1
|
Cao R, Chen B, Li Q, Qiu P, Liang X, Cao Y. Potential of periosteal cells in bone and cartilage regeneration: a systematic review. Front Bioeng Biotechnol 2023; 11:1292483. [PMID: 38026851 PMCID: PMC10666167 DOI: 10.3389/fbioe.2023.1292483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: The unavailability of adequate human primary cells presents multiple challenges in terms of bone and cartilage regeneration and disease modeling experiments in vitro. Periosteal cells (PCs), which represent promising skeletal stem cell sources, could be a promising strategy in tissue engineering. The present study aimed to summarize the characteristics of PCs to investigate the efficacy of these cells in bone and cartilage regeneration in different models, paying special attention to the comparison of bone marrow stromal cells (BMSCs). Methods: A comprehensive literature search was conducted in Embase, PubMed/MEDLINE, Web of Science, and Scopus for articles published in English until April 2023. Only original researches in which PCs were employed for bone or cartilage regeneration experiments were included. Results: A total of 9140 references were retrieved. After screening the results, 36 publications were considered to be eligible for inclusion in the present literature review. Overall, PCs demonstrated beneficial bone and cartilage regenerative efficacy compared to the bare scaffold since almost all included studies reported positive results. The 9 studies assessing the differences in bone formation capacity between PCs and BMSCs indicated that PCs exhibited stronger in vivo osteogenic differentiation capabilities compared to BMSCs, while the other study demonstrated stronger chondrogenic potential of BMSCs. Discussion: PCs demonstrated beneficial to bone regenerative efficacy compared to the bare scaffold with a low risk of most studies included. However, the cartilage formation capacity of BMSCs still needs to be investigated due to the limited research available and the certain risk of bias. PCs exhibited higher osteogenic capabilities compared to BMSCs in combination with various scaffolds in vivo with good evidence. Further researches are needed to elucidate the comparative benefits of cartilage regeneration. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023411522, CRD42023411522.
Collapse
Affiliation(s)
- Rongkai Cao
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Beibei Chen
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qianru Li
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Piaopiao Qiu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaojie Liang
- Department of Stomatology, People’s Hospital of Xiangyun Affiliated to Dali University, Dali, China
| | - Yujie Cao
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Wang Z, Tang J, Li Y, Wang Y, Guo Y, Tu Q, Chen J, Wang C. AdipoRon promotes diabetic fracture repair through endochondral ossification-based bone repair by enhancing survival and differentiation of chondrocytes. Exp Cell Res 2019; 387:111757. [PMID: 31838062 DOI: 10.1016/j.yexcr.2019.111757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022]
Abstract
Diabetic bone defects may exhibit impaired endochondral ossification (ECO) leading to delayed bone repair. AdipoRon, a receptor agonist of adiponectin polymers, can ameliorate diabetes and related complications, as well as overcome the disadvantages of the unstable structure of artificial adiponectin polymers. Here, the effects of AdipoRon on the survival and differentiation of chondrocytes in a diabetic environment were explored focusing on related mechanisms in gene and protein levels. In vivo, AdipoRon was applied to diet-induced-obesity (DIO) mice, a model of obesity and type 2 diabetes, with femoral fracture. Sequential histological evaluations and micro-CT were examined for further verification. We found that AdipoRon could ameliorate cell viability, apoptosis, and reactive oxygen species (ROS) production and promote mRNA expression of chondrogenic markers and cartilaginous matrix production of ATDC5 cells in high glucose medium via activating ERK1/2 pathway. Additionally, DIO mice with intragastric AdipoRon administration had more neocartilage and accelerated new bone formation. These data suggest that AdipoRon could stimulate bone regeneration via ECO in diabetes.
Collapse
Affiliation(s)
- Zhongyi Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Jinxin Tang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Ying Li
- Department of Stomatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Yu Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Yanyang Guo
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Qisheng Tu
- Tufts School of Dental Medicine, Sackler School of Graduate Biomedical Sciences, Tufts School of Medicine, Boston, 02111, USA
| | - Jake Chen
- Tufts School of Dental Medicine, Sackler School of Graduate Biomedical Sciences, Tufts School of Medicine, Boston, 02111, USA.
