1
|
Semitela A, Marques PAAP, Completo A. Strategies to engineer articular cartilage with biomimetic zonal features: a review. Biomater Sci 2024. [PMID: 39463257 DOI: 10.1039/d4bm00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.
Collapse
Affiliation(s)
- Angela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula A A P Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Koh RH, Kim J, Kim JU, Kim SL, Rajendran AK, Lee SS, Lee H, Kim JH, Jeong JH, Hwang Y, Bae JW, Hwang NS. Bioceramic-mediated chondrocyte hypertrophy promotes calcified cartilage formation for rabbit osteochondral defect repair. Bioact Mater 2024; 40:306-317. [PMID: 38978806 PMCID: PMC11228467 DOI: 10.1016/j.bioactmat.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface. Multilayered or gradient scaffolds, often in conjunction with stem cells and growth factors, have been developed to mimic the respective layers for osteochondral defect repair. In this study, we designed a hyaline cartilage-hypertrophic cartilage bilayer graft (RGD/RGDW) with chondrocytes. Previously, we demonstrated that RGD peptide-modified chondroitin sulfate cryogel (RGD group) is chondro-conductive and capable of hyaline cartilage formation. Here, we incorporated whitlockite (WH), a Mg2+-containing calcium phosphate, into RGD cryogel (RGDW group) to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage. This is the first study to use WH to produce hypertrophic cartilage. Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo, which mineralized into calcified cartilage in bone microenvironment. Subsequently, RGD cryogel and RGDW cryogel were combined into bilayer (RGD/RGDW group) and implanted into rabbit osteochondral defect, where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation. While the RGD group (monolayer) formed hyaline-like neotissue that extends into the subchondral bone, the RGD/RGDW group (bilayer) regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.
Collapse
Affiliation(s)
- Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Junhee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Seunghyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Seunghun S Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 10326, South Korea
| | - Heesoo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Jong Woo Bae
- Department of Orthopaedic Surgery, Konkuk University Chungju Hospital, Konkuk University School of Medicine, Chungju, 27376, South Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
- BioMAX Institute, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
3
|
Kong F, Xia P, Shi Y, Ye Z, Zhang X, Yu C, Cheng K, Li X. Ultrasound-targeted microbubble destruction facilitates cartilage repair through increased the migration of mesenchymal stem cells via HIF-1α-mediated glycolysis pathway in rats. Biochem Biophys Res Commun 2024; 726:150229. [PMID: 38908346 DOI: 10.1016/j.bbrc.2024.150229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) can treat osteoarthritis (OA), but their therapeutic efficacy is poor to date due to low migration efficiency. This study aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) could ameliorate cartilage repair efficiency through facilitating the migration of MSCs via hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis regulatory pathway in OA model rats. METHODS OA rats were treated with MSCs alone or in combination with UTMD, respectively, for 4 weeks. Cartilage histopathology, MSCs migration efficiency, von Frey fiber thresholds, and the expression levels of collagen II and MMP-13 were measured. Further, MSCs were extracted from the bone marrow of rats, cocultured with osteoarthritic chondrocytes, transfected to siRNA-HIF-1α, and subjected to UTMD for 4 days. Glucose consumption, lactate production, and cell migration efficiency were assessed. The protein expression levels of HIF-1α, HK2, PKM2, and GLUT1 were measured, respectively. RESULTS In OA rat model, NC-MSCs + UTMD improved migration efficiency, increased collagen II expression, decreased MMP-13 expression, and delayed osteoarthritis progression. Silencing HIF-1α attenuated the effects induced by UTMD. In vitro, UTMD led to increases in MSC activity and migration, glucose consumption, lactate production, and the protein expression of HIF-1α, HK2, PKM2, and GLUT1 expression, all of which were reversed upon HIF-1α silencing. CONCLUSION UTMD enhances MSCs migration and improves cartilage repair efficiency through the HIF-1α-mediated glycolytic regulatory pathway, providing a novel therapy strategy for knee osteoarthritis.
