1
|
Ohnota H, Nakazawa H, Hayashi M, Okuhara Y, Honda T, d'Azzo A, Sekijima Y. Skeletal muscle cells derived from mouse skin cultures. Biochem Biophys Res Commun 2020; 528:398-403. [PMID: 31926596 DOI: 10.1016/j.bbrc.2019.12.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/15/2019] [Indexed: 11/18/2022]
Abstract
We have established a novel, simple, and highly reproducible method to generate skeletal muscle cells from mouse skin. Small pieces of skin from the back of mice were cultured in extracellular material-coated dishes in typical culture medium for about 3 weeks. Myotubes formed after about a week, grew into twitching myotubes, and became twitching myotube clumps after 3 weeks. Skeletal muscle cells are formed spontaneously with no induction. Myotubes were immunologically positive for myosin heavy chains, MyoD, and myogenin. Ultrastructural analysis revealed the presence of the sarcomere structure. Furthermore, PAX7+/MyoD- muscle stem cells proliferated around these myotubes, and MyoD+/myogenin+/MHC-- cells were also observed. Moreover, we investigated the formation of skeletal muscle cells from the sialidosis mouse skin, and showed that it is decreased compared to that of the wild type. Our method to generate skeletal muscle cells from skin is thought to be useful for the investigation of muscle cell development and muscle-related disorders.
Collapse
Affiliation(s)
- Hideki Ohnota
- Department of Drug Discovery Science, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan; Research Division, R&D, Kissei Pharmaceutical Co. Ltd., 4365-1 Kashiwabara, Hotaka, Azumino, Nagano, 399-8304, Japan.
| | - Hiromi Nakazawa
- Department of Drug Discovery Science, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Morimichi Hayashi
- Safety Research Laboratory, R&D, Kissei Pharmaceutical Co. Ltd., 2320-1 Maki, Hotaka, Azumino, Nagano, 399-8304, Japan
| | - Yuji Okuhara
- Safety Research Laboratory, R&D, Kissei Pharmaceutical Co. Ltd., 2320-1 Maki, Hotaka, Azumino, Nagano, 399-8304, Japan
| | - Takayuki Honda
- Department of Drug Discovery Science, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| |
Collapse
|
2
|
Alotaibi F, Abounasef SK, Fikry H. Effects of Combined Nicotine and Caffeine on the Rat Skeletal Muscles: A Histological and Immunohistochemical Study. J Microsc Ultrastruct 2019; 7:147-152. [PMID: 31803568 PMCID: PMC6880318 DOI: 10.4103/jmau.jmau_1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Nicotine and caffeine are pharmacologically active substances that consumed widely in the whole world. Most of the nicotine users also consume caffeine. Smokers tend to drink more coffee than nonsmokers. It is important to characterize these substances with regard to their effects on the histological and immunohistological structure. Objectives: The objective of the study is to assess the impact of combined administration of nicotine and caffeine on histological structure of the skeletal muscle tissue in the adult male Wistar rats. Materials and Methods: Twenty adult male Wistar rats with an average weight of 200–250 g were randomly divided into four equal groups: control, nicotine, caffeine, and combined (nicotine + caffeine). The diaphragm muscle was processed and stained with hematoxylin and eosin (H and E) stain, histochemically by periodic acid–Schiff (PAS) and immunohistochemically by anti-CD68 antibodies. Results: After injected nicotine, thick basement membrane with apparent increase in the positive CD68 macrophages inbetween the diaphragm muscle fibers. After injected caffeine, there was an apparent accumulation of mononuclear cells around some fibers with decrease in the PAS positive fibers. Combined injected (nicotine + caffeine) group, some fibers exhibited deep acidophilic cytoplasm with flat peripheral nuclei and apparent increase of the CD68 positive cells. There was an increase in PAS positive material around fibers appearing as a thick basement membrane. Conclusions: The present study proved that caffeine and nicotine either taken alone or in combination have many negative impacts on the active type of skeletal muscles like diaphragm leading to degenerative changes that may affect their function.
