1
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Tanaka J, Mishima K. Application of regenerative medicine to salivary gland hypofunction. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:54-59. [PMID: 33995711 PMCID: PMC8102160 DOI: 10.1016/j.jdsr.2021.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 12/29/2022] Open
Abstract
Dry mouth results from hypofunction of the salivary glands due to Sjögren's syndrome (SS), various medications, and radiation therapy for head and neck cancer. In severe cases of salivary gland hypofunction, sialagogues are not always effective due to the loss of salivary parenchyma. Therefore, regenerative medicine using stem cell therapy is a promising treatment for severe cases. Stem cells are classified into three groups: tissue stem cells, embryonic stem cells, and induced pluripotent stem cells. Tissue stem cells, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and salivary stem/progenitor cells, could rescue irradiation-induced salivary gland hypofunction. Both HSCs and MSCs can rescue salivary gland hypofunction through soluble factors in a paracrine manner, while salivary stem/progenitor cells can reconstitute the damaged salivary glands. In fact, we clarified that CD133-positive cells in mouse submandibular glands showed stem cell features, which reconstituted the damaged salivary glands. Furthermore, we focused on the challenge of producing functional salivary glands that are three-dimensionally induced from mouse ES cells.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Rocchi C, Emmerson E. Mouth-Watering Results: Clinical Need, Current Approaches, and Future Directions for Salivary Gland Regeneration. Trends Mol Med 2020; 26:649-669. [PMID: 32371171 DOI: 10.1016/j.molmed.2020.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Permanent damage to the salivary glands and resulting hyposalivation and xerostomia have a substantial impact on patient health, quality of life, and healthcare costs. Currently, patients rely on lifelong treatments that alleviate the symptoms, but no long-term restorative solutions exist. Recent advances in adult stem cell enrichment and transplantation, bioengineering, and gene transfer have proved successful in rescuing salivary gland function in a number of animal models that reflect human diseases and that result in hyposalivation and xerostomia. By overcoming the limitations of stem cell transplants and better understanding the mechanisms of cellular plasticity in the adult salivary gland, such studies provide encouraging evidence that a regenerative strategy for patients will be available in the near future.
Collapse
Affiliation(s)
- Cecilia Rocchi
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
4
|
Khan E, Farooq I, Khabeer A, Ali S, Zafar MS, Khurshid Z. Salivary gland tissue engineering to attain clinical benefits: a special report. Regen Med 2020; 15:1455-1461. [PMID: 32253995 DOI: 10.2217/rme-2019-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The salivary glands produce saliva, which helps in mediating the oral colonization of microbes, the repair of mucosa, the remineralization of teeth, lubrication and gustation. However, certain medications, therapeutic radiation and certain autoimmune diseases can cause a reduction in the salivary flow. The aim of this report was to review and highlight the indications and techniques of salivary gland engineering to counter hyposalivation. This report concludes that in the literature, numerous strategies have been suggested and discussed pertaining to the engineering of salivary gland, however, challenges remain in terms of its production and accurate function. Dedicated efforts are required from researchers all over the world to obtain the maximum benefits from salivary gland engineering techniques.
Collapse
Affiliation(s)
- Erum Khan
- CODE-M Center of Dental Education & Medicine, Karachi, Pakistan.,Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Khabeer
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarra, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
5
|
Mitroulia A, Gavriiloglou M, Athanasiadou P, Bakopoulou A, Poulopoulos A, Panta P, Patil S, Andreadis D. Salivary Gland Stem Cells and Tissue Regeneration: An Update on Possible Therapeutic Application. J Contemp Dent Pract 2019; 20:978-986. [PMID: 31797858 DOI: 10.5005/jp-journals-10024-2620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The aim of this review is to combine literature and experimental data concerning the impact of salivary gland (SG) stem cells (SCs) and their therapeutic prospects in tissue regeneration. So far, SCs were isolated from human and rodent major and minor SGs that enabled their regeneration. Several scaffolds were also combined with "SCs" and different "proteins" to achieve guided differentiation, although none have been proven as ideal. A new aspect of SC therapy aims to establish a vice versa relationship between SG and other ecto- or endodermal organs such as the pancreas, liver, kidneys, and thyroid. SC therapy could be a cheap and simple, non-traumatic, and individualized therapy for medically challenging cases like xerostomia and major organ failures. Functional improvement has been achieved in these organs, but till date, the whole organ in vivo regeneration was not achieved. Concerns about malignant formations and possible failures are yet to be resolved. In this review article, we highlight the basic embryology of SGs, existence of SG SCs with a detailed exploration of various cellular markers, scaffolds for tissue engineering, and, in the later part, cover potential therapeutic applications with a special focus on the pancreas and liver. Keywords: Salivary gland stem cells, Stem cell therapy, Tissue regeneration.
