1
|
Bačáková L, Chlupáč J, Filová E, Musílková J, Tomšů J, Wu YC, Svobodová L, Pražák Š, Brož A. Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering? Physiol Res 2024; 73:S335-S363. [PMID: 38836460 PMCID: PMC11412351 DOI: 10.33549/physiolres.935294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Collapse
Affiliation(s)
- L Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Blanco-Elices C, Oruezabal RI, Sánchez-Porras D, Chato-Astrain J, Campos F, Alaminos M, Garzón I, Campos A. A novel 3D biofabrication strategy to improve cell proliferation and differentiation of human Wharton's jelly mesenchymal stromal cells for cell therapy and tissue engineering. Front Bioeng Biotechnol 2023; 11:1235161. [PMID: 37636000 PMCID: PMC10448765 DOI: 10.3389/fbioe.2023.1235161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose: Obtaining sufficient numbers of cells in a short time is a major goal of cell culturing in cell therapy and tissue engineering. However, current bidimensional (2D) culture methods are associated to several limitations, including low efficiency and the loss of key cell differentiation markers on cultured cells. Methods: In the present work, we have designed a novel biofabrication method based on a three-dimensional (3D) culture system (FIBRIAGAR-3D). Human Wharton's jelly mesenchymal stromal cells (HWJSC) were cultured in 3D using 100%, 75%, 50%, and 25% concentrations of fibrin-agarose biomaterials (FA100, FA75, FA50 and FA25 group) and compared with control cells cultured using classical 2D systems (CTR-2D). Results: Our results showed a significant increase in the number of cells generated after 7 days of culture, with cells displaying numerous expansions towards the biomaterial, and a significant overexpression of the cell proliferation marker KI67 was found for the FA75 and FA100 groups. TUNEL and qRT-PCR analyses demonstrated that the use of FIBRIAGAR-3D was not associated with an induction of apoptosis by cultured cells. Instead, the 3D system retained the expression of typical phenotypic markers of HWJSC, including CD73, CD90, CD105, NANOG and OCT4, and biosynthesis markers such as types-I and IV collagens, with significant increase of some of these markers, especially in the FA100 group. Finally, our analysis of 8 cell signaling molecules revealed a significant decrease of GM-CSF, IFN-g, IL2, IL4, IL6, IL8, and TNFα, suggesting that the 3D culture system did not induce the expression of pro-inflammatory molecules. Conclusion: These results confirm the usefulness of FIBRIAGAR-3D culture systems to increase cell proliferation without altering cell phenotype of immunogenicity and opens the door to the possibility of using this novel biofabrication method in cell therapy and tissue engineering of the human cornea, oral mucosa, skin, urethra, among other structures.
Collapse
Affiliation(s)
- Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Antonio Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
3
|
Huang P, Qin X, Fan C, Wang M, Chen F, Liao M, Zhong H, Wang H, Ma L. Comparison of Biological Characteristics of Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells from Extremely Preterm and Term Infants. Tissue Eng Regen Med 2023:10.1007/s13770-023-00538-9. [PMID: 37249837 DOI: 10.1007/s13770-023-00538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Despite the progress in perinatal-neonatal medicine, complications of extremely preterm infants continue to constitute the major adverse outcomes in neonatal intensive care unit. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells (HUMSCs) may offer new hope for the treatment of intractable neonatal disorders. This study will explore the functional differences of HUMSCs between extremely preterm and term infants. METHODS UMSCs from 5 extremely preterm infants(weeks of gestation: 22+5 w,24+4 w,25+3 w,26 w,28 w) and 2 term infants(39 w,39+2 w) were isolated, and mesenchymal markers, pluripotent genes, proliferation rate were analyzed. HUVECs were injured by treated with LPS and repaired by co-cultured with HUMSCs of different gestational ages. RESULTS All HUMSCs showed fibroblast-like adherence to plastic and positively expressed surface marker of CD105,CD73 and CD90, but did not expressed CD45,CD34,CD14,CD79a and HLA-DR; HUMSCs in extremely preterm exhibited significant increase in proliferation as evidenced by CCK8, pluripotency markers OCT-4 tested by RT-PCR also showed increase. Above all, in LPS induced co-cultured inflame systerm, HUMSCs in extremely preterm were more capable to promote wound healing and tube formation in HUVEC cultures, they promoted TGFβ1 expression and inhibited IL6 expression. CONCLUSIONS Our results suggest that HUMSCs from extremely preterm infants may be more suitable as candidates in cell therapy for the preterm infants.
Collapse
Affiliation(s)
- Peng Huang
- Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518028, China
| | - Xiaofei Qin
- Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Chuiqin Fan
- Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Manna Wang
- Department of Pediatrics, The Women and Children's Medical Hospital of Guangzhou Medical University, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Fuyi Chen
- Department of Pediatrics, The Women and Children's Medical Hospital of Guangzhou Medical University, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Maochuan Liao
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Huifeng Zhong
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518028, China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Lian Ma
- Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China.
