone marrow. Notably, LY294002, an inhibitor of PI3K signaling, blocked the tube formation by endothelial progenitor cells, as well as their migration and wound healing. The conditioned medium, derived from erythroblasts, also promoted the function of HUVECs with elevated levels of VEGF, CD31, and Emcn. Collectively, this study demonstrates that mechanical loading prevents osteoporotic bone loss by promoting angiogenesis and type H vessel formation. This load-driven preventing effect is in part mediated by PI3K/Akt signaling and erythropoiesis in the bone marrow.
Collapse
Affiliation(s)
- Abdusami Abdurahman
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuetong Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yifan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yao Meng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
28
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
29
|
Yang S, Wang N, Ma Y, Guo S, Guo S, Sun H. Immunomodulatory effects and mechanisms of distraction osteogenesis. Int J Oral Sci 2022; 14:4. [PMID: 35067679 PMCID: PMC8784536 DOI: 10.1038/s41368-021-00156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/11/2022] Open
Abstract
Distraction osteogenesis (DO) is widely used for bone tissue engineering technology. Immune regulations play important roles in the process of DO like other bone regeneration mechanisms. Compared with others, the immune regulation processes of DO have their distinct features. In this review, we summarized the immune-related events including changes in and effects of immune cells, immune-related cytokines, and signaling pathways at different periods in the process of DO. We aim to elucidated our understanding and unknowns about the immunomodulatory role of DO. The goal of this is to use the known knowledge to further modify existing methods of DO, and to develop novel DO strategies in our unknown areas through more detailed studies of the work we have done.
Collapse
|
30
|
Mi J, Xu J, Yao Z, Yao H, Li Y, He X, Dai B, Zou L, Tong W, Zhang X, Hu P, Ruan YC, Tang N, Guo X, Zhao J, He J, Qin L. Implantable Electrical Stimulation at Dorsal Root Ganglions Accelerates Osteoporotic Fracture Healing via Calcitonin Gene-Related Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103005. [PMID: 34708571 PMCID: PMC8728818 DOI: 10.1002/advs.202103005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/11/2021] [Indexed: 05/18/2023]
Abstract
The neuronal engagement of the peripheral nerve system plays a crucial role in regulating fracture healing, but how to modulate the neuronal activity to enhance fracture healing remains unexploited. Here it is shown that electrical stimulation (ES) directly promotes the biosynthesis and release of calcitonin gene-related peptide (CGRP) by activating Ca2+ /CaMKII/CREB signaling pathway and action potential, respectively. To accelerate rat femoral osteoporotic fracture healing which presents with decline of CGRP, soft electrodes are engineered and they are implanted at L3 and L4 dorsal root ganglions (DRGs). ES delivered at DRGs for the first two weeks after fracture increases CGRP expression in both DRGs and fracture callus. It is also identified that CGRP is indispensable for type-H vessel formation, a biological event coupling angiogenesis and osteogenesis, contributing to ES-enhanced osteoporotic fracture healing. This proof-of-concept study shows for the first time that ES at lumbar DRGs can effectively promote femoral fracture healing, offering an innovative strategy using bioelectronic device to enhance bone regeneration.
