1
|
Saeid Nia M, Floder LM, Seiler JA, Puehler T, Pommert NS, Berndt R, Meier D, Sellers SL, Sathananthan J, Zhang X, Hasler M, Gorb SN, Warnecke G, Lutter G. Optimization of Enzymatic and Chemical Decellularization of Native Porcine Heart Valves for the Generation of Decellularized Xenografts. Int J Mol Sci 2024; 25:4026. [PMID: 38612836 PMCID: PMC11012489 DOI: 10.3390/ijms25074026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
One of the most important medical interventions for individuals with heart valvular disease is heart valve replacement, which is not without substantial challenges, particularly for pediatric patients. Due to their biological properties and biocompatibility, natural tissue-originated scaffolds derived from human or animal sources are one type of scaffold that is widely used in tissue engineering. However, they are known for their high potential for immunogenicity. Being free of cells and genetic material, decellularized xenografts, consequently, have low immunogenicity and, thus, are expected to be tolerated by the recipient's immune system. The scaffold ultrastructure and ECM composition can be affected by cell removal agents. Therefore, applying an appropriate method that preserves intact the structure of the ECM plays a critical role in the final result. So far, there has not been an effective decellularization technique that preserves the integrity of the heart valve's ultrastructure while securing the least amount of genetic material left. This study demonstrates a new protocol with untraceable cells and residual DNA, thereby maximally reducing any chance of immunogenicity. The mechanical and biochemical properties of the ECM resemble those of native heart valves. Results from this study strongly indicate that different critical factors, such as ionic detergent omission, the substitution of Triton X-100 with Tergitol, and using a lower concentration of trypsin and a higher concentration of DNase and RNase, play a significant role in maintaining intact the ultrastructure and function of the ECM.
Collapse
Affiliation(s)
- Monireh Saeid Nia
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Lena Maria Floder
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
| | - Jette Anika Seiler
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Thomas Puehler
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 23562 Lübeck, Germany
| | - Nina Sophie Pommert
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Rouven Berndt
- Clinic of Vascular and Endovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany;
| | - David Meier
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| | - Stephanie L. Sellers
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (S.L.S.); (J.S.)
- Cardiovascular Translational Laboratory, Providence Research & Centre for Heart Lung Innovation, Vancouver, BC V6Z 1Y6, Canada
- Centre for Heart Valve Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Janarthanan Sathananthan
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (S.L.S.); (J.S.)
- Cardiovascular Translational Laboratory, Providence Research & Centre for Heart Lung Innovation, Vancouver, BC V6Z 1Y6, Canada
- Centre for Heart Valve Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Xiling Zhang
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Georg Lutter
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| |
Collapse
|
2
|
Rajab TK. Partial heart transplantation: Growing heart valve implants for children. Artif Organs 2024; 48:326-335. [PMID: 37849378 PMCID: PMC10960715 DOI: 10.1111/aor.14664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Heart valves serve a vital hemodynamic function to ensure unidirectional blood flow. Additionally, native heart valves serve biological functions such as growth and self-repair. Heart valve implants mimic the hemodynamic function of native heart valves, but are unable to fulfill their biological functions. We developed partial heart transplantation to deliver heart valve implants that fulfill all functions of native heart valves. This is particularly advantageous for children, who require growing heart valve implants. This invited review outlines the past, present and future of partial heart transplantation.
Collapse
Affiliation(s)
- Taufiek Konrad Rajab
- Division of Pediatric Cardiovascular Surgery, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| |
Collapse
|
3
|
Overbey DM, Rajab TK, Turek JW. Partial Heart Transplantation - How to Change the System. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2024; 27:100-105. [PMID: 38522865 DOI: 10.1053/j.pcsu.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/26/2024]
Abstract
Partial heart transplantation is the first clinically successful approach to deliver growing heart valve implants. To date, 13 clinical partial heart transplants have been performed. However, turning partial heart transplantation into a routine procedure that is available to all children who would benefit from growing heart valve implants poses formidable logistical challenges. Firstly, a supply for partial heart transplant donor grafts needs to be developed. This challenge is complicated by the scarcity of donor organs. Importantly, the donor pools for orthotopic heart transplants, partial heart transplants and cadaver homografts overlap. Secondly, partial heart transplants need to be allocated. Factors relevant for equitable allocation include the indication, anatomical fit, recipient clinical status and time on the wait list. Finally, partial heart transplantation will require regulation and oversight, which only recently has been undertaken by the Food and Drug Administration, which regulates human cellular and tissue-based products. Overcoming these challenges will require a change in the system. Once this is achieved, partial heart transplantation could open new horizons for children who require growing tissue implants.