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Department of Pediatrics, The Women and Children's Medical Hospital of Guangzhou Medical University, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
4
|
Blanco-Elices C, Morales-Álvarez C, Chato-Astrain J, González-Gallardo C, Ávila-Fernández P, Campos F, Carmona R, Martín-Piedra MÁ, Garzón I, Alaminos M. Development of stromal differentiation patterns in heterotypical models of artificial corneas generated by tissue engineering. Front Bioeng Biotechnol 2023; 11:1124995. [PMID: 37034263 PMCID: PMC10076743 DOI: 10.3389/fbioe.2023.1124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: We carried out a histological characterization analysis of the stromal layer of human heterotypic cornea substitutes generated with extra-corneal cells to determine their putative usefulness in tissue engineering. Methods: Human bioartificial corneas were generated using nanostructured fibrin-agarose biomaterials with corneal stromal cells immersed within. To generate heterotypical corneas, umbilical cord Wharton's jelly stem cells (HWJSC) were cultured on the surface of the stromal substitutes to obtain an epithelial-like layer. These bioartificial corneas were compared with control native human corneas and with orthotypical corneas generated with human corneal epithelial cells on top of the stromal substitute. Both the corneal stroma and the basement membrane were analyzed using histological, histochemical and immunohistochemical methods in samples kept in culture and grafted in vivo for 12 months in the rabbit cornea. Results: Our results showed that the stroma of the bioartificial corneas kept ex vivo showed very low levels of fibrillar and non-fibrillar components of the tissue extracellular matrix. However, in vivo implantation resulted in a significant increase of the contents of collagen, proteoglycans, decorin, keratocan and lumican in the corneal stroma, showing higher levels of maturation and spatial organization of these components. Heterotypical corneas grafted in vivo for 12 months showed significantly higher contents of collagen fibers, proteoglycans and keratocan. When the basement membrane was analyzed, we found that all corneas grafted in vivo showed intense PAS signal and higher contents of nidogen-1, although the levels found in human native corneas was not reached, and a rudimentary basement membrane was observed using transmission electron microscopy. At the epithelial level, HWJSC used to generate an epithelial-like layer in ex vivo corneas were mostly negative for p63, whereas orthotypical corneas and heterotypical corneas grafted in vivo were positive. Conclusion: These results support the possibility of generating bioengineered artificial corneas using non-corneal HWJSC. Although heterotypical corneas were not completely biomimetic to the native human corneas, especially ex vivo, in vivo grafted corneas demonstrated to be highly biocompatible, and the animal cornea became properly differentiated at the stroma and basement membrane compartments. These findings open the door to the future clinical use of these bioartificial corneas.
Collapse
Affiliation(s)
- Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Carmen Morales-Álvarez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- *Correspondence: Miguel Ángel Martín-Piedra, ; Ingrid Garzón,
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- *Correspondence: Miguel Ángel Martín-Piedra, ; Ingrid Garzón,
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
5
|
Cases-Perera O, Blanco-Elices C, Chato-Astrain J, Miranda-Fernández C, Campos F, Crespo PV, Sánchez-Montesinos I, Alaminos M, Martín-Piedra MA, Garzón I. Development of secretome-based strategies to improve cell culture protocols in tissue engineering. Sci Rep 2022; 12:10003. [PMID: 35705659 PMCID: PMC9200715 DOI: 10.1038/s41598-022-14115-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Advances in skin tissue engineering have promoted the development of artificial skin substitutes to treat large burns and other major skin loss conditions. However, one of the main drawbacks to bioengineered skin is the need to obtain a large amount of viable epithelial cells in short periods of time, making the skin biofabrication process challenging and slow. Enhancing skin epithelial cell cultures by using mesenchymal stem cells secretome can favor the scalability of manufacturing processes for bioengineered skin. The effects of three different types of secretome derived from human mesenchymal stem cells, e.g. hADSC-s (adipose cells), hDPSC-s (dental pulp) and hWJSC-s (umbilical cord), were evaluated on cultured skin epithelial cells during 24, 48, 72 and 120 h to determine the potential of this product to enhance cell proliferation and improve biofabrication strategies for tissue engineering. Then, secretomes were applied in vivo in preliminary analyses carried out on Wistar rats. Results showed that the use of secretomes derived from mesenchymal stem cells enhanced currently available cell culture protocols. Secretome was associated with increased viability, proliferation and migration of human skin epithelial cells, with hDPSC-s and hWJSC-s yielding greater inductive effects than hADSC-s. Animals treated with hWJSC-s and especially, hDPSC-s tended to show enhanced wound healing in vivo with no detectable side effects. Mesenchymal stem cells derived secretomes could be considered as a promising approach to cell-free therapy able to improve skin wound healing and regeneration.