Collapse
Affiliation(s)
- Jie Mi
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhizaoju RoadShanghai200011People's Republic of China
| | - Jian‐Kun Xu
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Zhi Yao
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Hao Yao
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Ye Li
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Xuan He
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Bing‐Yang Dai
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Li Zou
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Wen‐Xue Tong
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Xiao‐Tian Zhang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung Hom999077Hong Kong
| | - Pei‐Jie Hu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung Hom999077Hong Kong
| | - Ye Chun Ruan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung Hom999077Hong Kong
| | - Ning Tang
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| | - Xia Guo
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung Hom999077Hong Kong
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhizaoju RoadShanghai200011People's Republic of China
| | - Ju‐Fang He
- Departments of Neuroscience and Biomedical SciencesCity University of Hong KongKowloon Tong999077Hong Kong
| | - Ling Qin
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong999077China
| |
Collapse
|
31
|
Jiang Y, Xin N, Xiong Y, Guo Y, Yuan Y, Zhang Q, Gong P. αCGRP Regulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Through ERK1/2 and p38 MAPK Signaling Pathways. Cell Transplant 2022; 31:9636897221107636. [PMID: 35758252 PMCID: PMC9247368 DOI: 10.1177/09636897221107636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As a typical neuropeptide richly distributed in central and peripheral nervous
systems, α-calcitonin-gene-related peptide (αCGRP) has recently been found to
play a crucial role in bone development and metabolism, but the mechanisms
involved are not fully uncovered. Here, this study aimed to investigate the
effects and underlying molecular mechanisms of αCGRP in regulating the
osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Using
microarray technology, gene ontology (GO) and kyoto encyclopedia of genes and
genomes (KEGG) analyses revealed that osteogenic properties of BMSCs were
facilitated and mitogen-activated protein kinase (MAPK) signaling pathway was
upregulated by αCGRP in this process. Through western blot assay, we proved that
αCGRP led to an increased phosphorylation level of extracellular
signal-regulated kinases 1 and 2 (ERK1/2) and p38 MAPK signaling cascades in a
time-dependent manner. And αCGRP could promote differentiative capacity of
BMSCs, showing upregulated mRNA and protein expression level of alkaline
phosphatase (Alp), collagen type 1 (Col-1), osteopontin (Opn), and runt-related
transcription factor 2 (Runx2), as well as increased ALP activity and calcified
nodules. The addition of ERK1/2 or p38 MAPK inhibitor—U0126 or SB203580,
resulted in an impaired osteogenic differentiation of BMSCs. Besides,
inactivation of this signal transduction had negative impacts on proliferative
activity and apoptotic process of αCGRP-mediated BMSCs. Our findings
demonstrated that MAPK signaling pathway, at least in part, was responsible for
the enhanced BMSCs’ osteogenesis induced by αCGRP, which might offer us
promising strategies for bone-related disorders.
Collapse
Affiliation(s)
- Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Na Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Liu S, Chen T, Wang R, Huang H, Fu S, Zhao Y, Wang S, Wan L. Exploring the effect of the "quaternary regulation" theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis" on osteoporosis based on neuropeptides. Front Endocrinol (Lausanne) 2022; 13:908043. [PMID: 35983518 PMCID: PMC9379541 DOI: 10.3389/fendo.2022.908043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a common bone metabolic disease among the middle-aged and elderly, with its high incidence rate and a major cause of disability and mortality. Early studies found that bone metabolic homeostasis is achieved through osteogenesis-osteoclast coupling. Although current anti-osteoporosis drugs can attenuate bone loss caused by aging, they present specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014, the effect of H-type blood vessels on bone metabolism has been valued by researchers, and the ternary regulation theory of bone metabolism of "Angiogenesis-Osteoclast-Osteogenesis" has also been recognized. Nowadays, more studies have confirmed that peripheral nerves substantially impact bone metabolism. However, due to the complex function of peripheral nerves, the crosstalk mechanism of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis" has not yet been fully revealed. Neuropeptide serves as signaling molecules secreted by peripheral nerves that regulate blood vessels, osteoblasts, and osteoclasts' functions. It is likely to be the breakthrough point of the quaternary regulation theory of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis". Here, we discuss the effect of peripheral nerves on osteoporosis based on neuropeptides.
Collapse
Affiliation(s)
- Shuhua Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongying Chen
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Wang
- Department of Nephrology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai Fu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lei Wan,
| |
Collapse
|
33
|
Proangiogenic Effect of Affinin and an Ethanolic Extract from Heliopsis longipes Roots: Ex Vivo and In Vivo Evidence. Molecules 2021; 26:molecules26247670. [PMID: 34946751 PMCID: PMC8706137 DOI: 10.3390/molecules26247670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, underlies tissue development and repair. Some medicinal plant-derived compounds can modulate the angiogenic response. Heliopsis longipes, a Mexican medicinal plant, is widely used because of its effects on pain and inflammation. The main bioactive phytochemicals from H. longipes roots are alkamides, where affinin is the most abundant. Scientific studies show various medical effects of organic extracts of H. longipes roots and affinin that share some molecular pathways with the angiogenesis process, with the vasodilation mechanism of action being the most recent. This study investigates whether pure affinin and the ethanolic extract from Heliopsis longipes roots (HLEE) promote angiogenesis. Using the aortic ring rat assay (ex vivo method) and the direct in vivo angiogenesis assay, where angioreactors were implanted in CD1 female mice, showed that affinin and the HLEE increased vascular growth in a dose-dependent manner in both bioassays. This is the first study showing the proangiogenic effect of H. longipes. Further studies should focus on the mechanism of action and its possible therapeutic use in diseases characterized by insufficient angiogenesis.