Collapse
Affiliation(s)
- Douglas M Overbey
- Congenital Heart Surgery Research and Training Laboratory, Duke University, Durham, North Carolina.; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Taufiek K Rajab
- Medical University of South Carolina, Charleston, South Carolina.; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Joseph W Turek
- Congenital Heart Surgery Research and Training Laboratory, Duke University, Durham, North Carolina.; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina..
| |
Collapse
|
4
|
Rajab TK, Goerlich CE, Forbess JM, Griffith BP, Mohiuddin MM. Partial heart xenotransplantation: A research protocol in non-human primates. Artif Organs 2023; 47:1262-1266. [PMID: 37334835 DOI: 10.1111/aor.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 06/21/2023]
Abstract
Partial heart transplantation is a new type of transplant that delivers growing heart valve replacements for babies. Partial heart transplantation differs from orthotopic heart transplantation because only the part of the heart containing the heart valve is transplanted. It also differs from homograft valve replacement because viability of the graft is preserved by tissue matching, minimizing donor ischemia times, and recipient immunosuppression. This preserves partial heart transplant viability and allows the grafts to fulfill biological functions such as growth and self-repair. These advantages over conventional heart valve prostheses are balanced by similar disadvantages as other organ transplants, most importantly limitations in donor graft availability. Prodigious progress in xenotransplantation promises to solve this problem by providing an unlimited source of donor grafts. In order to study partial heart xenotransplantation, a suitable large animal model is important. Here we describe our research protocol for partial heart xenotransplantation in nonhuman primates.
Collapse
Affiliation(s)
- Taufiek Konrad Rajab
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Corbin E Goerlich
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph M Forbess
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Muhammad M Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Rezvova MA, Klyshnikov KY, Gritskevich AA, Ovcharenko EA. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int J Mol Sci 2023; 24:3963. [PMID: 36835389 PMCID: PMC9967268 DOI: 10.3390/ijms24043963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The development of a novel artificial heart valve with outstanding durability and safety has remained a challenge since the first mechanical heart valve entered the market 65 years ago. Recent progress in high-molecular compounds opened new horizons in overcoming major drawbacks of mechanical and tissue heart valves (dysfunction and failure, tissue degradation, calcification, high immunogenic potential, and high risk of thrombosis), providing new insights into the development of an ideal artificial heart valve. Polymeric heart valves can best mimic the tissue-level mechanical behavior of the native valves. This review summarizes the evolution of polymeric heart valves and the state-of-the-art approaches to their development, fabrication, and manufacturing. The review discusses the biocompatibility and durability testing of previously investigated polymeric materials and presents the most recent developments, including the first human clinical trials of LifePolymer. New promising functional polymers, nanocomposite biomaterials, and valve designs are discussed in terms of their potential application in the development of an ideal polymeric heart valve. The superiority and inferiority of nanocomposite and hybrid materials to non-modified polymers are reported. The review proposes several concepts potentially suitable to address the above-mentioned challenges arising in the R&D of polymeric heart valves from the properties, structure, and surface of polymeric materials. Additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools have given the green light to set new directions for polymeric heart valves.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | - Kirill Y. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | | | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| |
Collapse
|
6
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
7
|
Toma M, Singh-Gryzbon S, Frankini E, Wei Z(A, Yoganathan AP. Clinical Impact of Computational Heart Valve Models. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3302. [PMID: 35591636 PMCID: PMC9101262 DOI: 10.3390/ma15093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| | - Elisabeth Frankini
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Zhenglun (Alan) Wei
- Department of Biomedical Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Ajit P. Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| |
Collapse
|
8
|
Blum KM, Mirhaidari G, Breuer CK. Tissue engineering: Relevance to neonatal congenital heart disease. Semin Fetal Neonatal Med 2022; 27:101225. [PMID: 33674254 PMCID: PMC8390581 DOI: 10.1016/j.siny.2021.101225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Congenital heart disease (CHD) represents a large clinical burden, representing the most common cause of birth defect-related death in the newborn. The mainstay of treatment for CHD remains palliative surgery using prosthetic vascular grafts and valves. These devices have limited effectiveness in pediatric patients due to thrombosis, infection, limited endothelialization, and a lack of growth potential. Tissue engineering has shown promise in providing new solutions for pediatric CHD patients through the development of tissue engineered vascular grafts, heart patches, and heart valves. In this review, we examine the current surgical treatments for congenital heart disease and the research being conducted to create tissue engineered products for these patients. While much research remains to be done before tissue engineering becomes a mainstay of clinical treatment for CHD patients, developments have been progressing rapidly towards translation of tissue engineering devices to the clinic.
Collapse
Affiliation(s)
- Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus OH, USA,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA.
| |
Collapse
|
9
|
Pollak U, Feinstein Y, Mannarino CN, McBride ME, Mendonca M, Keizman E, Mishaly D, van Leeuwen G, Roeleveld PP, Koers L, Klugman D. The horizon of pediatric cardiac critical care. Front Pediatr 2022; 10:863868. [PMID: 36186624 PMCID: PMC9523119 DOI: 10.3389/fped.2022.863868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Pediatric Cardiac Critical Care (PCCC) is a challenging discipline where decisions require a high degree of preparation and clinical expertise. In the modern era, outcomes of neonates and children with congenital heart defects have dramatically improved, largely by transformative technologies and an expanding collection of pharmacotherapies. Exponential advances in science and technology are occurring at a breathtaking rate, and applying these advances to the PCCC patient is essential to further advancing the science and practice of the field. In this article, we identified and elaborate on seven key elements within the PCCC that will pave the way for the future.