Collapse
Affiliation(s)
- O Cases-Perera
- Department of Plastic Surgery, University Hospital Virgen de las Nieves, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - C Blanco-Elices
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - J Chato-Astrain
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - C Miranda-Fernández
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
| | - F Campos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - P V Crespo
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - I Sánchez-Montesinos
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| | - M Alaminos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
| | - M A Martín-Piedra
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
| | - I Garzón
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| |
Collapse
|
6
|
Histological Profiling of the Human Umbilical Cord: A Potential Alternative Cell Source in Tissue Engineering. J Pers Med 2022; 12:jpm12040648. [PMID: 35455764 PMCID: PMC9028794 DOI: 10.3390/jpm12040648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The embryonic development of the human umbilical cord (hUC) is complex, and different regions can be identified in this structure. The aim of this work is to characterize the hUC at in situ and ex vivo levels to stablish their potential use in vascular regeneration. Human umbilical cords were obtained and histologically prepared for in the situ analysis of four hUC regions (intervascular—IV, perivascular—PV, subaminoblastic—SAM, and Wharton’s jelly—WH), and primary cell cultures of mesenchymal stem cells (hUC-MSC) isolated from each region were obtained. The results confirmed the heterogeneity of the hUC, with the IV and PV zones tending to show the higher in situ expression of several components of the extracellular matrix (collagens, proteoglycans, and glycosaminoglycans), vimentin, and MSC markers (especially CD73), although isolation and ex vivo culture resulted in a homogeneous cell profile. Three vascular markers were positive in situ, especially vWF, followed by CD34 and CD31, and isolation and culture revealed that the region associated with the highest expression of vascular markers was IV, followed by PV. These results confirm the heterogeneity of the hUC and the need for selecting cells from specific regions of the hUC for particular applications in tissue engineering.
Collapse
|
7
|
Sánchez-Porras D, Caro-Magdaleno M, González-Gallardo C, García-García ÓD, Garzón I, Carriel V, Campos F, Alaminos M. Generation of a Biomimetic Substitute of the Corneal Limbus Using Decellularized Scaffolds. Pharmaceutics 2021; 13:1718. [PMID: 34684011 PMCID: PMC8541096 DOI: 10.3390/pharmaceutics13101718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with severe limbal damage and limbal stem cell deficiency are a therapeutic challenge. We evaluated four decellularization protocols applied to the full-thickness and half-thickness porcine limbus, and we used two cell types to recellularize the decellularized limbi. The results demonstrated that all protocols achieved efficient decellularization. However, the method that best preserved the transparency and composition of the limbus extracellular matrix was the use of 0.1% SDS applied to the half-thickness limbus. Recellularization with the limbal epithelial cell line SIRC and human adipose-derived mesenchymal stem cells (hADSCs) was able to generate a stratified epithelium able to express the limbal markers p63, pancytokeratin, and crystallin Z from day 7 in the case of SIRC and after 14-21 days of induction when hADSCs were used. Laminin and collagen IV expression was detected at the basal lamina of both cell types at days 14 and 21 of follow-up. Compared with control native limbi, tissues recellularized with SIRC showed adequate picrosirius red and alcian blue staining intensity, whereas limbi containing hADSCs showed normal collagen staining intensity. These preliminary results suggested that the limbal substitutes generated in this work share important similarities with the native limbus and could be potentially useful in the future.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Manuel Caro-Magdaleno
- Division of Ophthalmology, University Hospital Virgen Macarena, Universidad de Sevilla, E41009 Seville, Spain;
| | | | - Óscar Darío García-García
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
- Doctoral Programme in Biomedicine, Escuela Internacional de Posgrado, Universidad de Granada, E18071 Granada, Spain
| | - Ingrid Garzón
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Víctor Carriel
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Fernando Campos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain; (D.S.-P.); (Ó.D.G.-G.); (I.G.); (V.C.)
| |
Collapse
|
8
|
Generation and Evaluation of Novel Biomaterials Based on Decellularized Sturgeon Cartilage for Use in Tissue Engineering. Biomedicines 2021; 9:biomedicines9070775. [PMID: 34356839 PMCID: PMC8301329 DOI: 10.3390/biomedicines9070775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Because cartilage has limited regenerative capability, a fully efficient advanced therapy medicinal product is needed to treat severe cartilage damage. We evaluated a novel biomaterial obtained by decellularizing sturgeon chondral endoskeleton tissue for use in cartilage tissue engineering. In silico analysis suggested high homology between human and sturgeon collagen proteins, and ultra-performance liquid chromatography confirmed that both types of cartilage consisted mainly of the same amino acids. Decellularized sturgeon cartilage was recellularized with human chondrocytes and four types of human mesenchymal stem cells (MSC) and their suitability for generating a cartilage substitute was assessed ex vivo and in vivo. The results supported the biocompatibility of the novel scaffold, as well as its ability to sustain cell adhesion, proliferation and differentiation. In vivo assays showed that the MSC cells in grafted cartilage disks were biosynthetically active and able to remodel the extracellular matrix of cartilage substitutes, with the production of type II collagen and other relevant components, especially when adipose tissue MSC were used. In addition, these cartilage substitutes triggered a pro-regenerative reaction mediated by CD206-positive M2 macrophages. These preliminary results warrant further research to characterize in greater detail the potential clinical translation of these novel cartilage substitutes.