Collapse
Affiliation(s)
- Fane Kong
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Yi Shi
- Department of Rehabilitation Medicine, Nanjing Normal University of Special Education, 1 Shennong Road, Nanjing, 210046, China
| | - Ziqi Ye
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Xiao Zhang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Changjun Yu
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
4
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
6
|
Salehiamin M, Ghoraishizadeh S, Habibpour A, Tafreshi S, Abolhasani MM, Shemiranykia Z, Sefat KK, Esmaeili J. Simultaneous usage of sulforaphane nanoemulsion and tannic acid in ternary chitosan/gelatin/PEG hydrogel for knee cartilage tissue engineering: In vitro and in vivo study. Int J Biol Macromol 2024; 271:132692. [PMID: 38806085 DOI: 10.1016/j.ijbiomac.2024.132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
The therapeutic potential of tissue engineering in addressing articular cartilage defects has been a focal point of research for numerous years. Despite its promising outlook, a persistent challenge within this domain is the lack of sufficient functional integration between engineered and natural tissues. This study introduces a novel approach that employs a combination of sulforaphane (SFN) nanoemulsion and tannic acid to enhance cartilage tissue engineering and promote tissue integration in a rat knee cartilage defect model. To substantiate our hypothesis, we conducted a series of in vitro and in vivo experiments. The SFN nanoemulsion was characterized using DLS, zeta potential, and TEM analyses. Subsequently, it was incorporated into a ternary polymer hydrogel composed of chitosan, gelatin, and polyethylene glycol. We evaluated the hydrogel with (H-SFN) and without (H) the SFN nanoemulsion through a comprehensive set of physicochemical, mechanical, and biological analyses. For the in vivo study, nine male Wistar rats were divided into three groups: no implant (Ctrl), H, and H-SFN. After inducing a cartilage defect, the affected area was treated with tannic acid and subsequently implanted with the hydrogels. Four weeks post-implantation, the harvested cartilage underwent histological examination employing H&E, safranin O/fast green, alcian blue, and immunohistochemistry staining techniques. Our results revealed that the SFN nanodroplets had an average diameter of 75 nm and a surface charge of -11.58 mV. Moreover, degradation, swelling rates, hydrophilicity, and elasticity features of the hydrogel incorporating SFN were improved. Histopathological analysis indicated a higher production of GAGs and collagen in the H-SFN group. Furthermore, the H-SFN group exhibited superior cartilage regeneration and tissue integration compared to the Ctrl and H groups. In conclusion, the findings of this study suggest the importance of considering cell protective properties in the fabrication of scaffolds for knee cartilage defects, emphasizing the potential significance of the proposed SFN nanoemulsion and tannic acid approach in advancing the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran
| | | | - Ava Habibpour
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sadaf Tafreshi
- Hygienics Department, Biomedical Engineering, Tehran Medical Sciences Islamic Azad University, Tehran, Iran; Materials Department, Biomedical Engineering, Materials and Energy Research Institute, Karaj, Iran
| | - Mohammad Mahdi Abolhasani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center (MERC), Karaj, Iran
| | | | - Karim Kaveh Sefat
- Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Javad Esmaeili
- Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| |
Collapse
|
7
|
Wei B, Xu Y, Tang C, Liu NQ, Li X, Yao Q, Wang L. An injectable active hydrogel based on BMSC-derived extracellular matrix for cartilage regeneration enhancement. BIOMATERIALS ADVANCES 2024; 160:213857. [PMID: 38657287 DOI: 10.1016/j.bioadv.2024.213857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Articular cartilage injury impairs joint function and necessitates orthopedic intervention to restore the structure and function of the cartilage. Extracellular matrix (ECM) scaffolds derived from bone marrow mesenchymal stem cells (BMSCs) can effectively promote cell adhesion, proliferation, and chondrogenesis. However, pre-shaped ECM scaffolds have limited applicability due to their poor fit with the irregular surface of most articular cartilage defects. In this study, we fabricated an injectable active ECM hydrogel from autologous BMSCs-derived ECM by freeze-drying, liquid nitrogen milling, and enzymatic digestion. Moreover, our in vitro and in vivo results demonstrated that the prepared hydrogel enhanced chondrocyte adhesion and proliferation, chondrogenesis, cartilage regeneration, and integration with host tissue, respectively. These findings indicate that active ECM components can provide trophic support for cell proliferation and differentiation, restoring the structure and function of damaged cartilage.
Collapse
Affiliation(s)
- Bo Wei
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Yan Xu
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Cheng Tang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA 90007, USA
| | - Xuxiang Li
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liming Wang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
8
|
Peifer C, Oláh T, Venkatesan JK, Goebel L, Orth P, Schmitt G, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M, Madry H. Locally Directed Recombinant Adeno- Associated Virus-Mediated IGF-1 Gene Therapy Enhances Osteochondral Repair and Counteracts Early Osteoarthritis In Vivo. Am J Sports Med 2024; 52:1336-1349. [PMID: 38482805 DOI: 10.1177/03635465241235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN Controlled laboratory study. METHODS Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.
Collapse
Affiliation(s)
- Carolin Peifer
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | | | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
9
|
Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop 2024; 11:e12016. [PMID: 38572391 PMCID: PMC10985633 DOI: 10.1002/jeo2.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Abstract Intact articular cartilage plays a vital role in joint homeostasis. Local cartilage repairs, where defects in the cartilage matrix are filled in and sealed to congruity, are therefore important treatments to restore a joint equilibrium. The base for all cartilage repairs is the cells; either chondrocytes or chondrogeneic cells from bone, synovia and fat tissue. The surgical options include bone marrow stimulation techniques alone or augmented with scaffolds, chondrogeneic cell implantations and osteochondral auto- or allografts. The current trend is to choose one-stage procedures being easier to use from a regulatory point of view. This narrative review provides an overview of the current nonoperative and surgical options available for the repair of various cartilage lesions. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, Team Orthopedic Research Region Halland‐TOR, Region Halland Orthopaedics, Varberg HospitalUniversity of GothenburgVarbergSweden
| |
Collapse
|
10
|
Trengove A, Duchi S, Onofrillo C, Sooriyaaratchi D, Di Bella C, O'Connor AJ. Bridging bench to body: ex vivo models to understand articular cartilage repair. Curr Opin Biotechnol 2024; 86:103065. [PMID: 38301593 DOI: 10.1016/j.copbio.2024.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
With little to no ability to self-regenerate, human cartilage defects of the knee remain a major clinical challenge. Tissue engineering strategies include delivering specific types of cells and biomaterials to the injured cartilage for restoration of architecture and function. Pre-clinical models to test the efficacy of the therapies come with high costs and ethical issues, and imperfect prediction of performance in humans. Ex vivo models represent an alternative avenue to trial cartilage tissue engineering. Defined as viable explanted cartilage samples, ex vivo models can be cultured with a cell-laden biomaterial or tissue-engineered construct to evaluate cartilage repair. Though human and animal ex vivo models are currently used in the field, there is a need for alternative methods to assess the strength of integration, to increase throughput and manage variability and to optimise and standardise culture conditions, enhancing the utility of these models overall.