Collapse
Affiliation(s)
- Aikaterini Mitroulia
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Marianna Gavriiloglou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Poluxeni Athanasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics and Implantology-Tissue Regeneration Unit, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India, Phone: +91 9701806830, e-mail:
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
6
|
Urkasemsin G, Ferreira JN. Unveiling Stem Cell Heterogeneity Toward the Development of Salivary Gland Regenerative Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:151-164. [PMID: 31016599 DOI: 10.1007/978-3-030-11096-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial damage in the salivary gland (SG) resulting in irreversible dry mouth can be commonly induced by gamma radiation therapy. This radiation depletes the SG stem/progenitor cell niche slowing healing and natural gland regeneration. Biologists have been focused in understanding the development and differentiation of epithelial stem and progenitor cell niches during SG organogenesis. These organogenesis studies gave insights into novel cell-based therapies to recreate the three-dimensional (3D) salivary gland (SG) organ, recapitulate the SG native physiology, and restore saliva secretion. Such therapeutical strategies apply techniques that assemble, in a 3D organotypic culture, progenitor and stem cell lines to develop SG organ-like organoids or mini-transplants. Future studies will employ a combination of organoids, decellularized matrices, and smart biomaterials to create viable and functional SG transplants to repair the site of SG injury and reestablish saliva production.
Collapse
Affiliation(s)
- Ganokon Urkasemsin
- Faculty of Veterinary Science, Department of Preclinical and Applied Animal Science, Mahidol University, Nakhon Pathom, Thailand
| | - Joao N Ferreira
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand. .,National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Togarrati PP, Dinglasan N, Desai S, Ryan WR, Muench MO. CD29 is highly expressed on epithelial, myoepithelial, and mesenchymal stromal cells of human salivary glands. Oral Dis 2018; 24:561-572. [PMID: 29197149 DOI: 10.1111/odi.12812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/09/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The phenotype of the cells present in the ductal region of salivary glands has been well characterized. However, it is imperative to identify novel biomarkers that can identify different cell types present in other glandular components for the development of therapeutic strategies and diagnostics of salivary gland disorders and malignancies. Our study aimed at the characterization of the expression and distribution of various cell surface markers, especially with a focus on CD29 in human fetal as well as adult glands. MATERIALS AND METHODS Paired human midgestation fetal and adult parotid, sublingual, and submandibular glands were collected. Phenotypic expression of various lineage-specific cell surface markers including CD29 was investigated in freshly collected glands. The findings were further corroborated by immunohistochemistry. RESULTS Enriched expression of CD29 was found on acinar and ductal epithelial, mesenchymal stromal, and myoepithelial cells; CD29+ cells co-expressed epithelial (CD324, CD326, NKCC1, and CD44), mesenchymal (CD73, CD90, vimentin, and CD34), and myoepithelial (α-SMA) cell-specific progenitor markers in both fetal as well as adult salivary glands. CONCLUSION CD29 is widely expressed in human salivary glands, and it could serve as a potential biomarker for devising novel cellular therapeutic and diagnostic strategies for salivary gland disorders and malignancies.
Collapse
Affiliation(s)
- P P Togarrati
- Blood Systems Research Institute, San Francisco, CA, USA
| | - N Dinglasan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - S Desai
- Blood Systems Research Institute, San Francisco, CA, USA
| | - W R Ryan
- Division of Head and Neck Oncologic/Endocrine/Salivary Surgery, Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | - M O Muench
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Dong J, Huang G. [Research progress in cell therapy and tissue engineering approach to regenerate salivary gland]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:369-373. [PMID: 29806270 DOI: 10.7507/1002-1892.201611101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress in cell therapy and tissue engineering approach to regenerate salivary gland so as to provide a theoretical basis for the treatment of salivary hypofunction. Methods The recent literature on cell therapy and tissue engineering for the regeneration of salivary glands was reviewed and summarized. Results It is feasible to repair the salivary function by using various stem cells to repair damaged tissue, or by establishing salivary gland tissue ex vivo for salivary gland function restoration and reconstruction. However, the mechanism of three dimensional culturing salivary organoids during organogenesis and function expressing and the potential influence of tissue specific extracellular matrix during this process should be further studied. Conclusion Basic research of cell therapy and salivary tissue engineering should be deeply developed, and a standardized culturing system should be established in vitro. In addition, it is of great significance to study the in vivo effects of salivary gland-specific cells, non salivary gland epithelial cells and transplanted gene-transfected stem cells.
