1
|
Bardini R, Di Carlo S. Computational methods for biofabrication in tissue engineering and regenerative medicine - a literature review. Comput Struct Biotechnol J 2024; 23:601-616. [PMID: 38283852 PMCID: PMC10818159 DOI: 10.1016/j.csbj.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
This literature review rigorously examines the growing scientific interest in computational methods for Tissue Engineering and Regenerative Medicine biofabrication, a leading-edge area in biomedical innovation, emphasizing the need for accurate, multi-stage, and multi-component biofabrication process models. The paper presents a comprehensive bibliometric and contextual analysis, followed by a literature review, to shed light on the vast potential of computational methods in this domain. It reveals that most existing methods focus on single biofabrication process stages and components, and there is a significant gap in approaches that utilize accurate models encompassing both biological and technological aspects. This analysis underscores the indispensable role of these methods in understanding and effectively manipulating complex biological systems and the necessity for developing computational methods that span multiple stages and components. The review concludes that such comprehensive computational methods are essential for developing innovative and efficient Tissue Engineering and Regenerative Medicine biofabrication solutions, driving forward advancements in this dynamic and evolving field.
Collapse
Affiliation(s)
- Roberta Bardini
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| |
Collapse
|
2
|
Desai N, Pande S, Vora L, Kommineni N. Correction to "Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration". ACS APPLIED BIO MATERIALS 2024; 7:6325-6331. [PMID: 39162584 PMCID: PMC11409221 DOI: 10.1021/acsabm.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
3
|
Desai N, Pande S, Vora LK, Kommineni N. Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4270-4292. [PMID: 38950103 PMCID: PMC11253102 DOI: 10.1021/acsabm.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.
Collapse
Affiliation(s)
- Nimeet Desai
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Shreya Pande
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| |
Collapse
|
4
|
Fois MG, van Griensven M, Giselbrecht S, Habibović P, Truckenmüller RK, Tahmasebi Birgani ZN. Mini-bones: miniaturized bone in vitro models. Trends Biotechnol 2024; 42:910-928. [PMID: 38493050 DOI: 10.1016/j.tibtech.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
In bone tissue engineering (TE) and regeneration, miniaturized, (sub)millimeter-sized bone models have become a popular trend since they bring about physiological biomimicry, precise orchestration of concurrent stimuli, and compatibility with high-throughput setups and high-content imaging. They also allow efficient use of cells, reagents, materials, and energy. In this review, we describe the state of the art of miniaturized in vitro bone models, or 'mini-bones', describing these models based on their characteristics of (multi)cellularity and engineered extracellular matrix (ECM), and elaborating on miniaturization approaches and fabrication techniques. We analyze the performance of 'mini-bone' models according to their applications for studying basic bone biology or as regeneration models, disease models, and screening platforms, and provide an outlook on future trends, challenges, and opportunities.
Collapse
Affiliation(s)
- Maria Gabriella Fois
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Martijn van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Pamela Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Roman K Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| | - Zeinab Niloofar Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
6
|
Cadavid JL, Li NT, McGuigan AP. Bridging systems biology and tissue engineering: Unleashing the full potential of complex 3D in vitro tissue models of disease. BIOPHYSICS REVIEWS 2024; 5:021301. [PMID: 38617201 PMCID: PMC11008916 DOI: 10.1063/5.0179125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Rapid advances in tissue engineering have resulted in more complex and physiologically relevant 3D in vitro tissue models with applications in fundamental biology and therapeutic development. However, the complexity provided by these models is often not leveraged fully due to the reductionist methods used to analyze them. Computational and mathematical models developed in the field of systems biology can address this issue. Yet, traditional systems biology has been mostly applied to simpler in vitro models with little physiological relevance and limited cellular complexity. Therefore, integrating these two inherently interdisciplinary fields can result in new insights and move both disciplines forward. In this review, we provide a systematic overview of how systems biology has been integrated with 3D in vitro tissue models and discuss key application areas where the synergies between both fields have led to important advances with potential translational impact. We then outline key directions for future research and discuss a framework for further integration between fields.
Collapse
|
7
|
Drakoulas G, Gortsas T, Polyzos E, Tsinopoulos S, Pyl L, Polyzos D. An explainable machine learning-based probabilistic framework for the design of scaffolds in bone tissue engineering. Biomech Model Mechanobiol 2024; 23:987-1012. [PMID: 38416219 DOI: 10.1007/s10237-024-01817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 02/29/2024]
Abstract
Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions. In this work, a numerical framework is proposed to study the influence of these factors on the expected osteochondral cell differentiation. The considered scaffold is rectangular with a 0/90 lay-down pattern and a four-layered strut made of polylactic acid with a 5% steel particle content. The distribution of the different types of cells on the scaffold surface is estimated through a scalar stimulus, calculated by using a mechanobioregulatory model. To reduce the simulation time for the computation of the stimulus, a probabilistic machine learning (ML)-based reduced-order model (ROM) is proposed. Then, a sensitivity analysis is performed using the Shapley additive explanations to examine the contribution of the various parameters to the framework stimulus predictions. In a final step, a multiobjective optimization procedure is implemented using genetic algorithms and the ROM, aiming to identify the material parameters and loading conditions that maximize the percentage of surface area populated by bone cells while minimizing the area corresponding to the other types of cells and the resorption condition. The results of the performed analysis highlight the potential of using ROMs for the scaffold design, by dramatically reducing the simulation time while enabling the efficient implementation of sensitivity analysis and optimization procedures.
Collapse
Affiliation(s)
- George Drakoulas
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece.
| | - Theodore Gortsas
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece.