Collapse
Affiliation(s)
- Anna Trengove
- Department of Biomedical Engineering, The Graeme Clark Institute, The University of Melbourne, Victoria, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Serena Duchi
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Orthopaedic Surgery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Carmine Onofrillo
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Orthopaedic Surgery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Dulani Sooriyaaratchi
- Department of Biomedical Engineering, The Graeme Clark Institute, The University of Melbourne, Victoria, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Claudia Di Bella
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Orthopaedic Surgery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Surgery, The University of Melbourne, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, The Graeme Clark Institute, The University of Melbourne, Victoria, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
11
|
Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Yadav S. Critical Challenges and Frontiers in Cartilage Tissue Engineering. Cureus 2024; 16:e53095. [PMID: 38414693 PMCID: PMC10897756 DOI: 10.7759/cureus.53095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
Cartilage tissue engineering has witnessed considerable advancements since its establishment in 1977, evolving from rudimentary surgical interventions to more nuanced biotechnological approaches. The field has navigated various challenges encompassing cellular considerations, scaffold material selection, environmental factors, and ethical and regulatory constraints. Innovations in cell source diversification, including chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells, have been instrumental but not without their limitations, such as restricted cell proliferation and ethical dilemmas. Scaffold materials offer a unique dichotomy between natural substrates, which provide biocompatibility, and synthetic matrices, which grant mechanical integrity. However, translational hurdles in clinical applicability persist. Environmental factors, such as growth factors and thermal and mechanical forces, have been recognized as influential variables in cellular behavior and tissue maturation. Despite these strides, integration with host tissue remains a significant challenge, involving mechanical and immunological complexities. Looking forward, emerging technologies such as 3D and 4D printing, nanotechnology, and molecular therapies hold the promise of refining scaffold design and enhancing tissue regeneration. As the field continues to mature, a multidisciplinary approach encompassing thorough scientific investigation and collaboration is indispensable for overcoming existing challenges and realizing its full clinical potential.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| | - Arulkumar Nallakumarasamy
- Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, IND
| | | | - Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| |
Collapse
|
12
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
13
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
14
|
Hu G, Liang Z, Fan Z, Yu M, Pan Q, Nan Y, Zhang W, Wang L, Wang X, Hua Y, Zhou G, Ren W. Construction of 3D-Bioprinted cartilage-mimicking substitute based on photo-crosslinkable Wharton's jelly bioinks for full-thickness articular cartilage defect repair. Mater Today Bio 2023; 21:100695. [PMID: 37384040 PMCID: PMC10293771 DOI: 10.1016/j.mtbio.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
Three-dimensional (3D) bioprinted cartilage-mimicking substitutes for full-thickness articular cartilage defect repair have emerged as alternatives to in situ defect repair models. However, there has been very limited breakthrough in cartilage regeneration based on 3D bioprinting owing to the lack of ideal bioinks with printability, biocompatibility, bioactivity, and suitable physicochemical properties. In contrast to animal-derived natural polymers or acellular matrices, human-derived Wharton's jelly is biocompatible and hypoimmunogenic with an abundant source. Although acellular Wharton's jelly can mimic the chondrogenic microenvironment, it remains challenging to prepare both printable and biologically active bioinks from this material. Here, we firstly prepared methacryloyl-modified acellular Wharton's jelly (AWJMA) using a previously established photo-crosslinking strategy. Subsequently, we combined methacryloyl-modified gelatin with AWJMA to obtain a hybrid hydrogel that exhibited both physicochemical properties and biological activities that were suitable for 3D bioprinting. Moreover, bone marrow mesenchymal stem cell-loaded 3D-bioprinted cartilage-mimicking substitutes had superior advantages for the survival, proliferation, spreading, and chondrogenic differentiation of bone marrow mesenchymal stem cells, which enabled satisfactory repair of a model of full-thickness articular cartilage defect in the rabbit knee joint. The current study provides a novel strategy based on 3D bioprinting of cartilage-mimicking substitutes for full-thickness articular cartilage defect repair.