Collapse
Affiliation(s)
- Uri Pollak
- Section of Pediatric Critical Care, Hadassah University Medical Center, Jerusalem, Israel.,Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Feinstein
- Pediatric Intensive Care Unit, Soroka University Medical Center, Be'er Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Candace N Mannarino
- Divisions of Cardiology and Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Mary E McBride
- Divisions of Cardiology and Critical Care Medicine, Departments of Pediatrics and Medical Education, Northwestern University Feinberg School of Medicine, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Malaika Mendonca
- Pediatric Intensive Care Unit, Children's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Eitan Keizman
- Department of Cardiac Surgery, The Leviev Cardiothoracic and Vascular Center, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - David Mishaly
- Pediatric and Congenital Cardiac Surgery, Edmond J. Safra International Congenital Heart Center, The Chaim Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel
| | - Grace van Leeuwen
- Pediatric Cardiac Intensive Care Unit, Sidra Medicine, Ar-Rayyan, Qatar.,Department of Pediatrics, Weill Cornell Medicine, Ar-Rayyan, Qatar
| | - Peter P Roeleveld
- Department of Pediatric Intensive Care, Leiden University Medical Center, Leiden, Netherlands
| | - Lena Koers
- Department of Pediatric Intensive Care, Leiden University Medical Center, Leiden, Netherlands
| | - Darren Klugman
- Pediatrics Cardiac Critical Care Unit, Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Kwon JH, Hill M, Gerry B, Kubalak SW, Mohiuddin M, Kavarana MN, Rajab TK. Surgical techniques for aortic valve xenotransplantation. J Cardiothorac Surg 2021; 16:358. [PMID: 34961532 PMCID: PMC8714421 DOI: 10.1186/s13019-021-01743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background Heart valve replacement in neonates and infants is one of the remaining unsolved problems in cardiac surgery because conventional valve prostheses do not grow with the children. Similarly, heart valve replacement in children and young adults with contraindications to anticoagulation remains an unsolved problem because mechanical valves are thrombogenic and bioprosthetic valves are prone to early degeneration. Therefore, there is an urgent clinical need for growing heart valve replacements that are durable without the need for anticoagulation. Methods A human cadaver model was used to develop surgical techniques for aortic valve xenotransplantation. Results Aortic valve xenotransplantation is technically feasible. Subcoronary implantation of the valve avoids the need for a root replacement. Conclusion Aortic valve xenotransplantation is promising because the development of GTKO.hCD46.hTBM transgenic pigs has brought xenotransplantation within clinical reach.
Collapse
Affiliation(s)
- Jennie H Kwon
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, USA.
| | - Morgan Hill
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, USA
| | - Brielle Gerry
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, USA
| | - Steven W Kubalak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Muhammad Mohiuddin
- Xenotransplantation Program, University of Maryland School of Medicine, Washington, DC, USA
| | - Minoo N Kavarana
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, USA
| | - T Konrad Rajab
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
11
|
Ground M, Waqanivavalagi S, Walker R, Milsom P, Cornish J. Models of immunogenicity in preclinical assessment of tissue engineered heart valves. Acta Biomater 2021; 133:102-113. [PMID: 34082103 DOI: 10.1016/j.actbio.2021.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Tissue engineered heart valves may one day offer an exciting alternative to traditional valve prostheses. Methods of construction vary, from decellularised animal tissue to synthetic hydrogels, but the goal is the same: the creation of a 'living valve' populated with autologous cells that may persist indefinitely upon implantation. Previous failed attempts in humans have highlighted the difficulty in predicting how a novel heart valve will perform in vivo. A significant hurdle in bringing these prostheses to market is understanding the immune reaction in the short and long term. With respect to innate immunity, the chronic remodelling of a tissue engineered implant by macrophages remains poorly understood. Also unclear are the mechanisms behind unknown antigens and their effect on the adaptive immune system. No silver bullet exists, rather researchers must draw upon a number of in vitro and in vivo models to fully elucidate the effect a host will exert on the graft. This review details the methods by which the immunogenicity of tissue engineered heart valves may be investigated and reveals areas that would benefit from more research. STATEMENT OF SIGNIFICANCE: Both academic and private institutions around the world are committed to the creation of a valve prosthesis that will perform safely upon implantation. To date, however, no truly non-immunogenic valves have emerged. This review highlights the importance of preclinical immunogenicity assessment, and summarizes the available techniques used in vitro and in vivo to elucidate the immune response. To the authors knowledge, this is the first review that details the immune testing regimen specific to a TEHV candidate.