- Department of Mechanical Engineering, University of Peloponnese, 26334, Patras, Greece.
| | - Efstratios Polyzos
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Stephanos Tsinopoulos
- Department of Mechanical Engineering, University of Peloponnese, 26334, Patras, Greece
| | - Lincy Pyl
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Demosthenes Polyzos
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece
| |
Collapse
|
8
|
Mostofinejad A, Romero DA, Brinson D, Marin-Araujo AE, Bazylak A, Waddell TK, Haykal S, Karoubi G, Amon CH. In silico model development and optimization of in vitro lung cell population growth. PLoS One 2024; 19:e0300902. [PMID: 38748626 PMCID: PMC11095723 DOI: 10.1371/journal.pone.0300902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/04/2024] [Indexed: 05/19/2024] Open
Abstract
Tissue engineering predominantly relies on trial and error in vitro and ex vivo experiments to develop protocols and bioreactors to generate functional tissues. As an alternative, in silico methods have the potential to significantly reduce the timelines and costs of experimental programs for tissue engineering. In this paper, we propose a methodology to formulate, select, calibrate, and test mathematical models to predict cell population growth as a function of the biochemical environment and to design optimal experimental protocols for model inference of in silico model parameters. We systematically combine methods from the experimental design, mathematical statistics, and optimization literature to develop unique and explainable mathematical models for cell population dynamics. The proposed methodology is applied to the development of this first published model for a population of the airway-relevant bronchio-alveolar epithelial (BEAS-2B) cell line as a function of the concentration of metabolic-related biochemical substrates. The resulting model is a system of ordinary differential equations that predict the temporal dynamics of BEAS-2B cell populations as a function of the initial seeded cell population and the glucose, oxygen, and lactate concentrations in the growth media, using seven parameters rigorously inferred from optimally designed in vitro experiments.
Collapse
Affiliation(s)
- Amirmahdi Mostofinejad
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David A. Romero
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dana Brinson
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alba E. Marin-Araujo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Aimy Bazylak
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K. Waddell
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Siba Haykal
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Cristina H. Amon
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Nair DG, Weiskirchen R. Recent Advances in Liver Tissue Engineering as an Alternative and Complementary Approach for Liver Transplantation. Curr Issues Mol Biol 2023; 46:262-278. [PMID: 38248320 PMCID: PMC10814863 DOI: 10.3390/cimb46010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Acute and chronic liver diseases cause significant morbidity and mortality worldwide, affecting millions of people. Liver transplantation is the primary intervention method, replacing a non-functional liver with a functional one. However, the field of liver transplantation faces challenges such as donor shortage, postoperative complications, immune rejection, and ethical problems. Consequently, there is an urgent need for alternative therapies that can complement traditional transplantation or serve as an alternative method. In this review, we explore the potential of liver tissue engineering as a supplementary approach to liver transplantation, offering benefits to patients with severe liver dysfunctions.
Collapse
Affiliation(s)
- Dileep G. Nair
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
10
|
Fernández‐Colino A, Kiessling F, Slabu I, De Laporte L, Akhyari P, Nagel SK, Stingl J, Reese S, Jockenhoevel S. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology. Adv Healthc Mater 2023; 12:e2300991. [PMID: 37290055 PMCID: PMC11469152 DOI: 10.1002/adhm.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
Collapse
Affiliation(s)
- Alicia Fernández‐Colino
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingFaculty of MedicineRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| | - Payam Akhyari
- Clinic for Cardiac SurgeryUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Saskia K. Nagel
- Applied Ethics GroupRWTH Aachen UniversityTheaterplatz 1452062AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH AachenWendlingweg 252074AachenGermany
| | - Stefanie Reese
- Institute of Applied MechanicsRWTH Aachen UniversityMies‐van‐der‐Rohe‐Str. 152074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| |
Collapse
|
11
|
Brown HM, Juanes MA. Automated Quantitative Analysis of Shape Features in Human Epithelial Monolayers and Spheroids Generated from Colorectal Cancer Cells. Methods Mol Biol 2023; 2650:261-271. [PMID: 37310638 DOI: 10.1007/978-1-0716-3076-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advancements in microscopy techniques permit us to acquire endless datasets of images. A major bottleneck in cell imaging is how to analyze petabytes of data in an effective, reliable, objective, and effortless way. Quantitative imaging is becoming crucial to disentangle the complexity of many biological and pathological processes. For instance, cell shape is a summary readout of a myriad of cellular processes. Changes in cell shape use to reflect changes in growth, migration mode (including speed and persistence), differentiation stage, apoptosis, or gene expression, serving to predict health or disease. However, in certain contexts, e.g., tissues or tumors, cells are tightly packed together, and measurement of individual cellular shapes can be challenging and laborious. Bioinformatics solutions like automated computational image methods provide a blind and efficient analysis of large image datasets. Here we describe a detailed and friendly step-by-step protocol to extract various cellular shape parameters quickly and accurately from colorectal cancer cells forming either monolayers or spheroids. We envision those similar settings could be extended to other cell lines, colorectal and beyond, either label/unlabeled or in 2D/3D environments.
Collapse
Affiliation(s)
- Hannah M Brown
- School of Health and Life Science, Teesside University, Middlesbrough, UK
- National Horizons Centre, Teesside University, Darlington, UK
| | - M Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough, UK.
- National Horizons Centre, Teesside University, Darlington, UK.
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
12
|
van Rijn P. Celebrating 30 Years of Netherlands Society for Biomaterials and Tissue Engineering: Past, Present, and Future. Tissue Eng Part A 2022; 28:459-460. [PMID: 35714362 DOI: 10.1089/ten.tea.2022.29029.sri] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|