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Abstract
The aim of the review is to examine the role of growth factors and cytokines in the management of Diabetic Foot Ulcers, such as platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and Insulin like growth factor (IGF). Taking this a step further, the role of Hypoxia-inducible factors (HIFs), Transforming growth factor beta 1 (TGF-β-1) and other growth factors have also been examined, with regard to the treatment of diabetic foot ulcers. The roles of these above-mentioned growth cytokines have been analyzed by studying various scholastic articles. The complete process of wound healing is implemented and regulated by numerous cytokines and human growth factors. The findings of the study indicate that wound healing of diabetic foot ulcers is a complex and extremely challenging biological and molecular process that involves coordinated efforts of multiple cell types. The therapeutic effects of various growth factors in the clinical management of wounds are chronic venous ulcers, pressure ulcers, and diabetic foot ulcers. It has been concluded that altercations of various cytokines are found in patients enduring diabetic foot ulcers. In a similar way, changes in the level of cytokines are also found in patients suffering from other diabetic complications such as diabetic nephropathy, retinopathy, and neuropathy. Subsequently, the diabetic wound healing process can be accelerated by regulating the levels of the cytokines.
Collapse
Affiliation(s)
- Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia.
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
4
|
Zhang L, Ai H. Concentrated growth factor promotes proliferation, osteogenic differentiation, and angiogenic potential of rabbit periosteum-derived cells in vitro. J Orthop Surg Res 2019; 14:146. [PMID: 31118077 PMCID: PMC6532180 DOI: 10.1186/s13018-019-1164-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/25/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The aim of this research is to investigate the effects of concentrated growth factor (CGF) on the proliferation, osteogenic differentiation, and angiogenic potential of rabbit periosteum-derived cells (PDCs) in vitro. METHODS PDCs were isolated from the femoral and tibial periosteum of rabbits and cultured with or without CGF membranes or CGF conditioned media. Scanning electron microscopy (SEM) was used for the structural characterization. Cell Counting Kit-8 assay was used to measure cell proliferation. Alkaline phosphatase (ALP) activity of PDCs was also measured. Immunohistochemistry was used to detect the expression of CD34. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (qPCR), and Western blot were used to evaluate the secretion and expression levels of osteogenic differentiation markers (bone morphogenetic protein-2, type I collagen, osteocalcin) and angiogenesis markers (vascular endothelial growth factor, basic fibroblast growth factor) in supernatants and PDCs at days 3, 7, 14, and 21. RESULTS The SEM analysis showed a dense three-dimensional fibrin network in CGF, and CGF membranes were covered by PDCs with elongated or polygonal morphological features. Compared with the control group, CGF significantly promoted the proliferation of PDCs during the experimental period (p < 0.05). Immunohistochemistry revealed that PDCs were dispersedly distributed among the CGF substrates, and CD34-positive cells were also present. Moreover, CGF significantly increased the ALP activity and upregulated the expression and secretion of osteogenic differentiation and angiogenesis markers in PDCs at days 3, 7, 14, and 21 (p < 0.05). CONCLUSION CGF can increase the proliferation and promote the osteogenic differentiation and angiogenic potential of PDCs in vitro. These results indicate that CGF can be used as a new therapeutic means for biotechnological and clinical applications.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Prosthodontics, School of Stomatology, China Medical University, No. 117, Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, People's Republic of China.,Department of Stomatology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Hongjun Ai
- Department of Prosthodontics, School of Stomatology, China Medical University, No. 117, Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, People's Republic of China.
| |
Collapse
|
5
|
Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front Endocrinol (Lausanne) 2018; 9:6. [PMID: 29416527 PMCID: PMC5787540 DOI: 10.3389/fendo.2018.00006] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease known by the presence of elevated blood glucose levels. Nowadays, it is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Many are the complications caused by this chronic disorder, including a negative impact on the cardiovascular system, kidneys, eyes, muscle, blood vessels, and nervous system. Recently, there has been increasing evidence suggesting that T2DM also adversely affects the skeletal system, causing detrimental bone effects such as bone quality deterioration, loss of bone strength, increased fracture risk, and impaired bone healing. Nevertheless, the precise mechanisms by which T2DM causes detrimental effects on bone tissue are still elusive and remain poorly studied. The aim of this review was to synthesize current knowledge on the different factors influencing the impairment of bone fracture healing under T2DM conditions. Here, we discuss new approaches used in recent studies to unveil the mechanisms and fill the existing gaps in the scientific understanding of the relationship between T2DM, bone tissue, and bone fracture healing.