Collapse
Affiliation(s)
- Faizah Alotaibi
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seham K Abounasef
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Bahri OA, Naldaiz-Gastesi N, Kennedy DC, Wheatley AM, Izeta A, McCullagh KJA. The panniculus carnosus muscle: A novel model of striated muscle regeneration that exhibits sex differences in the mdx mouse. Sci Rep 2019; 9:15964. [PMID: 31685850 PMCID: PMC6828975 DOI: 10.1038/s41598-019-52071-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023] Open
Abstract
The dermal striated muscle panniculus carnosus (PC), prevalent in lower mammals with remnants in humans, is highly regenerative, and whose function is purported to be linked to defence and shivering thermogenesis. Given the heterogeneity of responses of different muscles to disease, we set out to characterize the PC in wild-type and muscular dystrophic mdx mice. The mouse PC contained mainly fast-twitch type IIB myofibers showing body wide distribution. The PC exemplified heterogeneity in myofiber sizes and a prevalence of central nucleated fibres (CNFs), hallmarks of regeneration, in wild-type and mdx muscles, which increased with age. PC myofibers were hypertrophic in mdx compared to wild-type mice. Sexual dimorphism was apparent with a two-fold increase in CNFs in PC from male versus female mdx mice. To evaluate myogenic potential, PC muscle progenitors were isolated from 8-week old wild-type and mdx mice, grown and differentiated for 7-days. Myogenic profiling of PC-derived myocytes suggested that male mdx satellite cells (SCs) were more myogenic than female counterparts, independent of SC density in PC muscles. Muscle regenerative differences in the PC were associated with alterations in expression of calcium handling regulatory proteins. These studies highlight unique aspects of the PC muscle and its potential as a model to study mechanisms of striated muscle regeneration in health and disease.
Collapse
MESH Headings
- Animals
- Biomarkers
- Calcium-Binding Proteins/metabolism
- Cell Differentiation
- Dermis/metabolism
- Dermis/pathology
- Disease Models, Animal
- Female
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred mdx
- Muscle Development
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Striated/pathology
- Muscle, Striated/physiology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Regeneration
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Sex Factors
- Stem Cells
Collapse
Affiliation(s)
- Ola A Bahri
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland Galway, Galway, H91 W5P7, Ireland
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | - Donna C Kennedy
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Antony M Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Ander Izeta
- Biodonostia Health Research Institute, San Sebastian, Spain
| | - Karl J A McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland Galway, Galway, H91 W5P7, Ireland.
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
4
|
Isolation and characterization of myogenic precursor cells from human cremaster muscle. Sci Rep 2019; 9:3454. [PMID: 30837559 PMCID: PMC6401155 DOI: 10.1038/s41598-019-40042-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Human myogenic precursor cells have been isolated and expanded from a number of skeletal muscles, but alternative donor biopsy sites must be sought after in diseases where muscle damage is widespread. Biopsy sites must be relatively accessible, and the biopsied muscle dispensable. Here, we aimed to histologically characterize the cremaster muscle with regard number of satellite cells and regenerative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor cells in adult male donors with the objective of characterizing this muscle as a novel source of myogenic precursor cells. Cremaster muscle biopsies (or adjacent non-muscle tissue for negative controls; N = 19) were taken from male patients undergoing routine surgery for urogenital pathology. Myosphere cultures were derived and tested for their in vitro and in vivo myogenic differentiation and muscle regeneration capacities. Cremaster-derived myogenic precursor cells were maintained by myosphere culture and efficiently differentiated to myotubes in adhesion culture. Upon transplantation to an immunocompromised mouse model of cardiotoxin-induced acute muscle damage, human cremaster-derived myogenic precursor cells survived to the transplants and contributed to muscle regeneration. These precursors are a good candidate for cell therapy approaches of skeletal muscle. Due to their location and developmental origin, we propose that they might be best suited for regeneration of the rhabdosphincter in patients undergoing stress urinary incontinence after radical prostatectomy.