Collapse
|
12
|
Biological Characterization of Human Autologous Pericardium Treated with the Ozaki Procedure for Aortic Valve Reconstruction. J Clin Med 2021; 10:jcm10173954. [PMID: 34501402 PMCID: PMC8432048 DOI: 10.3390/jcm10173954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The Ozaki procedure is an innovative surgical technique aiming at reconstructing aortic valves with human autologous pericardium. Even if this procedure is widely used, a comprehensive biological characterization of the glutaraldehyde (GA)-fixed pericardial tissue is still missing. Methods: Morphological analysis was performed to assess the general organization of pericardium subjected to the Ozaki procedure (post-Ozaki) in comparison to native tissue (pre-Ozaki). The effect of GA treatment on cell viability and nuclear morphology was then investigated in whole biopsies and a cytotoxicity assay was executed to assess the biocompatibility of pericardium. Finally, human umbilical vein endothelial cells were seeded on post-Ozaki samples to evaluate the influence of GA in modulating the endothelialization ability in vitro and the production of pro-inflammatory mediators. Results: The Ozaki procedure alters the arrangement of collagen and elastic fibers in the extracellular matrix and results in a significant reduction in cell viability compared to native tissue. GA treatment, however, is not cytotoxic to murine fibroblasts as compared to a commercially available bovine pericardium membrane. In addition, in in vitro experiments of endothelial cell adhesion, no difference in the inflammatory mediators with respect to the commercial patch was found. Conclusions: The Ozaki procedure, despite alteration of ECM organization and cell devitalization, allows for the establishment of a noncytotoxic environment in which endothelial cell repopulation occurs.
Collapse
|
13
|
Comparison of the function and structural integrity of cryopreserved pulmonary homografts versus decellularized pulmonary homografts after 180 days implantation in the juvenile ovine model. Cell Tissue Bank 2021; 23:347-366. [PMID: 34453660 DOI: 10.1007/s10561-021-09948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Homograft availability and durability remain big challenges. Increasing the post-mortem ischaemic harvesting time beyond 24 h increases the potential donor pool. Cryopreservation, routinely used to preserve homografts, damages the extracellular matrix (ECM), contributing to valve degeneration. Decellularization might preserve the ECM, promoting host-cell infiltration and contributing towards better clinical outcomes. This study compared the performance of cryopreserved versus decellularized pulmonary homografts in the right ventricle outflow tract (RVOT) of a juvenile ovine model. Homografts (n = 10) were harvested from juvenile sheep, subjected to 48 h post-mortem cold ischaemia, cryopreserved or decellularized and implanted in the RVOT of juvenile sheep for 180 days. Valve performance was monitored echocardiographically. Explanted leaflet and wall tissue evaluated histologically, on electron microscopical appearance, mechanical properties and calcium content. In both groups the annulus diameter increased. Cryopreserved homografts developed significant (¾) pulmonary regurgitation, with trivial regurgitation (¼) in the decellularized group. Macroscopically, explanted cryopreserved valve leaflets retracted and thickened while decellularized leaflets remained thin and pliable with good coaptation. Cryopreserved leaflets and walls demonstrated loss of interstitial cells with collapsed collagen, and decellularized scaffolds extensive, uniform ingrowth of host-cells with an intact collagen network. Calcific deposits were shown only in leaflets and walls of cryopreserved explants. Young fibroblasts, with vacuoles and rough endoplasmic reticulum in the cytoplasm, repopulated the leaflets and walls of decellularized scaffolds. Young's modulus of wall tissue in both groups increased significantly. Cryopreserved valves deteriorate over time due to loss of cellularity and calcification, while decellularized scaffolds demonstrated host-cell repopulation, structural maintenance, tissue remodelling and growth potential.
Collapse
|
14
|
Kwon JH, Hill MA, Gerry B, Morningstar J, Kavarana MN, Nadig SN, Rajab TK. Cellular Viability of Partial Heart Transplant Grafts in Cold Storage. Front Surg 2021; 8:676739. [PMID: 34327211 PMCID: PMC8313850 DOI: 10.3389/fsurg.2021.676739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Congenital heart defects are the most common types of birth defects in humans. Children with congenital heart defects frequently require heart valve replacement with an implant. Unfortunately, conventional heart valve implants do not grow. Therefore, these children are committed to serial re-operations for successively larger implant exchanges. Partial heart transplantation is a new and innovative approach to deliver growing heart valve implants. However, the transplant biology of partial heart transplant grafts remains unexplored. This is a critical barrier for clinical translation. Therefore, we investigated the cellular viability of partial heart transplants in cold storage. Histology and immunohistochemistry revealed no morphological differences in heart valves after 6, 24, or 48 h of cold storage. Moreover, immunohistochemistry showed that the marker for apoptosis activated caspase 3 and the marker for cell division Ki67 remained unchanged after 48 h of cold storage. Finally, quantification of fluorescing resorufin showed no statistically significant decrease in cellular metabolic activity in heart valves after 48 h of cold storage. We conclude that partial heart transplants remain viable after 48 h of cold storage. These findings represent the first step toward translating partial heart transplantation from the bench to the bedside because they have direct clinical implications for the procurement logistics of this new type of transplant.