Collapse
|
34
|
Jiang W, Zhu P, Huang F, Zhao Z, Zhang T, An X, Liao F, Guo L, Liu Y, Zhou N, Huang X. The RNA Methyltransferase METTL3 Promotes Endothelial Progenitor Cell Angiogenesis in Mandibular Distraction Osteogenesis via the PI3K/AKT Pathway. Front Cell Dev Biol 2021; 9:720925. [PMID: 34790657 PMCID: PMC8591310 DOI: 10.3389/fcell.2021.720925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
Distraction osteogenesis (DO) is used to treat large bone defects in the field of oral and maxillofacial surgery. Successful DO-mediated bone regeneration is dependent upon angiogenesis, and endothelial progenitor cells (EPCs) are key mediators of angiogenic processes. The N6-methyladenosine (m6A) methyltransferase has been identified as an important regulator of diverse biological processes, but its role in EPC-mediated angiogenesis during DO remains to be clarified. In the present study, we found that the level of m6A modification was significantly elevated during the process of DO and that it was also increased in the context of EPC angiogenesis under hypoxic conditions, which was characterized by increased METTL3 levels. After knocking down METTL3 in EPCs, m6A RNA methylation, proliferation, tube formation, migration, and chicken embryo chorioallantoic membrane (CAM) angiogenic activity were inhibited, whereas the opposite was observed upon the overexpression of METTL3. Mechanistically, METTL3 silencing reduced the levels of VEGF and PI3Kp110 as well as the phosphorylation of AKT, whereas METTL3 overexpression reduced these levels. SC79-mediated AKT phosphorylation was also able to restore the angiogenic capabilities of METTL3-deficient EPCs in vitro and ex vivo. In vivo, METTL3-overexpressing EPCs were additionally transplanted into the DO callus, significantly enhancing bone regeneration as evidenced by improved radiological and histological manifestations in a canine mandibular DO model after consolidation over a 4-week period. Overall, these results indicate that METTL3 accelerates bone regeneration during DO by enhancing EPC angiogenesis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Fangfang Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Tao Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Xiaoning An
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Fengchun Liao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Lina Guo
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Yan Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| |
Collapse
|
35
|
A Review on the Enhancement of Calcium Phosphate Cement with Biological Materials in Bone Defect Healing. Polymers (Basel) 2021; 13:polym13183075. [PMID: 34577976 PMCID: PMC8472520 DOI: 10.3390/polym13183075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.
Collapse
|
36
|
Mosaad KE, Shoueir KR, Saied AH, Dewidar MM. New Prospects in Nano Phased Co-substituted Hydroxyapatite Enrolled in Polymeric Nanofiber Mats for Bone Tissue Engineering Applications. Ann Biomed Eng 2021; 49:2006-2029. [PMID: 34378121 DOI: 10.1007/s10439-021-02810-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023]
Abstract
The most common forms of tissue impairment are fracture bones and significant bone disorders caused by multiple traumas or normal aging. Surgical care sometimes necessitates the placement of a temporary or permanent prosthesis, which continues to be a challenge for orthopedic surgeons, including those with large bone defects. Electrospun scaffolds made from natural and synthetic nanofiber-based polymers are studied as natural extracellular matrix (ECM)-like scaffolds for tissue engineering. Besides, nanostructured materials have properties and functions depending on the scale of natural materials such as hydroxyapatite (HAP), ranging from 1 to 100 nm, which activity was proficient upon enrolled in nanofiber mats. The use of nanofibers in combination with nano-HAP has increased the scaffold's ability to replicate the construction of natural bone tissue that is the aim of the present text. In bone engineering, nanofiber substrates facilitate cell adhesion, proliferation, and differentiation, while HAP induces cells to secrete ECM for bone mineralization and development. This review aims to draw the reader's attention to the critical issues with synthetic and natural polymers containing HAP in bone tissue engineering; co-substituted hydroxyapatite has also been mentioned.