Collapse
Affiliation(s)
- Carlos Marin
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Roberts SJ, van Gastel N, Carmeliet G, Luyten FP. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 2015; 70:10-8. [PMID: 25193160 DOI: 10.1016/j.bone.2014.08.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 12/20/2022]
Abstract
The cartilage- and bone-forming properties of the periosteum have long since been recognized. As one of the major sources of skeletal progenitor cells, the periosteum plays a crucial role not only in bone development and growth, but also during bone fracture healing. Aided by the continuous expansion of tools and techniques, we are now starting to acquire more insight into the specific role and regulation of periosteal cells. From a therapeutic point of view, the periosteum has attracted much attention as a cell source for bone tissue engineering purposes. This interest derives not only from the physiological role of the periosteum during bone repair, but is also supported by the unique properties and marked bone-forming potential of expanded periosteum-derived cells. We provide an overview of the current knowledge of periosteal cell biology, focusing on the cellular composition and molecular regulation of this remarkable tissue, as well as the application of periosteum-derived cells in regenerative medicine approaches. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Scott J Roberts
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, UK
| | - Nick van Gastel
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Clinical and Experimental Endocrinology, KU Leuven, O&N 1 Herestraat 49 bus 902, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Clinical and Experimental Endocrinology, KU Leuven, O&N 1 Herestraat 49 bus 902, 3000 Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Reifenrath J, Angrisani N, Lalk M, Besdo S. Replacement, refinement, and reduction: Necessity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res A 2013; 102:2884-900. [DOI: 10.1002/jbm.a.34920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Janin Reifenrath
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Nina Angrisani
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Mareike Lalk
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Silke Besdo
- Institute of Continuum Mechanics; Leibniz Universität Hannover; Appelstr. 11 30167 Hannover Germany
| |
Collapse
|
8
|
Karunratanakul K, Kerckhofs G, Lammens J, Vanlauwe J, Schrooten J, Van Oosterwyck H. Validation of a finite element model of a unilateral external fixator in a rabbit tibia defect model. Med Eng Phys 2013; 35:1037-43. [DOI: 10.1016/j.medengphy.2012.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/28/2012] [Accepted: 10/05/2012] [Indexed: 11/25/2022]
|
9
|
Guda T, Walker JA, Singleton B, Hernandez J, Oh DS, Appleford MR, Ong JL, Wenke JC. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J Biomater Appl 2013; 28:1016-27. [PMID: 23771772 DOI: 10.1177/0885328213491790] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To examine the effect of scaffold pore size on bone regeneration within hydroxyapatite scaffolds in large segmental defects, this study evaluated two porous interconnected architectures having similar porosity and strut thickness but different pore sizes. Using a 10 mm segmental rabbit radius defect model, a bilayer scaffold architecture mimicking the cortical-cancellous organization of bone (pore size 200 µm outer layer, 450 µm inner layer) was compared to a purely trabecular-like architecture (pore size 340 µm) and an untreated defect. Bone regeneration was measured using micro-computed tomography and histology after four and eight weeks of in vivo implantation, and the mechanical strength of the defect site after eight weeks' implantation was assessed using flexural testing. Although both bilayer and trabecular architectures promoted bone growth, the trabecular scaffolds were observed to have more uniform new bone distribution within the scaffold interior at four weeks and greater bone regeneration overall after eight weeks' implantation (149 ± 9 mm³ compared to 121 ± 8 mm³ in the bilayer and 66 ± 14 mm³ in the defect). Additionally, the trabecular scaffolds were observed to exhibit significantly greater flexural strength (124% increase) and toughness (388% increase) when compared to the empty defects after eight weeks' implantation. It was concluded from this study that a larger uniform pore size led to greater functional bone regeneration over a longer implantation period for large segmental defects.