Collapse
Affiliation(s)
- Guanhuai Hu
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhuo Liang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Qingqing Pan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yan Nan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Wei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| | - Lei Wang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiansong Wang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| | - Yujie Hua
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| | - Wenjie Ren
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| |
Collapse
|
15
|
Bonato A, Fisch P, Ponta S, Fercher D, Manninen M, Weber D, Eklund KK, Barreto G, Zenobi‐Wong M. Engineering Inflammation-Resistant Cartilage: Bridging Gene Therapy and Tissue Engineering. Adv Healthc Mater 2023; 12:e2202271. [PMID: 36841937 PMCID: PMC11468558 DOI: 10.1002/adhm.202202271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/09/2023] [Indexed: 02/27/2023]
Abstract
Articular cartilage defects caused by traumatic injury rarely heal spontaneously and predispose into post-traumatic osteoarthritis. In the current autologous cell-based treatments the regenerative process is often hampered by the poor regenerative capacity of adult cells and the inflammatory state of the injured joint. The lack of ideal treatment options for cartilage injuries motivated the authors to tissue engineer a cartilage tissue which would be more resistant to inflammation. A clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout of TGF-β-activated kinase 1 (TAK1) gene in polydactyly chondrocytes provides multivalent protection against the signals that activate the pro-inflammatory and catabolic NF-κB pathway. The TAK1-KO chondrocytes encapsulate into a hyaluronan hydrogel deposit copious cartilage extracellular matrix proteins and facilitate integration onto native cartilage, even under proinflammatory conditions. Furthermore, when implanted in vivo, compared to WT fewer pro-inflammatory M1 macrophages invade the cartilage, likely due to the lower levels of cytokines secreted by the TAK1-KO polydactyly chondrocytes. The engineered cartilage thus represents a new paradigm-shift for the creation of more potent and functional tissues for use in regenerative medicine.
Collapse
Affiliation(s)
- Angela Bonato
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| | - Philipp Fisch
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| | - Simone Ponta
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| | - David Fercher
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| | | | - Daniel Weber
- Division of Hand SurgeryUniversity Children's HospitalZürich8032Switzerland
| | - Kari K. Eklund
- Orton Orthopedic Hospital HelsinkiHelsinki00280Finland
- Department of RheumatologyUniversity of Helsinki and Helsinki University HospitalHelsinki00014Finland
| | - Goncalo Barreto
- Orton Orthopedic Hospital HelsinkiHelsinki00280Finland
- Translational Immunology Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinki00014Finland
| | - Marcy Zenobi‐Wong
- Department of Health Sciences and TechnologyETH ZürichZürich8093Switzerland
| |
Collapse
|
16
|
Kleuskens MWA, Crispim JF, van Doeselaar M, van Donkelaar CC, Janssen RPA, Ito K. Neo-cartilage formation using human nondegenerate versus osteoarthritic chondrocyte-derived cartilage organoids in a viscoelastic hydrogel. J Orthop Res 2023. [PMID: 36866819 DOI: 10.1002/jor.25540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Current regenerative cartilage therapies are associated with several drawbacks such as dedifferentiation of chondrocytes during expansion and the formation of fibrocartilage. Optimized chondrocyte expansion and tissue formation could lead to better clinical results of these therapies. In this study, a novel chondrocyte suspension expansion protocol that includes the addition of porcine notochordal cell-derived matrix was used to self-assemble human chondrocytes from osteoarthritic (OA) and nondegenerate (ND) origin into cartilage organoids containing collagen type II and proteoglycans. Proliferation rate and viability were similar for OA and ND chondrocytes and organoids formed had a similar histologic appearance and gene expression profile. Organoids were then encapsulated in viscoelastic alginate hydrogels to form larger tissues. Chondrocytes on the outer bounds of the organoids produced a proteoglycan-rich matrix to bridge the space between organoids. In hydrogels containing ND organoids some collagen type I was observed between the organoids. Surrounding the bulk of organoids in the center of the gels, in both OA and ND gels a continuous tissue containing cells, proteoglycans and collagen type II had been produced. No difference was observed in sulphated glycosaminoglycan and hydroxyproline content between gels containing organoids from OA or ND origin after 28 days. It was concluded that OA chondrocytes, which can be harvested from leftover surgery tissue, perform similar to ND chondrocytes in terms of human cartilage organoid formation and matrix production in alginate gels. This opens possibilities for their potential to serve as a platform for cartilage regeneration but also as an in vitro model to study pathways, pathology, or drug development.
Collapse
Affiliation(s)
- Meike W A Kleuskens
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob P A Janssen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Orthopaedic Surgery and Trauma, Máxima Medical Center, Eindhoven-Veldhoven, The Netherlands.,Department of Paramedical Sciences, Fontys University of Applied Sciences, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
17
|
Chan KM, Thurlow NA, Maden M, Allen KD. African Spiny Mice ( Acomys) Exhibit Mild Osteoarthritis Following Meniscal Injury. Cartilage 2023; 14:94-105. [PMID: 36802989 PMCID: PMC10076895 DOI: 10.1177/19476035221149146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVE Hyaline cartilage has limited innate healing abilities and hyaline cartilage loss is a hallmark of osteoarthritis (OA). Animal models can provide important insights into cartilage regeneration potential. One such animal model, the African spiny mouse (Acomys), is capable of regenerating skin, skeletal muscle, and elastic cartilage. This study aims to evaluate whether these regenerative abilities protect Acomys with meniscal injury from OA-related joint damage and behaviors indicative of joint pain and dysfunction. DESIGN Acomys received destabilization of the medial meniscus (DMM) surgery (n = 11) or a skin incision (n = 10). Gait testing occurred at 4, 6, 8, 10, and 12 weeks after surgery. At endpoint, joints were processed for histology to assess cartilage damage. RESULTS Following joint injury, Acomys with DMM surgery altered their walking patterns by increasing the percent stance time on the contralateral limb relative to the operated limb, thereby reducing the amount of time the injured limb must bear weight on its own throughout the gait cycle. Histological grading indicated evidence of OA-related joint damage in Acomys with DMM surgery; these changes were primarily driven by loss of structural integrity in the hyaline cartilage. CONCLUSIONS Acomys developed gait compensations, and the hyaline cartilage in Acomys is not fully protected from OA-related joint damage following meniscal injury, although this damage was less severe than that historically found in C57BL/6 mice with an identical injury. Thus, Acomys do not appear to be completely protected from OA-related changes, despite the ability to regenerate other wounded tissues.