Collapse
Affiliation(s)
- Kareem E Mosaad
- Faculty of Engineering, Mechanical Department, Al-Azahar University, Cairo, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Ahmed H Saied
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
| | - Montasser M Dewidar
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
- Higher Institute of Engineering and Technology, Kafrelsheikh, Egypt
| |
Collapse
|
37
|
Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, Chai Y, Xu J, Zheng X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther 2021; 12:415. [PMID: 34294121 PMCID: PMC8296592 DOI: 10.1186/s13287-021-02487-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis is tightly coupled with angiogenesis during bone repair and regeneration. However, the underlying mechanisms linking these processes remain largely undefined. The present study aimed to test the hypothesis that epidermal growth factor-like domain-containing protein 6 (EGFL6), an angiogenic factor, also functions in bone marrow mesenchymal stem cells (BMSCs), playing a key role in the interaction between osteogenesis and angiogenesis. Methods We evaluated how EGFL6 affects angiogenic activity of human umbilical cord vein endothelial cells (HUVECs) via proliferation, transwell migration, wound healing, and tube-formation assays. Alkaline phosphatase (ALP) and Alizarin Red S (AR-S) were used to assay the osteogenic potential of BMSCs. qRT-PCR, western blotting, and immunocytochemistry were used to evaluate angio- and osteo-specific markers and pathway-related genes and proteins. In order to determine how EGFL6 affects angiogenesis and osteogenesis in vivo, EGFL6 was injected into fracture gaps in a rat tibia distraction osteogenesis (DO) model. Radiography, histology, and histomorphometry were used to quantitatively evaluate angiogenesis and osteogenesis. Results EGFL6 stimulated both angiogenesis and osteogenic differentiation through Wnt/β-catenin signaling in vitro. Administration of EGFL6 in the rat DO model promoted CD31hiEMCNhi type H-positive capillary formation associated with enhanced bone formation. Type H vessels were the referred subtype involved during DO stimulated by EGFL6. Conclusion EGFL6 enhanced the osteogenic differentiation potential of BMSCs and accelerated bone regeneration by stimulating angiogenesis. Thus, increasing EGFL6 secretion appeared to underpin the therapeutic benefit by promoting angiogenesis-coupled bone formation. These results imply that boosting local concentrations of EGFL6 may represent a new strategy for the treatment of compromised fracture healing and bone defect restoration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02487-3.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
38
|
Ye Li, Xu J, Mi J, He X, Pan Q, Zheng L, Zu H, Chen Z, Dai B, Li X, Pang Q, Zou L, Zhou L, Huang L, Tong W, Li G, Qin L. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials 2021; 275:120984. [PMID: 34186235 DOI: 10.1016/j.biomaterials.2021.120984] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023]
Abstract
Critical size bone defects are frequently caused by accidental trauma, oncologic surgery, and infection. Distraction osteogenesis (DO) is a useful technique to promote the repair of critical size bone defects. However, DO is usually a lengthy treatment, therefore accompanied with increased risks of complications such as infections and delayed union. Here, we demonstrated that magnesium (Mg) nail implantation into the marrow cavity degraded gradually accompanied with about 4-fold increase of new bone formation and over 5-fold of new vessel formation as compared with DO alone group in the 5 mm femoral segmental defect rat model at 2 weeks after distraction. Mg nail upregulated the expression of calcitonin gene-related peptide (CGRP) in the new bone as compared with the DO alone group. We further revealed that blockade of the sensory nerve by overdose capsaicin blunted Mg nail enhanced critical size bone defect repair during the DO process. CGRP concentration-dependently promoted endothelial cell migration and tube formation. Meanwhile, CGRP promoted the phosphorylation of focal adhesion kinase (FAK) at Y397 site and elevated the expression of vascular endothelial growth factor A (VEGFA). Moreover, inhibitor/antagonist of CGRP receptor, FAK, and VEGF receptor blocked the Mg nail stimulated vessel and bone formation. We revealed, for the first time, a CGRP-FAK-VEGF signaling axis linking sensory nerve and endothelial cells, which may be the main mechanism underlying Mg-enhanced critical size bone defect repair when combined with DO, suggesting a great potential of Mg implants in reducing DO treatment time for clinical applications.