Collapse
Affiliation(s)
- Teja Guda
- 1Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, Carmeliet P, Luttun A, Luyten FP, Carmeliet G. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 2013; 30:2460-71. [PMID: 22911908 DOI: 10.1002/stem.1210] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the key challenges in bone tissue engineering is the timely formation of blood vessels that promote the survival of the implanted cells in the construct. Fracture healing largely depends on the presence of an intact periosteum but it is still unknown whether periosteum-derived cells (PDC) are critical for bone repair only by promoting bone formation or also by inducing neovascularization. We first established a protocol to specifically isolate murine PDC (mPDC) from long bones of adult mice. Mesenchymal stem cells were abundantly present in this cell population as more than 50% of the mPDC expressed mesenchymal markers (CD73, CD90, CD105, and stem cell antigen-1) and the cells exhibited trilineage differentiation potential (chondrogenic, osteogenic, and adipogenic). When transplanted on a collagen-calcium phosphate scaffold in vivo, mPDC attracted numerous blood vessels and formed mature bone which comprises a hematopoiesis-supportive stroma. We explored the proangiogenic properties of mPDC using in vitro culture systems and showed that mPDC promote the survival and proliferation of endothelial cells through the production of vascular endothelial growth factor. Coimplantation with endothelial cells demonstrated that mPDC can enhance vasculogenesis by adapting a pericyte-like phenotype, in addition to their ability to stimulate blood vessel ingrowth from the host. In conclusion, these findings demonstrate that periosteal cells contribute to fracture repair, not only through their strong osteogenic potential but also through their proangiogenic features and thus provide an ideal cell source for bone regeneration therapies.
Collapse
Affiliation(s)
- Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guda T, Walker JA, Singleton BM, Hernandez JW, Son JS, Kim SG, Oh DS, Appleford MR, Ong JL, Wenke JC. Guided bone regeneration in long-bone defects with a structural hydroxyapatite graft and collagen membrane. Tissue Eng Part A 2012; 19:1879-88. [PMID: 22844877 DOI: 10.1089/ten.tea.2012.0057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are few synthetic graft alternatives to treat large long-bone defects resulting from trauma or disease that do not incorporate osteogenic or osteoinductive factors. The aim of this study was to test the additional benefit of including a permeable collagen membrane guide in conjunction with a preformed porous hydroxyapatite bone graft to serve as an improved osteoconductive scaffold for bone regeneration. A 10-mm-segmental long-bone defect model in the rabbit radius was used. The hydroxyapatite scaffolds alone or with a collagen wrap were compared as experimental treatment groups to an empty untreated defect as a negative control or a defect filled with autologous bone grafts as a positive control. All groups were evaluated after 4 and 8 weeks of in vivo implantation using microcomputed tomography, mechanical testing in flexure, and histomorphometry. It was observed that the use of the wrap resulted in an increased bone volume regenerated when compared to the scaffold-only group (59% greater at 4 weeks and 27% greater after 8 weeks). Additionally, the increase in density of the regenerated bone from 4 to 8 weeks in the wrap group was threefold than that in the scaffold group. The use of the collagen wrap showed significant benefits of increased interfacial bone in-growth (149% greater) and periosteal remodeling (49%) after 4 weeks compared to the scaffold-alone with the two groups being comparable after 8 weeks, by when the collagen membrane showed close-to-complete resorption. While the autograft and wrap groups showed significantly greater flexural strength than the defect group after 8 weeks, the scaffold-alone group was not significantly different from the other three groups. It is most likely that the wrap shows improvement of function by acting like a scaffold for periosteal callus ossification, maintaining the local bone-healing environment while reducing fibrous infiltration (15% less than scaffold only at 4 weeks). This study indicates that the use of a collagen membrane with a hydroxyapatite structural graft provides benefits for bone tissue regeneration in terms of early interfacial integration.
Collapse
Affiliation(s)
- Teja Guda
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Szpalski C, Wetterau M, Barr J, Warren SM. Bone tissue engineering: current strategies and techniques--part I: Scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:246-57. [PMID: 22029448 DOI: 10.1089/ten.teb.2011.0427] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone repair and regeneration is a dynamic process that involves a complex interplay between the (1) ground substance, (2) cells, and (3) milieu. While each constituent is integral to the final product, it is often helpful to consider each component individually. Therefore, we created a two-part review to examine scaffolds and cells' roles in bone tissue engineering. In Part I, we review the myriad of materials use for in vivo bone engineering. In Part II, we discuss the variety cell types (e.g., osteocytes, osteoblasts, osteoclasts, chondrocytes, mesenchymal stem cells, and vasculogenic cells) that are seeded upon or recruited to these scaffolds. In Part III, we discuss the optimization of the microenvironment. The biochemical processes and sequence of events that guide matrix production, cellular activation, and ossification are vital to developing successful bone tissue engineering strategies and are thus succinctly reviewed herein.