Collapse
Affiliation(s)
- Jiao Dong
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Zunyi Medical University, Zunyi Guizhou, 563000, P.R.China
| | - Guilin Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Zunyi Medical University, Zunyi Guizhou, 563000,
| |
Collapse
|
9
|
Massie I, Spaniol K, Geerling G, Schrader S. Cryopreservation and hypothermic storage of lacrimal gland: towards enabling delivery of regenerative medicine therapies for treatment of dry eye syndrome. J Tissue Eng Regen Med 2016; 11:3373-3384. [DOI: 10.1002/term.2251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/08/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- I. Massie
- Labor für Experimentelle Ophthalmologie; Universitätsklinikum Düsseldorf, Life Science Center; Düsseldorf Germany
| | - K. Spaniol
- Augenklinik, Universitätsklinikum Düsseldorf; Düsseldorf Germany
| | - G. Geerling
- Augenklinik, Universitätsklinikum Düsseldorf; Düsseldorf Germany
| | - S. Schrader
- Augenklinik, Universitätsklinikum Düsseldorf; Düsseldorf Germany
| |
Collapse
|
10
|
Single Cell Clones Purified from Human Parotid Glands Display Features of Multipotent Epitheliomesenchymal Stem Cells. Sci Rep 2016; 6:36303. [PMID: 27824146 PMCID: PMC5099888 DOI: 10.1038/srep36303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/13/2016] [Indexed: 01/21/2023] Open
Abstract
A better understanding of the biology of tissue-resident stem cell populations is essential to development of therapeutic strategies for regeneration of damaged tissue. Here, we describe the isolation of glandular stem cells (GSCs) from a small biopsy specimen from human parotid glands. Single colony-forming unit-derived clonal cells were isolated through a modified subfractionation culture method, and their stem cell properties were examined. The isolated clonal cells exhibited both epithelial and mesenchymal stem cell (MSC)-like features, including differentiation potential and marker expression. The cells transiently displayed salivary progenitor phenotypes during salivary epithelial differentiation, suggesting that they may be putative multipotent GSCs rather than progenitor cells. Both epithelial and mesenchymal-expressing putative GSCs, LGR5+CD90+ cells, were found in vivo, mostly in inter-secretory units of human salivary glands. Following in vivo transplantation into irradiated salivary glands of mice, these cells were found to be engrafted around the secretory complexes, where they contributed to restoration of radiation-induced salivary hypofunction. These results showed that multipotent epitheliomesenchymal GSCs are present in glandular mesenchyme, and that isolation of homogenous GSC clones from human salivary glands may promote the precise understanding of biological function of bona fide GSCs, enabling their therapeutic application for salivary gland regeneration.
Collapse
|
11
|
Lombaert I, Movahednia MM, Adine C, Ferreira JN. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2016; 35:97-105. [PMID: 27406006 PMCID: PMC6310135 DOI: 10.1002/stem.2455] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/31/2016] [Accepted: 06/18/2016] [Indexed: 12/21/2022]
Abstract
The human salivary gland (SG) has an elegant architecture of epithelial acini, connecting ductal branching structures, vascular and neuronal networks that together function to produce and secrete saliva. This review focuses on the translation of cell- and tissue-based research toward therapies for patients suffering from SG hypofunction and related dry mouth syndrome (xerostomia), as a consequence of radiation therapy or systemic disease. We will broadly review the recent literature and discuss the clinical prospects of stem/progenitor cell and tissue-based therapies for SG repair and/or regeneration. Thus far, several strategies have been proposed for the purpose of restoring SG function: (1) transplanting autologous SG-derived epithelial stem/progenitor cells; (2) exploiting nonepithelial cells and/or their bioactive lysates; and (3) tissue engineering approaches using 3D (three-dimensional) biomaterials loaded with SG cells and/or bioactive cues to mimic in vivo SGs. We predict that further scientific improvement in each of these areas will translate to effective therapies toward the repair of damaged glands and the development of miniature SG organoids for the fundamental restoration of saliva secretion.