Collapse
Affiliation(s)
- Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Science, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Mi
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuan He
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Pan
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Science, China
| | - Haiyue Zu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qianqian Pang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Zou
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China; CHUK Hong Kong - Shenzhen Innovation and Technology Institute (Futian), China.
| |
Collapse
|
39
|
Li H, Qu J, Zhu H, Wang J, He H, Xie X, Wu R, Lu Q. CGRP Regulates the Age-Related Switch Between Osteoblast and Adipocyte Differentiation. Front Cell Dev Biol 2021; 9:675503. [PMID: 34124062 PMCID: PMC8187789 DOI: 10.3389/fcell.2021.675503] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoporosis is a chronic age-related disease. During aging, bone marrow-derived mesenchymal stem cells (BMSCs) display increased adipogenic, along with decreased osteogenic, differentiation capacity. The aim of the present study was to investigate the effect of calcitonin gene-related peptide (CGRP) on the osteogenic and adipogenic differentiation potential of BMSC-derived osteoblasts. Here, we found that the level of CGRP was markedly lower in bone marrow supernatant from aged mice compared with that in young mice. In vitro experiments indicated that CGRP promoted the osteogenic differentiation of BMSCs while inhibiting their adipogenic differentiation. Compared with vehicle-treated controls, aged mice treated with CGRP showed a substantial promotion of bone formation and a reduction in fat accumulation in the bone marrow. Similarly, we found that CGRP could significantly enhance bone formation in ovariectomized (OVX) mice in vivo. Together, our results suggested that CGRP may be a key regulator of the age-related switch between osteogenesis and adipogenesis in BMSCs and may represent a potential therapeutic strategy for the treatment of age-related bone loss.
Collapse
Affiliation(s)
- Hang Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyan Xie
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
40
|
Chow DHK, Wang J, Wan P, Zheng L, Ong MTY, Huang L, Tong W, Tan L, Yang K, Qin L. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits. Bioact Mater 2021; 6:4176-4185. [PMID: 33997501 PMCID: PMC8099917 DOI: 10.1016/j.bioactmat.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Displaced fractures of patella often require open reduction surgery and internal fixation to restore the extensor continuity and articular congruity. Fracture fixation with biodegradable magnesium (Mg) pins enhanced fracture healing. We hypothesized that fixation with Mg pins and their degradation over time would enhance healing of patellar fracture radiologically, mechanically, and histologically. Transverse patellar fracture surgery was performed on thirty-two 18-weeks old female New Zealand White Rabbits. The fracture was fixed with a pin made of stainless steel or pure Mg, and a figure-of-eight stainless steel band wire. Samples were harvested at week 8 or 12, and assessed with microCT, tensile testing, microindentation, and histology. Microarchitectural analysis showed that Mg group showed 12% higher in the ratio of bone volume to tissue volume at week 8, and 38.4% higher of bone volume at week 12. Tensile testing showed that the failure load and stiffness of Mg group were 66.9% and 104% higher than the control group at week 8, respectively. At week 12, Mg group was 60.8% higher in ultimate strength than the control group. Microindentation showed that, compared to the Control group, Mg group showed 49.9% higher Vickers hardness and 31% higher elastic modulus at week 8 and 12, respectively. At week 12, the new bone of Mg group remodelled to laminar bone, but those of the control group remained woven bone-like. Fixation of transverse patellar fracture with Mg pins and its degradation enhanced new bone formation and mechanical properties of the repaired patella compared to the Control group. Kirschner wires (K-wire) with tension band wire is widely used fixation implants for repairing of displaced patellar fractures. Fixation of patellar fracture with Mg pins enhanced new bone formation and mechanical properties of the repaired patella. With a stainless steel tension band wire, Mg pins may be an alternative to K-wire for fixation of patellar fractures.