Collapse
Affiliation(s)
- Jennie H Kwon
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Morgan Ashley Hill
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Brielle Gerry
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jordan Morningstar
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Minoo N Kavarana
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Satish N Nadig
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Taufiek Konrad Rajab
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Liu D, Caliskan S, Rashidfarokhi B, Oldenhof H, Jung K, Sieme H, Hilfiker A, Wolkers WF. Fourier transform infrared spectroscopy coupled with machine learning classification for identification of oxidative damage in freeze-dried heart valves. Sci Rep 2021; 11:12299. [PMID: 34112893 PMCID: PMC8192956 DOI: 10.1038/s41598-021-91802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Freeze-drying can be used to ensure off-the-shelf availability of decellularized heart valves for cardiovascular surgery. In this study, decellularized porcine aortic heart valves were analyzed by nitroblue tetrazolium (NBT) staining and Fourier transform infrared spectroscopy (FTIR) to identify oxidative damage during freeze-drying and subsequent storage as well as after treatment with H2O2 and FeCl3. NBT staining revealed that sucrose at a concentration of at least 40% (w/v) is needed to prevent oxidative damage during freeze-drying. Dried specimens that were stored at 4 °C depict little to no oxidative damage during storage for up to 2 months. FTIR analysis shows that fresh control, freeze-dried and stored heart valve specimens cannot be distinguished from one another, whereas H2O2- and FeCl3-treated samples could be distinguished in some tissue section. A feed forward artificial neural network model could accurately classify H2O2 and FeCl3 treated samples. However, fresh control, freeze-dried and stored samples could not be distinguished from one another, which implies that these groups are very similar in terms of their biomolecular fingerprints. Taken together, we conclude that sucrose can minimize oxidative damage caused by freeze-drying, and that subsequent dried storage has little effects on the overall biochemical composition of heart valve scaffolds.
Collapse
Affiliation(s)
- Dejia Liu
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Sükrü Caliskan
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Stadtfelddamm 34, 30625, Hannover, Germany.,Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bita Rashidfarokhi
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Stadtfelddamm 34, 30625, Hannover, Germany. .,Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
16
|
Blum KM, Roby LC, Zbinden JC, Chang YC, Mirhaidari GJM, Reinhardt JW, Yi T, Barker JC, Breuer CK. Sex and Tamoxifen confound murine experimental studies in cardiovascular tissue engineering. Sci Rep 2021; 11:8037. [PMID: 33850181 PMCID: PMC8044102 DOI: 10.1038/s41598-021-87006-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
Tissue engineered vascular grafts hold promise for the creation of functional blood vessels from biodegradable scaffolds. Because the precise mechanisms regulating this process are still under investigation, inducible genetic mouse models are an important and widely used research tool. However, here we describe the importance of challenging the baseline assumption that tamoxifen is inert when used as a small molecule inducer in the context of cardiovascular tissue engineering. Employing a standard inferior vena cava vascular interposition graft model in C57BL/6 mice, we discovered differences in the immunologic response between control and tamoxifen-treated animals, including occlusion rate, macrophage infiltration and phenotype, the extent of foreign body giant cell development, and collagen deposition. Further, differences were noted between untreated males and females. Our findings demonstrate that the host-response to materials commonly used in cardiovascular tissue engineering is sex-specific and critically impacted by exposure to tamoxifen, necessitating careful model selection and interpretation of results.
Collapse
Affiliation(s)
- Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Lauren C Roby
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- College of Medicine, The Ohio State University, Columbus, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
| | - Tai Yi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
| | - Jenny C Barker
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA.
| |
Collapse
|
17
|
Biology and Biomechanics of the Heart Valve Extracellular Matrix. J Cardiovasc Dev Dis 2020; 7:jcdd7040057. [PMID: 33339213 PMCID: PMC7765611 DOI: 10.3390/jcdd7040057] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Heart valves are dynamic structures that, in the average human, open and close over 100,000 times per day, and 3 × 109 times per lifetime to maintain unidirectional blood flow. Efficient, coordinated movement of the valve structures during the cardiac cycle is mediated by the intricate and sophisticated network of extracellular matrix (ECM) components that provide the necessary biomechanical properties to meet these mechanical demands. Organized in layers that accommodate passive functional movements of the valve leaflets, heart valve ECM is synthesized during embryonic development, and remodeled and maintained by resident cells throughout life. The failure of ECM organization compromises biomechanical function, and may lead to obstruction or leaking, which if left untreated can lead to heart failure. At present, effective treatment for heart valve dysfunction is limited and frequently ends with surgical repair or replacement, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of biomechanical valve failure in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level, namely the interstitial and endothelial lineages. However, less focus has been on the ECM, shown previously in other systems, to be a promising mechanism-inspired therapeutic target. Here, we highlight and review the biology and biomechanical contributions of key components of the heart valve ECM. Furthermore, we discuss how human diseases, including connective tissue disorders lead to aberrations in the abundance, organization and quality of these matrix proteins, resulting in instability of the valve infrastructure and gross functional impairment.