Collapse
Affiliation(s)
- Isabelle Lombaert
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Biointerfaces Institute, North Campus Research Complex, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad M Movahednia
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, 119083, Singapore
| | - Christabella Adine
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| | - Joao N Ferreira
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
12
|
Pringle S, Maimets M, van der Zwaag M, Stokman MA, van Gosliga D, Zwart E, Witjes MJ, de Haan G, van Os R, Coppes RP. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands. Stem Cells 2016; 34:640-52. [DOI: 10.1002/stem.2278] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/19/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Pringle
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Martti Maimets
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Marianne van der Zwaag
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Monique A. Stokman
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Oral & Maxillofacial Surgery; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Djoke van Gosliga
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Erik Zwart
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Max J.H. Witjes
- Department of Oral & Maxillofacial Surgery; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Ronald van Os
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Rob P. Coppes
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| |
Collapse
|
13
|
Lilliu MA, Seo YJ, Isola M, Charbonneau AM, Zeitouni A, El-Hakim M, Tran SD. Natural extracellular matrix scaffolds recycled from human salivary digests: a morphometric study. Oral Dis 2016; 22:313-23. [PMID: 26785831 DOI: 10.1111/odi.12444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE A challenge in engineering tissues is to supply parenchymal cells with suitable scaffolds which ideally reproduce the extracellular matrix (ECM). This study tested the hypothesis of preserving the 'residual connective tissue' remaining after mechanical and enzymatic release of cells from human submandibular gland biopsies (that we named 'natural ExtraCellular Matrix scaffolds', nECMsc) to be used as recycled natural scaffolds. The objective was to test whether nECMsc and native salivary tissue were comparable morphologically, in ECM proteins composition, and in cell seeding efficiency. METHODS Following cell isolation procedures, nECMsc were kept, either fresh or frozen (sectioned into 12-μm-thick slices), and examined with high-resolution electron microscopy (HRSEM) for its three-dimensional structure, and with picrosirius red staining and immunogold staining for ECM protein composition and distribution, respectively. nECMsc were seeded with human epithelial cells and fibroblasts to assess cell attachment and proliferation in short-term experiments. RESULTS Under HRSEM, nECMsc had comparable fiber arrangement to original glands. Histochemical and immunogold-labeling examinations revealed the presence of collagen types I, III, and IV. Seeded epithelial cells and fibroblasts attached, proliferated (14-55%), and were alive (86-99%) after 4-8 days of culture. CONCLUSIONS nECMsc retained native ECM proteins and maintained their distribution. Seeded cells remained viable on nECMsc.
Collapse
Affiliation(s)
- M A Lilliu
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Y J Seo
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - M Isola
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - A M Charbonneau
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - A Zeitouni
- Department of Otolaryngology, Hôpital Royale Victoria McGill University, Montreal, QC, Canada
| | - M El-Hakim
- Department of Oral and Maxillofacial Surgery, McGill University Health Centre, Montreal General Hospital McGill University, Montreal, QC, Canada
| | - S D Tran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
|
15
|
Hegyesi O, Földes A, Bori E, Németh Z, Barabás J, Steward MC, Varga G. Evidence for Active Electrolyte Transport by Two-Dimensional Monolayers of Human Salivary Epithelial Cells. Tissue Eng Part C Methods 2015. [PMID: 26200762 DOI: 10.1089/ten.tec.2014.0614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional reconstruction of lost tissue by regenerative therapy of salivary glands would be of immense benefit following radiotherapy or in the treatment of Sjogren's syndrome. The purpose of this study was to develop primary cultures of human salivary gland cells as potential regenerative resources and to characterize their acinar/ductal phenotype using electrophysiological measurements of ion transport. Human salivary gland cultures were prepared either from adherent submandibular gland cells (huSMG) or from mixed adherent and nonadherent cells (PTHSG) and were cultivated in Hepato-STIM or minimum essential medium (MEM). Expression of key epithelial marker proteins was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Transepithelial electrical resistance (TER) was monitored following seeding the cells on Transwell membranes. Transepithelial ion transport was estimated by short-circuit current (Isc) measurements in an Ussing chamber. Both huSMG and PTHSG cells showed epithelial characteristics when cultivated in Hepato-STIM, while fibroblast-like elements dominated in MEM. Compared to intact tissue, cultivation of the cells resulted in substantial decreases in AQP5 and NKCC1 expression and moderate increases in claudin-1 and ENaC expression. Both cultures achieved high TER and transepithelial electrolyte movement in Hepato-STIM, but not in MEM. The Isc was substantially reduced by basolateral Cl(-) and bicarbonate withdrawal, indicating the involvement of basolateral-to-apical anion transport, and by the blockade of apical ENaC by amiloride, indicating the involvement of apical-to-basolateral Na(+) transport. An almost complete inhibition was observed following simultaneous ENaC block and withdrawal of the two anions. Isc was enhanced by either apical adenosine triphosphate (ATP) or basolateral carbachol application, but not by forskolin, confirming the expected role of Ca(2+)-activated regulatory pathways in electrolyte secretion. Inhibition of basolateral NKCC1 by bumetanide reduced the response to ATP, indicating the active involvement of this transporter in Cl(-) secretion. In conclusion, we have demonstrated that both PTHSG and huSMG primary cultures cultivated in Hepato-STIM form two-dimensional monolayers in vitro on permeable supports and achieve active vectorial transepithelial electrolyte transport. The presence of both basolateral-to-apical anion fluxes and an apical-to-basolateral Na(+) flux indicates both acinar and ductal characteristics. With further refinement, this model should provide a firm basis for new interventions to correct salivary gland dysfunction.