Collapse
Affiliation(s)
- Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peng Wan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.,School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Michael Tim Yun Ong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Le Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
41
|
Wang F, Wang W, Kong L, Shi L, Wang M, Chai Y, Xu J, Kang Q. Accelerated Bone Regeneration by Adrenomedullin 2 Through Improving the Coupling of Osteogenesis and Angiogenesis via β-Catenin Signaling. Front Cell Dev Biol 2021; 9:649277. [PMID: 33937244 PMCID: PMC8079771 DOI: 10.3389/fcell.2021.649277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Both osteogenic differentiation and the pro-angiogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during distraction osteogenesis (DO). Adrenomedullin 2 (ADM2), an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family, exhibits various biological activities associated with the inhibition of inflammation and the attenuation of ischemic-hypoxic injury. However, the effects and underlying mechanisms of ADM2 in osteogenic differentiation and the pro-angiogenic potential of BMSCs, along with bone regeneration, remain poorly understood. In the present study, we found that osteogenic induction enhanced the pro-angiogenic potential of BMSCs, and ADM2 treatment further improved the osteogenic differentiation and pro-angiogenic potential of BMSCs. Moreover, the accumulation and activation of β-catenin, which is mediated by the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the activation of protein kinase B (AKT), have been shown to contribute to the effects of ADM2 on BMSCs. In vivo, ADM2 accelerated vessel expansion and bone regeneration, as revealed by improved radiological and histological manifestations and the biomechanical parameters in a rat DO model. Based on the present results, we concluded that ADM2 accelerates bone regeneration during DO by enhancing the osteogenic differentiation and pro-angiogenic potential of BMSCs, partly through the NF-κB/β-catenin and AKT/β-catenin pathways. Moreover, these findings imply that BMSC-mediated coupling of osteogenesis and angiogenesis may be a promising therapeutic strategy for DO patients.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenbo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingchi Kong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Shi
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mengwei Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yimin Chai
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
42
|
Carvalho MS, Cabral JMS, da Silva CL, Vashishth D. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers (Basel) 2021; 13:polym13071095. [PMID: 33808184 PMCID: PMC8036283 DOI: 10.3390/polym13071095] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Engineering biomaterials that mimic the extracellular matrix (ECM) of bone is of significant importance since most of the outstanding properties of the bone are due to matrix constitution. Bone ECM is composed of a mineral part comprising hydroxyapatite and of an organic part of primarily collagen with the rest consisting on non-collagenous proteins. Collagen has already been described as critical for bone tissue regeneration; however, little is known about the potential effect of non-collagenous proteins on osteogenic differentiation, even though these proteins were identified some decades ago. Aiming to engineer new bone tissue, peptide-incorporated biomimetic materials have been developed, presenting improved biomaterial performance. These promising results led to ongoing research focused on incorporating non-collagenous proteins from bone matrix to enhance the properties of the scaffolds namely in what concerns cell migration, proliferation, and differentiation, with the ultimate goal of designing novel strategies that mimic the native bone ECM for bone tissue engineering applications. Overall, this review will provide an overview of the several non-collagenous proteins present in bone ECM, their functionality and their recent applications in the bone tissue (including dental) engineering field.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: (M.S.C.); (D.V.)
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence: (M.S.C.); (D.V.)
| |
Collapse
|
43
|
Li Y, Pan Q, Xu J, He X, Li HA, Oldridge DA, Li G, Qin L. Overview of methods for enhancing bone regeneration in distraction osteogenesis: Potential roles of biometals. J Orthop Translat 2021; 27:110-118. [PMID: 33575164 PMCID: PMC7859169 DOI: 10.1016/j.jot.2020.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Distraction osteogenesis (DO) is a functional tissue engineering approach that applies gradual mechanical traction on the bone tissues after osteotomy to stimulate bone regeneration. However, DO still has disadvantages that limit its clinical use, including long treatment duration. METHODS Review the current methods of promoting bone formation and consolidation in DO with particular interest on biometal. RESULTS Numerous approaches, including physical therapy, gene therapy, growth factor-based therapy, stem-cell-based therapy, and improved distraction devices, have been explored to reduce the DO treatment duration with some success. Nevertheless, no approach to date is widely accepted in clinical practice due to various reasons, such as high expense, short biologic half-life, and lack of effective delivery methods. Biometals, including calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), manganese (Mn), and cobalt (Co) have attracted attention in bone regeneration attributed to their biodegradability and bioactive components released during in vivo degradation. CONCLUSION This review summarizes the current therapies accelerating bone formation in DO and the beneficial role of biometals in bone regeneration, particularly focusing on the use of biometal Mg and its alloy in promoting bone formation in DO. Translational potential: The potential clinical applications using Mg-based devices to accelerate DO are promising. Mg stimulates expression of multiple intrinsic biological factors and the development of Mg as an implantable component in DO may be used to argument bone formation and consolidation in DO.