Collapse
|
18
|
Granath C, Noren H, Björck H, Simon N, Olesen K, Rodin S, Grinnemo KH, Österholm C. Characterization of Laminins in Healthy Human Aortic Valves and a Modified Decellularized Rat Scaffold. Biores Open Access 2020; 9:269-278. [PMID: 33376633 PMCID: PMC7757704 DOI: 10.1089/biores.2020.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/13/2023] Open
Abstract
Aortic valve stenosis is one of the most common cardiovascular diseases in western countries and can only be treated by replacement with a prosthetic valve. Tissue engineering is an emerging and promising treatment option, but in-depth knowledge about the microstructure of native heart valves is lacking, making the development of tissue-engineered heart valves challenging. Specifically, the basement membrane (BM) of heart valves remains incompletely characterized, and decellularization protocols that preserve BM components are necessary to advance the field. This study aims to characterize laminin isoforms expressed in healthy human aortic valves and establish a small animal decellularized aortic valve scaffold for future studies of the BM in tissue engineering. Laminin isoforms were assessed by immunohistochemistry with antibodies specific for individual α, β, and γ chains. The results indicated that LN-411, LN-421, LN-511, and LN-521 are expressed in human aortic valves (n = 3), forming a continuous monolayer in the endothelial BM, whereas sparsely found in the interstitium. Similar results were seen in rat aortic valves (n = 3). Retention of laminin and other BM components, concomitantly with effective removal of cells and residual DNA, was achieved through 3 h exposure to 1% sodium dodecyl sulfate and 30 min exposure to 1% Triton X-100, followed by nuclease processing in rat aortic valves (n = 3). Our results provide crucial data on the microenvironment of valvular cells relevant for research in both tissue engineering and heart valve biology. We also describe a decellularized rat aortic valve scaffold useful for mechanistic studies on the role of the BM in heart valve regeneration.
Collapse
Affiliation(s)
- Carl Granath
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hunter Noren
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| | - Hanna Björck
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kim Olesen
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Bioscience, University of Skövde, Skövde, Sweden
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergey Rodin
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Karl-Henrik Grinnemo
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Division of Clinical Genetics, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Address correspondence to: Cecilia Österholm Corbascio, PhD, Division of Clinical Genetics, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, 171 64, Sweden
| |
Collapse
|
19
|
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 2020; 18:92-116. [PMID: 32908285 DOI: 10.1038/s41569-020-0422-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.
Collapse
|
20
|
Zakko J, Blum KM, Drews JD, Wu YL, Hatoum H, Russell M, Gooden S, Heitkemper M, Conroy O, Kelly J, Carey S, Sacks M, Texter K, Ragsdale E, Strainic J, Bocks M, Wang Y, Dasi LP, Armstrong AK, Breuer C. Development of Tissue Engineered Heart Valves for Percutaneous Transcatheter Delivery in a Fetal Ovine Model. JACC Basic Transl Sci 2020; 5:815-828. [PMID: 32875171 PMCID: PMC7452327 DOI: 10.1016/j.jacbts.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
A fully biodegradable fetal valve was developed using a zinc-aluminum alloy stent and electrospun PCL leaflets. In vitro evaluation of the valve was performed with accelerated degradation, mechanical, and flow loop testing, and the valve showed trivial stenosis and trivial regurgitation. A large animal model was used for percutaneous delivery of the valve to the fetal pulmonary annulus. Following implantation, the valve had no stenosis or regurgitation by echocardiography, and the fetal sheep matured and was delivered at term with the tissue-engineered valve.
This multidisciplinary work shows the feasibility of replacing the fetal pulmonary valve with a percutaneous, transcatheter, fully biodegradable tissue-engineered heart valve (TEHV), which was studied in vitro through accelerated degradation, mechanical, and hemodynamic testing and in vivo by implantation into a fetal lamb. The TEHV exhibited only trivial stenosis and regurgitation in vitro and no stenosis in vivo by echocardiogram. Following implantation, the fetus matured and was delivered at term. Replacing a stenotic fetal valve with a functional TEHV has the potential to interrupt the development of single-ventricle heart disease by restoring proper flow through the heart.