Collapse
|
5
|
Naldaiz‐Gastesi N, Bahri OA, López de Munain A, McCullagh KJA, Izeta A. The panniculus carnosus muscle: an evolutionary enigma at the intersection of distinct research fields. J Anat 2018; 233:275-288. [PMID: 29893024 PMCID: PMC6081499 DOI: 10.1111/joa.12840] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
The panniculus carnosus is a thin striated muscular layer intimately attached to the skin and fascia of most mammals, where it provides skin twitching and contraction functions. In humans, the panniculus carnosus is conserved at sparse anatomical locations with high interindividual variability, and it is considered of no functional significance (most possibly being a remnant of evolution). Diverse research fields (such as anatomy, dermatology, myology, neuroscience, surgery, veterinary science) use this unique muscle as a model, but several unknowns and misconceptions remain in the literature. In this article, we review what is currently known about panniculus carnosus structure, development, anatomical location, response to environmental stimuli and potential function(s), with the aim of putting together the evidence arising from the different research communities and raising interest in this unique muscle, which we postulate as an ideal model for both vascular and muscular research.
Collapse
Affiliation(s)
- Neia Naldaiz‐Gastesi
- Tissue Engineering GroupBioengineering AreaInstituto BiodonostiaSan SebastianSpain
- Neuroscience AreaInstituto BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| | - Ola A. Bahri
- Department of PhysiologyHuman Biology BuildingSchool of MedicineNational University of Ireland GalwayGalwayIreland
- Regenerative Medicine InstituteNational University of Ireland GalwayGalwayIreland
| | - Adolfo López de Munain
- Neuroscience AreaInstituto BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
- Faculty of Medicine and DentistryUPV‐EHUSan SebastianSpain
- Department of NeurologyHospital Universitario DonostiaSan SebastianSpain
| | - Karl J. A. McCullagh
- Department of PhysiologyHuman Biology BuildingSchool of MedicineNational University of Ireland GalwayGalwayIreland
- Regenerative Medicine InstituteNational University of Ireland GalwayGalwayIreland
| | - Ander Izeta
- Tissue Engineering GroupBioengineering AreaInstituto BiodonostiaSan SebastianSpain
- Department of Biomedical EngineeringSchool of EngineeringTecnun‐University of NavarraSan SebastianSpain
| |
Collapse
|
6
|
Izeta A. Comment on 'Adult skin-derived precursor Schwann cell grafts form growths in the injured spinal cord of Fischer rats'. ACTA ACUST UNITED AC 2018. [PMID: 29532787 DOI: 10.1088/1748-605x/aab628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ander Izeta
- Tissue Engineering Group, Bioengineering Area, Instituto Biodonostia, San Sebastian, E-20014, Spain. Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra, San Sebastian, E-20009, Spain
| |
Collapse
|
7
|
Iribar H, Pérez-López V, Etxaniz U, Gutiérrez-Rivera A, Izeta A. Schwann Cells in the Ventral Dermis Do Not Derive from Myf5-Expressing Precursors. Stem Cell Reports 2017; 9:1477-1487. [PMID: 29033303 PMCID: PMC5830985 DOI: 10.1016/j.stemcr.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022] Open
Abstract
The embryonic origin of lineage precursors of the trunk dermis is somewhat controversial. Precursor cells traced by Myf5 and Twist2 (Dermo1) promoter activation (i.e., cells of presumed dermomyotomal lineage) have been reported to generate Schwann cells. On the other hand, abundant data demonstrate that dermal Schwann cells derive from the neural crest. This is relevant because dermal precursors give rise to neural lineages, and multilineage differentiation potential qualifies them as adult stem cells. However, it is currently unclear whether neural lineages arise from dedifferentiated Schwann cells instead of mesodermally derived dermal precursor cells. To clarify these discrepancies, we traced SOX2+ adult dermal precursor cells by two independent Myf5 lineage tracing strains. We demonstrate that dermal Schwann cells do not belong to the Myf5+ cell lineage, indicating that previous tracing data reflected aberrant cre recombinase expression and that bona fide Myf5+ dermal precursors cannot transdifferentiate to neural lineages in physiological conditions. Adult Myf5-creSor mice aberrantly trace dermal Schwann cells (dSCs) Dedifferentiated, SOX2+ dSCs are the neural-competent precursors in the dermis These findings cast doubt on the multipotency of adult skin-derived precursors
Collapse
Affiliation(s)
- Haizea Iribar
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain
| | - Virginia Pérez-López
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain
| | - Usue Etxaniz
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain
| | - Araika Gutiérrez-Rivera
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain.