Collapse
Affiliation(s)
- Kiara M. Chan
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nat A. Thurlow
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- Department of Biology & UF Genetics
Institute, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopedics and Sports
Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Bone Marrow-Derived Mesenchymal Stem Cell Implants for the Treatment of Focal Chondral Defects of the Knee in Animal Models: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24043227. [PMID: 36834639 PMCID: PMC9958893 DOI: 10.3390/ijms24043227] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Osteoarthritis remains an unfortunate long-term consequence of focal cartilage defects of the knee. Associated with functional loss and pain, it has necessitated the exploration of new therapies to regenerate cartilage before significant deterioration and subsequent joint replacement take place. Recent studies have investigated a multitude of mesenchymal stem cell (MSC) sources and polymer scaffold compositions. It is uncertain how different combinations affect the extent of integration of native and implant cartilage and the quality of new cartilage formed. Implants seeded with bone marrow-derived MSCs (BMSCs) have demonstrated promising results in restoring these defects, largely through in vitro and animal studies. A PRISMA systematic review and meta-analysis was conducted using five databases (PubMed, MEDLINE, EMBASE, Web of Science, and CINAHL) to identify studies using BMSC-seeded implants in animal models of focal cartilage defects of the knee. Quantitative results from the histological assessment of integration quality were extracted. Repair cartilage morphology and staining characteristics were also recorded. Meta-analysis demonstrated that high-quality integration was achieved, exceeding that of cell-free comparators and control groups. This was associated with repair tissue morphology and staining properties which resembled those of native cartilage. Subgroup analysis showed better integration outcomes for studies using poly-glycolic acid-based scaffolds. In conclusion, BMSC-seeded implants represent promising strategies for the advancement of focal cartilage defect repair. While a greater number of studies treating human patients is necessary to realize the full clinical potential of BMSC therapy, high-quality integration scores suggest that these implants could generate repair cartilage of substantial longevity.
Collapse
|
19
|
Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol 2023; 11:1125405. [PMID: 36824369 PMCID: PMC9941961 DOI: 10.3389/fcell.2023.1125405] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Cartilage organoids have emerged as powerful modelling technology for recapitulation of joint embryonic events, and cartilage regeneration, as well as pathophysiology of cartilage-associated diseases. Recent breakthroughs have uncovered "mini-joint" models comprising of multicellular components and extracellular matrices of joint cartilage for development of novel disease-modifying strategies for personalized therapeutics of cartilage-associated diseases. Here, we hypothesized that LGR5-expressing embryonic joint chondroprogenitor cells are ideal stem cells for the generation of cartilage organoids as "mini-joints" ex vivo "in a dish" for embryonic joint development, cartilage repair, and cartilage-associated disease modelling as essential research models of drug screening for further personalized regenerative therapy. The pilot research data suggested that LGR5-GFP-expressing embryonic joint progenitor cells are promising for generation of cartilage organoids through gel embedding method, which may exert various preclinical and clinical applications for realization of personalized regenerative therapy in the future.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Min Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| |
Collapse
|
20
|
Tee CA, Han J, Hui JHP, Lee EH, Yang Z. Perspective in Achieving Stratified Articular Cartilage Repair Using Zonal Chondrocytes. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36416231 DOI: 10.1089/ten.teb.2022.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Articular cartilage is composed of superficial, medial, and deep zones, which endow the tissue with biphasic mechanical properties to withstand shearing force and compressional loading. The tissue has very limited self-healing capacity once it is damaged due to its avascular nature. To prevent the early onset of osteoarthritis, surgical intervention is often needed to repair the injured cartilage. Current noncell-based and cell-based treatments focus on the regeneration of homogeneous cartilage to achieve bulk compressional properties without recapitulating the zonal matrix and mechanical properties, and often oversight in aiding cartilage integration between host and repair cartilage. It is hypothesized that achieving zonal architecture in articular cartilage tissue repair could improve the structural and mechanical integrity and thus the life span of the regenerated tissue. Engineering stratified cartilage constructs using zonal chondrocytes have been hypothesized to improve the functionality and life span of the regenerated tissues. However, stratified articular cartilage repair has yet to be realized to date due to the lack of an efficient zonal chondrocyte isolation method and an expansion platform that would allow both cell propagation and phenotype maintenance. Various attempts and challenges in achieving stratified articular cartilage repair in a clinical setting are evaluated. In this review, different perspectives on achieving stratified articular cartilage repair using zonal chondrocytes are described. The effectiveness of different zonal chondrocyte isolation and zonal chondrocyte phenotype maintenance methodologies during expansion are compared, with the focus on recent advancements in zonal chondrocyte isolation and expansion that could present a possible strategy to overcome the limitation of applying zonal chondrocytes to facilitate zonal architecture development in articular cartilage regeneration. Impact Statement The zonal properties of articular cartilage contribute to the biphasic mechanical properties of the tissues. Recapitulation of the zonal architecture in regenerated articular cartilage has been hypothesized to improve the mechanical integrity and life span of the regenerated tissue. This review provides a comprehensive discussion on the current state of research relevant to achieving stratified articular cartilage repair using zonal chondrocytes from different perspectives. This review further elaborates on a zonal chondrocyte production pipeline that can potentially overcome the current clinical challenges and future work needed to realize stratified zonal chondrocyte implantation in a clinical setting.