Collapse
Affiliation(s)
- Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Qi Pan
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Helen A. Li
- School of Medicine, University of East Anglia, Norwich, England, UK
| | - Derek A. Oldridge
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
44
|
Chen X, Chen J, Song Y, Su X. Vagal α7nAChR signaling regulates α7nAChR +Sca1 + cells during lung injury repair. Stem Cell Res Ther 2020; 11:375. [PMID: 32867826 PMCID: PMC7457374 DOI: 10.1186/s13287-020-01892-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
Background The distal airways of the lung and bone marrow are innervated by the vagus nerve. Vagal α7nAChR signaling plays a key role in regulating lung infection and inflammation; however, whether this pathway regulates α7nAChR+Sca1+ cells during lung injury repair remains unknown. We hypothesized that vagal α7nAChR signaling controls α7nAChR+Sca1+ cells, which contribute to the resolution of lung injury. Methods Pneumonia was induced by intratracheal challenge with E. coli. The bone marrow mononuclear cells (BM-MNCs) were isolated from the bone marrow of pneumonia mice for immunofluorescence. The bone marrow, blood, BAL, and lung cells were isolated for flow cytometric analysis by labeling with anti-Sca1, VE-cadherin, p-Akt1, or Flk1 antibodies. Immunofluorescence was also used to examine the coexpression of α7nAChR, VE-cadherin, and p-Akt1. Sham, vagotomized, α7nAChR knockout, and Akt1 knockout mice were infected with E. coli to study the regulatory role of vagal α7nAChR signaling and Akt1 in Sca1+ cells. Results During pneumonia, BM-MNCs were enriched with α7nAChR+Sca1+ cells, and this cell population proliferated. Transplantation of pneumonia BM-MNCs could mitigate lung injury and increase engraftment in recipient pneumonia lungs. Activation of α7nAChR by its agonist could boost α7nAChR+Sca1+ cells in the bone marrow, peripheral blood, and bronchoalveolar lavage (BAL) in pneumonia. Immunofluorescence revealed that α7nAChR, VE-cadherin, and p-Akt1 were coexpressed in the bone marrow cells. Vagotomy could reduce α7nAChR+VE-cadherin+ and VE-cadherin+p-Akt1+ cells in the bone marrow in pneumonia. Knockout of α7nAChR reduced VE-cadherin+ cells and p-Akt1+ cells in the bone marrow. Deletion of Akt1 reduced Sca1+ cells in the bone marrow and BAL. More importantly, 91.3 ± 4.9% bone marrow and 77.8 ± 4.9% lung α7nAChR+Sca1+VE-cadherin+ cells expressed Flk1, which is a key marker of endothelial progenitor cells (EPCs). Vagotomy reduced α7nAChR+Sca1+VE-cadherin+p-Akt1+ cells in the bone marrow and lung from pneumonia mice. Treatment with cultured EPCs reduced ELW compared to PBS treatment in E. coli pneumonia mice at 48 h. The ELW was further reduced by treatment with EPCs combining with α7nAChR agonist-PHA568487 compared to EPC treatments only. Conclusions Vagal α7nAChR signaling regulates α7nAChR+Sca1+VE-cadherin+ EPCs via phosphorylation of Akt1 during lung injury repair in pneumonia.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China. .,Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Qingpu Branch, Shanghai, People's Republic of China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| |
Collapse
|