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastian 20014, Spain; Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra, San Sebastian 20009, Spain.
| |
Collapse
|
8
|
Ostrovidov S, Shi X, Sadeghian RB, Salehi S, Fujie T, Bae H, Ramalingam M, Khademhosseini A. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Rev Rep 2016; 11:866-84. [PMID: 26323256 DOI: 10.1007/s12015-015-9618-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction & School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Ramin Banan Sadeghian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Christian Medical College Bagayam Campus, Centre for Stem Cell Research, Vellore, 632002, India
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea.
- Division of Biomedical Engineering, Department of Medicine, Harvard Medical School, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Boston, MA, 02139, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
9
|
Naldaiz-Gastesi N, Goicoechea M, Alonso-Martín S, Aiastui A, López-Mayorga M, García-Belda P, Lacalle J, San José C, Araúzo-Bravo MJ, Trouilh L, Anton-Leberre V, Herrero D, Matheu A, Bernad A, García-Verdugo JM, Carvajal JJ, Relaix F, Lopez de Munain A, García-Parra P, Izeta A. Identification and Characterization of the Dermal Panniculus Carnosus Muscle Stem Cells. Stem Cell Reports 2016; 7:411-424. [PMID: 27594590 PMCID: PMC5032673 DOI: 10.1016/j.stemcr.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/05/2023] Open
Abstract
The dermal Panniculus carnosus (PC) muscle is important for wound contraction in lower mammals and represents an interesting model of muscle regeneration due to its high cell turnover. The resident satellite cells (the bona fide muscle stem cells) remain poorly characterized. Here we analyzed PC satellite cells with regard to developmental origin and purported function. Lineage tracing shows that they originate in Myf5+, Pax3/Pax7+ cell populations. Skin and muscle wounding increased PC myofiber turnover, with the satellite cell progeny being involved in muscle regeneration but with no detectable contribution to the wound-bed myofibroblasts. Since hematopoietic stem cells fuse to PC myofibers in the absence of injury, we also studied the contribution of bone marrow-derived cells to the PC satellite cell compartment, demonstrating that cells of donor origin are capable of repopulating the PC muscle stem cell niche after irradiation and bone marrow transplantation but may not fully acquire the relevant myogenic commitment. PC satellite cells originate from Myf5+, Pax3/Pax7+ cell lineages Skin and muscle wounding increase PC myofiber turnover Donor bone marrow cells repopulate the PC satellite niche after BMT Dermis-derived myogenesis originates from the PC satellite cell population
Collapse
Affiliation(s)
- Neia Naldaiz-Gastesi
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián 20014, Spain; Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María Goicoechea
- Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sonia Alonso-Martín
- INSERM U955-E10, Université Paris Est, Faculté de Médicine, IMRB U955-E10, Creteil 94000, France
| | - Ana Aiastui
- Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Macarena López-Mayorga
- Molecular Embryology Team, Centro Andaluz de Biología del Desarrollo, Sevilla 41013, Spain
| | - Paula García-Belda
- CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain; Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Valencia 46980, Spain
| | - Jaione Lacalle
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián 20014, Spain; Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; Faculty of Medicine and Nursing, UPV-EHU, San Sebastián 20014, Spain
| | - Carlos San José
- Animal Facility and Experimental Surgery, Instituto Biodonostia, San Sebastián 20014, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Instituto Biodonostia, San Sebastián 20014, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Lidwine Trouilh