Collapse
Key Words
- EOA, effective orifice area
- MPA, main pulmonary artery
- Mn, molecular size
- Mw, molecular weight
- NOI, normalized orientation index
- PCL, polycaprolactone
- PDI, polydispersity index
- PG, pressure gradient
- RF, regurgitant fraction
- RV, right ventricular/ventricle
- SEM, scanning electron microscopy
- TEHV, tissue-engineered heart valve
- congenital heart disease
- tissue-engineered heart valve
- transcatheter heart valve
- translational medicine
Collapse
Affiliation(s)
- Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Biomedical Engineering, Ohio State University, Columbus, Ohio
| | - Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yen-Lin Wu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Hoda Hatoum
- Coulter Department of Biomedical Engineering, Georgia Tech, Atlanta, Georgia
| | - Madeleine Russell
- Oden Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas
| | - Shelley Gooden
- Coulter Department of Biomedical Engineering, Georgia Tech, Atlanta, Georgia
| | - Megan Heitkemper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Biomedical Engineering, Ohio State University, Columbus, Ohio
| | - Olivia Conroy
- Oden Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Stacey Carey
- Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Michael Sacks
- Oden Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas
| | - Karen Texter
- Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Ellie Ragsdale
- Department of OB/GYN-Maternal Fetal Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - James Strainic
- Department of Pediatric Cardiology, University Hospitals Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Martin Bocks
- University Hospitals Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Lakshmi Prasad Dasi
- Coulter Department of Biomedical Engineering, Georgia Tech, Atlanta, Georgia
| | | | - Christopher Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
21
|
Costa FDAD. Conduits for Right Ventricular Outflow Tract Reconstruction in Children: Are We Improving? World J Pediatr Congenit Heart Surg 2020; 11:148-149. [PMID: 32093556 DOI: 10.1177/2150135119892935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Francisco Diniz Affonso da Costa
- Cardiovascular Surgery, Instituto de Neurologia e Cardiologia de Curitiba (INC-Cardio), Curitiba, Brazil.,PUCPR, Curitiba, Paraná, Brazil
| |
Collapse
|
22
|
Abstract
Heart valve diseases are common disorders with five million annual diagnoses being made in the United States alone. All heart valve disorders alter cardiac hemodynamic performance; therefore, treatments aim to restore normal flow. This paper reviews the state-of-the-art clinical and engineering advancements in heart valve treatments with a focus on hemodynamics. We review engineering studies and clinical literature on the experience with devices for aortic valve treatment, as well as the latest advancements in mitral valve treatments and the pulmonic and tricuspid valves on the right side of the heart. Upcoming innovations will potentially revolutionize treatment of heart valve disorders. These advancements, and more gradual enhancements in the procedural techniques and imaging modalities, could improve the quality of life of patients suffering from valvular disease who currently cannot be treated.
Collapse
Affiliation(s)
- Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv Israel
- To whom correspondence should be addressed. E-mail:
| | - Shmuel Einav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Polyisobutylene-Based Thermoplastic Elastomers for Manufacturing Polymeric Heart Valve Leaflets: In Vitro and In Vivo Results. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Superior polymers represent a promising alternative to mechanical and biological materials commonly used for manufacturing artificial heart valves. The study is aimed at assessing poly(styrene-block-isobutylene-block-styrene) (SIBS) properties and comparing them with polytetrafluoroethylene (Gore-texTM, a reference sample). Surface topography of both materials was evaluated with scanning electron microscopy and atomic force microscopy. The mechanical properties were measured under uniaxial tension. The water contact angle was estimated to evaluate hydrophilicity/hydrophobicity of the study samples. Materials’ hemocompatibility was evaluated using cell lines (Ea.hy 926), donor blood, and in vivo. SIBS possess a regular surface relief. It is hydrophobic and has lower strength as compared to Gore-texTM (3.51 MPa vs. 13.2/23.8 MPa). SIBS and Gore-texTM have similar hemocompatibility (hemolysis, adhesion, and platelet aggregation). The subcutaneous rat implantation reports that SIBS has a lower tendency towards calcification (0.39 mg/g) compared with Gore-texTM (1.29 mg/g). SIBS is a highly hemocompatible material with a promising potential for manufacturing heart valve leaflets, but its mechanical properties require further improvements. The possible options include the reinforcement with nanofillers and introductions of new chains in its structure.
Collapse
|
24
|
Roosens A, Handoyo YP, Dubruel P, Declercq H. Impact of modified gelatin on valvular microtissues. J Tissue Eng Regen Med 2019; 13:771-784. [DOI: 10.1002/term.2825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/30/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Annelies Roosens
- Department of Human Structure and Repair, Tissue Engineering GroupGhent University Ghent Belgium
| | | | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular ChemistryGhent University Ghent Belgium
| | - Heidi Declercq
- Department of Human Structure and Repair, Tissue Engineering GroupGhent University Ghent Belgium
| |
Collapse
|
25
|
Fan Q, Zhang L, Zhu W, Xue S, Song Y, Chang Q. Up-regulation of Grb2-associated binder 1 promotes hepatocyte growth factor-induced endothelial progenitor cell proliferation and migration. PeerJ 2019; 7:e6675. [PMID: 30956905 PMCID: PMC6442669 DOI: 10.7717/peerj.6675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/25/2019] [Indexed: 01/08/2023] Open
Abstract
Objectives Grb2-associated binder 1 (Gab1), a scaffolding adaptor protein, plays an important role in transmitting key signals that control cell growth, migration, and function from multiple tyrosine kinase receptors. This study was designed to investigate the influence of upregulation of Gab1 in endothelial progenitor cells (EPCs) stimulated with hepatocyte growth factor (HGF), and the underlying molecular mechanisms. Materials and Methods Endothelial progenitor cells isolated from human umbilical cord blood were identified and divided into four groups. EPCs in the Control group were cultured normally; those in the Control+HGF group were treated with HGF stimulation; those in the AD-Gab1 group were transfected with adenovirus containing the Gab1 gene but not treated with HGF stimulation; and, those in the AD-Gab1+HGF group were treated with both HGF stimulation and transfection with adenovirus containing the Gab1 gene. Subsequently, Gab1 expression and proliferation and migration ability were compared for EPCs grown under different conditions. Furthermore, we measured phosphorylation levels of three key proteins Gab1, SHP2, and ERK1/2. Results The AD-Gab1+HGF group had the highest expression of Gab1 and higher proliferation and migration than the other three groups. Conclusions Upregulation of Gab1 promoted HGF-induced EPC proliferation and migration. Mechanistically, HGF stimulated Gab1 tyrosine phosphorylation in EPCs, thus leading to activation of extracellular regulated MAP kinase 1/2, which is involved in proliferation and migration signaling.