Collapse
Affiliation(s)
- Ching Ann Tee
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Electrical Engineering and Computer Science, Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Eng Hin Lee
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
PEG Reinforced Scaffold Promotes Uniform Distribution of Human MSC-Created Cartilage Matrix. Gels 2022; 8:gels8120794. [PMID: 36547318 PMCID: PMC9778361 DOI: 10.3390/gels8120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Previously, we used a gelatin/hyaluronic acid (GH)-based scaffold to induce chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSC). The results showed that hBMSCs underwent robust chondrogenesis and facilitated in vivo cartilage regeneration. However, it was noticed that the GH scaffolds display a compressive modulus that is markedly lower than native cartilage. In this study, we aimed to enhance the mechanical strength of GH scaffolds without significantly impairing their chondrosupportive property. Specifically, polyethylene glycol diacrylate (PEGDA) and photoinitiators were infiltrated into pre-formed hBMSC-laden GH scaffolds and then photo-crosslinked. Results showed that infiltration of PEG at the beginning of chondrogenesis significantly increased the deposition of glycosaminoglycans (GAGs) in the central area of the scaffold. To explore the mechanism, we compared the cell migration and proliferation in the margin and central areas of GH and PEG-infiltrated GH scaffolds (GH+PEG). Limited cell migration was noticed in both groups, but more proliferating cells were observed in GH than in GH+PEG. Lastly, the in vitro repairing study with bovine cartilage explants showed that PEG- impregnated scaffolds integrated well with host tissues. These results indicate that PEG-GH hybrid scaffolds, created through infiltrating PEG into pre-formed GH scaffolds, display good integration capacity and represent a new tool for the repair of chondral injury.
Collapse
|
22
|
O'Connell CD, Duchi S, Onofrillo C, Caballero‐Aguilar LM, Trengove A, Doyle SE, Zywicki WJ, Pirogova E, Di Bella C. Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Adv Healthc Mater 2022; 11:e2201305. [PMID: 36541723 PMCID: PMC11468013 DOI: 10.1002/adhm.202201305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Human articular cartilage has a poor ability to self-repair, meaning small injuries often lead to osteoarthritis, a painful and debilitating condition which is a major contributor to the global burden of disease. Existing clinical strategies generally do not regenerate hyaline type cartilage, motivating research toward tissue engineering solutions. Prospective cartilage tissue engineering therapies can be placed into two broad categories: i) Ex situ strategies, where cartilage tissue constructs are engineered in the lab prior to implantation and ii) in situ strategies, where cells and/or a bioscaffold are delivered to the defect site to stimulate chondral repair directly. While commonalities exist between these two approaches, the core point of distinction-whether chondrogenesis primarily occurs "within" or "without" (outside) the body-can dictate many aspects of the treatment. This difference influences decisions around cell selection, the biomaterials formulation and the surgical implantation procedure, the processes of tissue integration and maturation, as well as, the prospects for regulatory clearance and clinical translation. Here, ex situ and in situ cartilage engineering strategies are compared: Highlighting their respective challenges, opportunities, and prospects on their translational pathways toward long term human cartilage repair.