- INSA, UPS, INP, LISBP, Université de Toulouse, 31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France
| | - Véronique Anton-Leberre
- INSA, UPS, INP, LISBP, Université de Toulouse, 31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France
| | - Diego Herrero
- Immunology and Oncology Department, Spanish National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain
| | - Ander Matheu
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; Cellular Oncology Group, Oncology Area, Instituto Biodonostia, San Sebastián 20014, Spain
| | - Antonio Bernad
- Immunology and Oncology Department, Spanish National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain
| | - José Manuel García-Verdugo
- CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain; Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Valencia 46980, Spain
| | - Jaime J Carvajal
- Molecular Embryology Team, Centro Andaluz de Biología del Desarrollo, Sevilla 41013, Spain
| | - Frédéric Relaix
- INSERM U955-E10, Université Paris Est, Faculté de Médicine, IMRB U955-E10, Creteil 94000, France
| | - Adolfo Lopez de Munain
- Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain; Faculty of Medicine and Nursing, Department of Neurosciences, UPV-EHU, San Sebastián 20014, Spain; Department of Neurology, Hospital Universitario Donostia, San Sebastián 20014, Spain
| | - Patricia García-Parra
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián 20014, Spain; Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián 20014, Spain; Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra, San Sebastián 20009, Spain.
| |
Collapse
|
10
|
Hart ML, Izeta A, Herrera-Imbroda B, Amend B, Brinchmann JE. Cell Therapy for Stress Urinary Incontinence. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:365-76. [PMID: 25789845 DOI: 10.1089/ten.teb.2014.0627] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Urinary incontinence (UI) is the involuntary loss of urine and is a common condition in middle-aged and elderly women and men. Stress urinary incontinence (SUI) is caused by leakage of urine when coughing, sneezing, laughing, lifting, and exercise, even standing leads to increased intra-abdominal pressure. Other types of UI also exist such as urge incontinence (also called overactive bladder), which is a strong and unexpected sudden urge to urinate, mixed forms of UI that result in symptoms of both urge and stress incontinence, and functional incontinence caused by reduced mobility, cognitive impairment, or neuromuscular limitations that impair mobility or dexterity. However, for many SUI patients, there is significant loss of urethral sphincter muscle due to degeneration of tissue, the strain and trauma of pregnancy and childbirth, or injury acquired during surgery. Hence, for individuals with SUI, a cell-based therapeutic approach to regenerate the sphincter muscle offers the advantage of treating the cause rather than the symptoms. We discuss current clinically relevant cell therapy approaches for regeneration of the external urethral sphincter (striated muscle), internal urethral sphincter (smooth muscle), the neuromuscular synapse, and blood supply. The use of mesenchymal stromal/stem cells is a major step in the right direction, but they may not be enough for regeneration of all components of the urethral sphincter. Inclusion of other cell types or biomaterials may also be necessary to enhance integration and survival of the transplanted cells.
Collapse
Affiliation(s)
- Melanie L Hart
- 1 Clinical Research Group KFO 273, Department of Urology, University of Tübingen , Tübingen, Germany
| | - Ander Izeta
- 2 Tissue Engineering Laboratory, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastian, Spain
| | | | - Bastian Amend
- 4 Department of Urology, University of Tübingen , Tuebingen, Germany
| | - Jan E Brinchmann
- 5 Department of Immunology, Oslo University Hospital, Oslo, Norway
- 6 Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, University of Oslo , Oslo, Norway
| |
Collapse
|