Collapse
Affiliation(s)
- Caroline Szpalski
- Department of Plastic Surgery, Institute of Reconstructive Plastic Surgery Laboratory, New York, New York, USA
| | | | | | | |
Collapse
|
13
|
Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials 2010; 31:6162-72. [PMID: 20546890 DOI: 10.1016/j.biomaterials.2010.04.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 04/14/2010] [Indexed: 12/20/2022]
Abstract
Bone repairs represent a major focus in orthopedic medicine with biomaterials as a critical aspect of the regenerative process. However, only a limited set of biomaterials are utilized today and few studies relate biomaterial scaffold design to degradation rate and new bone formation. Matching biomaterial remodeling rate towards new bone formation is important in terms of the overall rate and quality of bone regeneration outcomes. We report on the osteogenesis and metabolism of human bone marrow derived mesenchymal stem cells (hMSCs) in 3D silk scaffolds. The scaffolds were prepared with two different degradation rates in order to study relationships between matrix degradation, cell metabolism and bone tissue formation in vitro. SEM, histology, chemical assays, real-time PCR and metabolic analyses were assessed to investigate these relationships. More extensively mineralized ECM formed in the scaffolds designed to degrade more rapidly, based on SEM, von Kossa and type I collagen staining and calcium content. Measures of osteogenic ECM were significantly higher in the more rapidly degrading scaffolds than in the more slowly degrading scaffolds over 56 days of study in vitro. Metabolic analysis, including glucose and lactate levels, confirmed the degradation rate differences with the two types of scaffolds, with the more rapidly degrading scaffolds supporting higher levels of glucose consumption and lactate synthesis by the hMSCs upon osteogenesis, in comparison to the more slowly degrading scaffolds. The results demonstrate that scaffold degradation rates directly impact the metabolism of hMSCs, and in turn the rate of osteogenesis. An understanding of the interplay between cellular metabolism and scaffold degradability should aid in the more rational design of scaffolds for bone regeneration needs both in vitro and in vivo.
Collapse
|
14
|
Rentsch C, Rentsch B, Breier A, Spekl K, Jung R, Manthey S, Scharnweber D, Zwipp H, Biewener A. Long-bone critical-size defects treated with tissue-engineered polycaprolactone-co-lactide scaffolds: A pilot study on rats. J Biomed Mater Res A 2010; 95:964-72. [DOI: 10.1002/jbm.a.32878] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Karunratanakul K, Schrooten J, Van Oosterwyck H. Finite element modelling of a unilateral fixator for bone reconstruction: Importance of contact settings. Med Eng Phys 2010; 32:461-7. [DOI: 10.1016/j.medengphy.2010.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/15/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
|
16
|
Wu W, Zhang Y, Li H, Wang W. Fabrication of Repairing Skull Bone Defects Based on the Rapid Prototyping. J BIOACT COMPAT POL 2009. [DOI: 10.1177/0983911509102348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Rapid Prototyping (RP) manufacture technology, computer tomography (CT) image processing, and mechanical analyses were adopted to repair a skull defect injury. After the patient was inspected by spiral CT the data was exported to Digital Imaging and Communications in Medicine (DICOM) format. The data was processed with Mimics software to eliminate noise and gray-level registration. The processing filtered out the parenchyma data and preserved the bone data. The STL files were analyzed and processed by the Magics and put into the RP equipment. The RP equipment is one type of Stereo Lithography Apparatus (SLA) with laser light spot diameter that is <0. 2mm The 3D models were analyzed to comply with the patients’ requirements. The stereo lithography model emulated the mechanical properties and shape with the patient's bone. The titanium-alloy plate matched the anatomy well. The 3D reconstructed freeform model was accurate to within 0.2 mm.
Collapse
Affiliation(s)
- Wenzheng Wu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110004, P.R. China
| | - Hu Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110004, P.R. China
| | - Wanshan Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|