Collapse
Affiliation(s)
- Cathal D. O'Connell
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Lilith M. Caballero‐Aguilar
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- School of ScienceComputing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Anna Trengove
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Stephanie E. Doyle
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Wiktor J. Zywicki
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Elena Pirogova
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
- Department of MedicineSt Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| |
Collapse
|
23
|
Sakhrani N, Stefani RM, Setti S, Cadossi R, Ateshian GA, Hung CT. Pulsed Electromagnetic Field Therapy and Direct Current Electric Field Modulation Promote the Migration of Fibroblast-like Synoviocytes to Accelerate Cartilage Repair In Vitro. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:12406. [PMID: 36970107 PMCID: PMC10035757 DOI: 10.3390/app122312406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Articular cartilage injuries are a common source of joint pain and dysfunction. As articular cartilage is avascular, it exhibits a poor intrinsic healing capacity for self-repair. Clinically, osteochondral grafts are used to surgically restore the articular surface following injury. A significant challenge remains with the repair properties at the graft-host tissue interface as proper integration is critical toward restoring normal load distribution across the joint. A key to addressing poor tissue integration may involve optimizing mobilization of fibroblast-like synoviocytes (FLS) that exhibit chondrogenic potential and are derived from the adjacent synovium, the specialized connective tissue membrane that envelops the diarthrodial joint. Synovium-derived cells have been directly implicated in the native repair response of articular cartilage. Electrotherapeutics hold potential as low-cost, low-risk, non-invasive adjunctive therapies for promoting cartilage healing via cell-mediated repair. Pulsed electromagnetic fields (PEMFs) and applied direct current (DC) electric fields (EFs) via galvanotaxis are two potential therapeutic strategies to promote cartilage repair by stimulating the migration of FLS within a wound or defect site. PEMF chambers were calibrated to recapitulate clinical standards (1.5 ± 0.2 mT, 75 Hz, 1.3 ms duration). PEMF stimulation promoted bovine FLS migration using a 2D in vitro scratch assay to assess the rate of wound closure following cruciform injury. Galvanotaxis DC EF stimulation assisted FLS migration within a collagen hydrogel matrix in order to promote cartilage repair. A novel tissue-scale bioreactor capable of applying DC EFs in sterile culture conditions to 3D constructs was designed in order to track the increased recruitment of synovial repair cells via galvanotaxis from intact bovine synovium explants to the site of a cartilage wound injury. PEMF stimulation further modulated FLS migration into the bovine cartilage defect region. Biochemical composition, histological analysis, and gene expression revealed elevated GAG and collagen levels following PEMF treatment, indicative of its pro-anabolic effect. Together, PEMF and galvanotaxis DC EF modulation are electrotherapeutic strategies with complementary repair properties. Both procedures may enable direct migration or selective homing of target cells to defect sites, thus augmenting natural repair processes for improving cartilage repair and healing.
Collapse
Affiliation(s)
- Neeraj Sakhrani
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robert M. Stefani
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Yao H, Li T, Wu Z, Tao Q, Shi J, Liu L, Zhao Y. Superlarge living hyaline cartilage graft contributed by the scale-changed porous 3D culture system for joint defect repair. Biomed Mater 2022; 17. [PMID: 35973419 DOI: 10.1088/1748-605x/ac8a31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022]
Abstract
It is known that an excellent hyaline cartilage phenotype, an internal microstructure with safe crosslinking and available size flexibility are the key factors of cartilage grafts that allow for clinical application. Living hyaline cartilage grafts (LhCGs) constructed by phase-transfer hydrogel (PTCC) systems were reported to have a hyaline phenotype and bionic microstructure. By employing chondrocytes to secrete matrix in the hydrogel and then removing the material to obtain material-free tissue in vitro, LhCG technology exhibited superior performance in cartilage repair. However, PTCC systems could only produce small-sized LhCGs because of medium delivery limitations, which hinders the clinical application of LhCGs. In this study, we prepared three different noncrosslinked gelatin microspheres with diameters from 200 μm to 500 μm, which replaced the original pore-forming agent. The new PTCC system with the mixed and gradient porous structure was used for the preparation of superlarge LhCGs with a continuous structure and hyaline phenotype. Compared to the original technique, the porous gradient structure promoted nutrient delivery and cartilage matrix secretion. The small size of the microporous structure promoted the rapid formation of matrix junctions. The experimental group with a mixed gradient increased cartilage matrix secretion significantly by more than 50% compared to the that of the control. The LhCG final area reached 7 cm2without obvious matrix stratification in the mixed gradient group. The design of the scale-changed porous PTCC system will make LhCGs more promising for clinical application.
Collapse
Affiliation(s)
- Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, 225009, CHINA
| | - Tianliang Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Lihua Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Yuchi Zhao
- Department of Osteoarthropathy, Yantaishan Hospital, No.91, Jiefang Road, Zhifu District, Yantai 264001, Shangdong, P.R.China, Yantai, Shandong, 264001, CHINA
| |
Collapse
|
25
|
Trengove A, Duchi S, Onofrillo C, O'Connell CD, Di Bella C, O'Connor AJ. Microbial Transglutaminase Improves ex vivo Adhesion of Gelatin Methacryloyl Hydrogels to Human Cartilage. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:773673. [PMID: 35047967 PMCID: PMC8757843 DOI: 10.3389/fmedt.2021.773673] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Current surgical techniques to treat articular cartilage defects fail to produce a satisfactory long-term repair of the tissue. Regenerative approaches show promise in their ability to generate hyaline cartilage using biomaterials in combination with stem cells. However, the difficulty of seamlessly integrating the newly generated cartilage with the surrounding tissue remains a likely cause of long-term failure. To begin to address this integration issue, our strategy exploits a biological enzyme (microbial transglutaminase) to effect bioadhesion of a gelatin methacryloyl implant to host tissue. Mechanical characterization of the bioadhesive material shows that enzymatic crosslinking is compatible with photocrosslinking, allowing for a dual-crosslinked system with improved mechanical properties, and a slower degradation rate. Biocompatibility is illustrated with a 3D study of the metabolic activity of encapsulated human adipose derived stem cells. Furthermore, enzymatic crosslinking induced by transglutaminase is not prevented by the presence of cells, as measured by the bulk modulus of the material. Adhesion to human cartilage is demonstrated ex vivo with a significant increase in adhesive strength (5.82 ± 1.4 kPa as compared to 2.87 ± 0.9 kPa, p < 0.01) due to the addition of transglutaminase. For the first time, we have characterized a bioadhesive material composed of microbial transglutaminase and GelMA that can encapsulate cells, be photo crosslinked, and bond to host cartilage, taking a step toward the integration of regenerative implants.