Collapse
Affiliation(s)
- Orsolya Hegyesi
- 1 Department of Oral Biology, Semmelweis University , Budapest, Hungary
| | - Anna Földes
- 1 Department of Oral Biology, Semmelweis University , Budapest, Hungary
| | - Erzsébet Bori
- 1 Department of Oral Biology, Semmelweis University , Budapest, Hungary
| | - Zsolt Németh
- 2 Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University , Budapest, Hungary
| | - József Barabás
- 2 Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University , Budapest, Hungary
| | - Martin C Steward
- 3 Faculty of Life Sciences, University of Manchester , Manchester, United Kingdom
| | - Gábor Varga
- 1 Department of Oral Biology, Semmelweis University , Budapest, Hungary
| |
Collapse
|
16
|
Goldman EB, Zak A, Tenne R, Kartvelishvily E, Levin-Zaidman S, Neumann Y, Stiubea-Cohen R, Palmon A, Hovav AH, Aframian DJ. Biocompatibility of tungsten disulfide inorganic nanotubes and fullerene-like nanoparticles with salivary gland cells. Tissue Eng Part A 2014; 21:1013-23. [PMID: 25366879 DOI: 10.1089/ten.tea.2014.0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles.
Collapse
Affiliation(s)
- Elisheva B Goldman
- 1 Faculty of Dental Medicine, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vissink A, Luijk P, Langendijk JA, Coppes RP. Current ideas to reduce or salvage radiation damage to salivary glands. Oral Dis 2014; 21:e1-10. [DOI: 10.1111/odi.12222] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/14/2022]
Affiliation(s)
- A Vissink
- Department of Oral and Maxillofacial Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - P Luijk
- Department of Oral and Maxillofacial Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - JA Langendijk
- Department of Radiation Oncology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - RP Coppes
- Department of Radiation Oncology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Cell Biology Section of Radiation and Stress Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
18
|
Patel VN, Hoffman MP. Salivary gland development: a template for regeneration. Semin Cell Dev Biol 2013; 25-26:52-60. [PMID: 24333774 DOI: 10.1016/j.semcdb.2013.12.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 12/16/2022]
Abstract
The mammalian salivary gland develops as a highly branched structure designed to produce and secrete saliva. This review will focus on research on mouse submandibular gland development and the translation of this basic research toward therapy for patients suffering from salivary hypofunction. Here we review the most recent literature that has enabled a better understanding of the mechanisms of salivary gland development. Additionally, we discuss approaches proposed to restore salivary function using gene and cell-based therapy. Increasing our understanding of the developmental mechanisms involved during development is critical to design effective therapies for regeneration and repair of damaged glands.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, NIDCR, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
19
|
Tran SD, Liu Y, Xia D, Maria OM, Khalili S, Wang RWJ, Quan VH, Hu S, Seuntjens J. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS One 2013; 8:e61632. [PMID: 23637870 PMCID: PMC3634855 DOI: 10.1371/journal.pone.0061632] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. METHODS To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as "BM Soup") injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup's donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. RESULTS BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. CONCLUSION BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs.
Collapse
Affiliation(s)
- Simon D. Tran
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
- * E-mail:
| | - Younan Liu
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
| | - Dengsheng Xia
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
| | - Ola M. Maria
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
| | - Saeed Khalili
- Faculty of Dentistry, McGill University, Montreal, Quebec City, Canada
| | | | - Vu-Hung Quan
- Centre Hospitalier de l’Université de Montréal, Montreal, Quebec City, Canada
| | - Shen Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jan Seuntjens
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec City, Canada
| |
Collapse
|
20
|
Pringle S, Van Os R, Coppes RP. Concise Review: Adult Salivary Gland Stem Cells and a Potential Therapy for Xerostomia. Stem Cells 2013; 31:613-9. [DOI: 10.1002/stem.1327] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023]
|
21
|
Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry--part I: stem cell sources. J Prosthodont Res 2012; 56:151-65. [PMID: 22796367 DOI: 10.1016/j.jpor.2012.06.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/14/2012] [Indexed: 12/21/2022]
Abstract
Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties.
Collapse
Affiliation(s)
- Hiroshi Egusa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|