Collapse
Affiliation(s)
- Qing Fan
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liyu Zhang
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng Xue
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yisheng Song
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Chang
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Gomel MA, Lee R, Grande-Allen KJ. Comparing the Role of Mechanical Forces in Vascular and Valvular Calcification Progression. Front Cardiovasc Med 2019; 5:197. [PMID: 30687719 PMCID: PMC6335252 DOI: 10.3389/fcvm.2018.00197] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Calcification is a prevalent disease in most fully developed countries and is predominantly observed in heart valves and nearby vasculature. Calcification of either tissue leads to deterioration and, ultimately, failure causing poor quality of life and decreased overall life expectancy in patients. In valves, calcification presents as Calcific Aortic Valve Disease (CAVD), in which the aortic valve becomes stenotic when calcific nodules form within the leaflets. The initiation and progression of these calcific nodules is strongly influenced by the varied mechanical forces on the valve. In turn, the addition of calcific nodules creates localized disturbances in the tissue biomechanics, which affects extracellular matrix (ECM) production and cellular activation. In vasculature, atherosclerosis is the most common occurrence of calcification. Atherosclerosis exhibits as calcific plaque formation that forms in juxtaposition to areas of low blood shear stresses. Research in these two manifestations of calcification remain separated, although many similarities persist. Both diseases show that the endothelial layer and its regulation of nitric oxide is crucial to calcification progression. Further, there are similarities between vascular smooth muscle cells and valvular interstitial cells in terms of their roles in ECM overproduction. This review summarizes valvular and vascular tissue in terms of their basic anatomy, their cellular and ECM components and mechanical forces. Calcification is then examined in both tissues in terms of disease prediction, progression, and treatment. Highlighting the similarities and differences between these areas will help target further research toward disease treatment.
Collapse
|
27
|
Dekker S, van Geemen D, van den Bogaerdt AJ, Driessen-Mol A, Aikawa E, Smits AIPM. Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves. Front Cardiovasc Med 2018; 5:105. [PMID: 30159315 PMCID: PMC6104173 DOI: 10.3389/fcvm.2018.00105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022] Open
Abstract
The creation of living heart valve replacements via tissue engineering is actively being pursued by many research groups. Numerous strategies have been described, aimed either at culturing autologous living valves in a bioreactor (in vitro) or inducing endogenous regeneration by the host via resorbable scaffolds (in situ). Whereas a lot of effort is being invested in the optimization of heart valve scaffold parameters and culturing conditions, the pathophysiological in vivo remodeling processes to which tissue-engineered heart valves are subjected upon implantation have been largely under-investigated. This is partly due to the unavailability of suitable immunohistochemical tools specific to sheep, which serves as the gold standard animal model in translational research on heart valve replacements. Therefore, the goal of this study was to comprise and validate a comprehensive sheep-specific panel of antibodies for the immunohistochemical analysis of tissue-engineered heart valve explants. For the selection of our panel we took inspiration from previous histopathological studies describing the morphology, extracellular matrix composition and cellular composition of native human heart valves throughout development and adult stages. Moreover, we included a range of immunological markers, which are particularly relevant to assess the host inflammatory response evoked by the implanted heart valve. The markers specifically identifying extracellular matrix components and cell phenotypes were tested on formalin-fixed paraffin-embedded sections of native sheep aortic valves. Markers for inflammation and apoptosis were tested on ovine spleen and kidney tissues. Taken together, this panel of antibodies could serve as a tool to study the spatiotemporal expression of proteins in remodeling tissue-engineered heart valves after implantation in a sheep model, thereby contributing to our understanding of the in vivo processes which ultimately determine long-term success or failure of tissue-engineered heart valves.
Collapse
Affiliation(s)
- Sylvia Dekker
- Soft Tissue Engineering & Mechanobiology Division, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Daphne van Geemen
- Soft Tissue Engineering & Mechanobiology Division, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Anita Driessen-Mol
- Soft Tissue Engineering & Mechanobiology Division, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Anthal I. P. M. Smits
- Soft Tissue Engineering & Mechanobiology Division, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|