Collapse
Affiliation(s)
- Anna Trengove
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Cathal D O'Connell
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Discipline of Electrical and Biomedical Engineering, School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Kleuskens MWA, Crispim JF, van Donkelaar CC, Janssen RPA, Ito K. Evaluating Initial Integration of Cell-Based Chondrogenic Constructs in Human Osteochondral Explants. Tissue Eng Part C Methods 2022; 28:34-44. [PMID: 35018813 DOI: 10.1089/ten.tec.2021.0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Integration of an implant with the surrounding tissue is a major challenge in cartilage regeneration. It is usually assessed with in vivo animal studies at the end-stage of implant development. To reduce animal experimentation and at the same time increase screening throughput and speed up implant development, this study examined whether integration of allogeneic cell-based implants with the surrounding native cartilage could be demonstrated in an ex vivo human osteochondral culture model. Chondrocytes were isolated from smooth cartilage tissue of fresh human tibial plateaus and condyles. They were expanded for 12 days either in three-dimensional spinner flask cultures to generate organoids, or in two-dimensional culture flasks for standard cell expansion. Three implant groups were created (fibrin+organoids, fibrin+cells, and fibrin only) and used to fill a Ø 6 mm full-depth chondral defect created in human osteochondral explants (Ø 10 mm, bone length cut to 4 mm) harvested from a second set of fresh human tibial plateaus. Explants were cultured for 1 or 28 days in a double-chamber culture platform. Histology showed that after 28 days the organoids on the interface of the defect remodeled and merged, and cells migrated through the fibrin glue bridging the space between the organoids and between the organoids and the native cartilage. For both conditions, newly formed tissue rich in proteoglycans and collagen type II was present mainly on the edges and in the corners of the defect. In these matrix-rich areas, cells resided in lacunae and the newly formed tissue integrated with the surrounding native cartilage. Biochemical analysis revealed a statistically significant effect of culture time on glycosaminoglycan (GAG) content, and showed a higher hydroxyproline (HYP) content for organoid-filled implants compared with cell-filled implants at both timepoints. This ex vivo human osteochondral culture system provides possibilities for exploration and identification of promising implant strategies based on evaluation of integration and matrix production under more controlled experimental conditions than possible in vivo.
Collapse
Affiliation(s)
- Meike W A Kleuskens
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Corrinus C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Rob P A Janssen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.,Department of Orthopaedic Surgery and Trauma, Máxima Medical Center, Eindhoven-Veldhoven, The Netherlands.,Department of Paramedical Sciences, Fontys University of Applied Sciences, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
27
|
Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, Di Bella C, Pirogova E. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int J Mol Sci 2021; 22:12420. [PMID: 34830302 PMCID: PMC8622524 DOI: 10.3390/ijms222212420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| | - Serena Duchi
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Carmine Onofrillo
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| |
Collapse
|
28
|
Migliorini F, Eschweiler J, Maffulli N, Schenker H, Driessen A, Rath B, Tingart M. Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study. Life (Basel) 2021; 11:life11030244. [PMID: 33809441 PMCID: PMC8001819 DOI: 10.3390/life11030244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: Many procedures are available to manage cartilage defects of the talus, including microfracturing (MFx) and Autologous Matrix Induced Chondrogenesis (AMIC). Whether AMIC or MFx are equivalent for borderline sized defects of the talar shoulder is unclear. Thus, the present study compared the efficacy of primary isolated AMIC versus MFx for borderline sized focal unipolar chondral defects of the talar shoulder at midterm follow-up. Methods: Patients undergoing primary isolated AMIC or MFx for focal unipolar borderline sized chondral defects of the talar shoulder were recruited prospectively. For those patients who underwent AMIC, a type I/III collagen resorbable membrane was used. The outcomes of interest were: Visual Analogic Scale (VAS), Tegner Activity Scale, American Orthopedic Foot and Ankle Score (AOFAS). The Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) was assessed by a blinded radiologist, who had not been involved in the clinical management of the patients. Data concerning complication rate and additional procedures were also collected. Results: The mean follow-up was 43.5 months. The mean age of the 70 patients at operation was 32.0 years, with a mean defect size of 2.7 cm2. The mean length of hospitalization was shorter in the MFx cohort (p = 0.01). No difference was found between the two cohorts in terms of length of prior surgery symptoms and follow-up, mean age and BMI, sex and side, and defect size. At a mean follow-up of 43.5 months, the AOFAS (p = 0.03), VAS (p = 0.003), and Tegner (p = 0.01) scores were greater in the AMIC group. No difference was found in the MOCART score (p = 0.08). The AMIC group evidenced lower rates of reoperation (p = 0.008) and failure (p = 0.003). Conclusion: At midterm follow-up, AMIC provides better results compared to MFx.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| | - Jörg Eschweiler
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire ST4 7QB, UK
- Barts and the London School of Medicine and Dentistry, London E1 2AD, UK
- Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, London E1 4DG, UK
- Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria
- Correspondence:
| | - Hanno Schenker
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| | - Arne Driessen
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| | - Björn Rath
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Markus Tingart
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| |
Collapse
|