Collapse
|
9
|
Garzón I, Jaimes-Parra BD, Pascual-Geler M, Cózar JM, Sánchez-Quevedo MDC, Mosquera-Pacheco MA, Sánchez-Montesinos I, Fernández-Valadés R, Campos F, Alaminos M. Biofabrication of a Tubular Model of Human Urothelial Mucosa Using Human Wharton Jelly Mesenchymal Stromal Cells. Polymers (Basel) 2021; 13:1568. [PMID: 34068343 PMCID: PMC8153323 DOI: 10.3390/polym13101568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Several models of bioartificial human urothelial mucosa (UM) have been described recently. In this study, we generated novel tubularized UM substitutes using alternative sources of cells. Nanostructured fibrin-agarose biomaterials containing fibroblasts isolated from the human ureter were used as stroma substitutes. Then, human Wharton jelly mesenchymal stromal cells (HWJSC) were used to generate an epithelial-like layer on top. Three differentiation media were used for 7 and 14 days. Results showed that the biofabrication methods used here succeeded in generating a tubular structure consisting of a stromal substitute with a stratified epithelial-like layer on top, especially using a medium containing epithelial growth and differentiation factors (EM), although differentiation was not complete. At the functional level, UM substitutes were able to synthesize collagen fibers, proteoglycans and glycosaminoglycans, although the levels of control UM were not reached ex vivo. Epithelial differentiation was partially achieved, especially with EM after 14 days of development, with expression of keratins 7, 8, and 13 and pancytokeratin, desmoplakin, tight-junction protein-1, and uroplakin 2, although at lower levels than controls. These results confirm the partial urothelial differentiative potential of HWJSC and suggest that the biofabrication methods explored here were able to generate a potential substitute of the human UM for future clinical use.
Collapse
Affiliation(s)
- Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | - Boris Damián Jaimes-Parra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Department of Histology, Faculty of Health Sciences, University Autónoma de Bucaramanga, 680003 Santander, Colombia
| | | | - José Manuel Cózar
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Division of Urology, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - María del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | | | - Indalecio Sánchez-Montesinos
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Ricardo Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| |
Collapse
|
10
|
Garzón I, Chato-Astrain J, González-Gallardo C, Ionescu A, Cardona JDLC, Mateu M, Carda C, Pérez MDM, Martín-Piedra MÁ, Alaminos M. Long-Term in vivo Evaluation of Orthotypical and Heterotypical Bioengineered Human Corneas. Front Bioeng Biotechnol 2020; 8:681. [PMID: 32671048 PMCID: PMC7327129 DOI: 10.3389/fbioe.2020.00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose Human cornea substitutes generated by tissue engineering currently require limbal stem cells for the generation of orthotypical epithelial cell cultures. We recently reported that bioengineered corneas can be fabricated in vitro from a heterotypical source obtained from Wharton’s jelly in the human umbilical cord (HWJSC). Methods Here, we generated a partial thickness cornea model based on plastic compression nanostructured fibrin-agarose biomaterials with cornea epithelial cells on top, as an orthotypical model (HOC), or with HWJSC, as a heterotypical model (HHC), and determined their potential in vivo usefulness by implantation in an animal model. Results No major side effects were seen 3 and 12 months after implantation of either bioengineered partial cornea model in rabbit corneas. Clinical results determined by slit lamp and optical coherence tomography were positive after 12 months. Histological and immunohistochemical findings demonstrated that in vitro HOC and HHC had moderate levels of stromal and epithelial cell marker expression, whereas in vivo grafted corneas were more similar to control corneas. Conclusion These results suggest that both models are potentially useful to treat diseases requiring anterior cornea replacement, and that HHC may be an efficient alternative to the use of HOC which circumvents the need to generate cornea epithelial cell cultures.
Collapse
Affiliation(s)
- Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Jesus Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Ana Ionescu
- Biomaterials Optics Group, Department of Optics, University of Granada, Granada, Spain
| | | | - Miguel Mateu
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Carmen Carda
- Department of Histology and Pathology, University of Valencia, Valencia, Spain
| | - María Del Mar Pérez
- Biomaterials Optics Group, Department of Optics, University of Granada, Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|