1
|
Wang H, Wang Z, Liu H, Liu J, Li R, Zhu X, Ren M, Wang M, Liu Y, Li Y, Jia Y, Wang C, Wang J. Three-Dimensional Printing Strategies for Irregularly Shaped Cartilage Tissue Engineering: Current State and Challenges. Front Bioeng Biotechnol 2022; 9:777039. [PMID: 35071199 PMCID: PMC8766513 DOI: 10.3389/fbioe.2021.777039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 12/05/2022] Open
Abstract
Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.
Collapse
Affiliation(s)
- Hui Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Ronghang Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Xiujie Zhu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Ming Ren
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Mingli Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yuzhe Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yuxi Jia
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Wu XY, Zhu YM, Qi Y, Xu WW, Jing-Zhai. Erythropoietin, as a biological macromolecule in modification of tissue engineered constructs: A review. Int J Biol Macromol 2021; 193:2332-2342. [PMID: 34793816 DOI: 10.1016/j.ijbiomac.2021.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
In recent years, tissue engineering has emerged as a promising approach to address limitations of organ transplantation. The ultimate goal of tissue engineering is to provide scaffolds that closely mimic the physicochemical and biological cues of native tissues' extracellular matrix. In this endeavor, new generation of scaffolds have been designed that utilize the incorporation of signaling molecules in order to improve cell recruitment, enhance angiogenesis, exert healing activities, and increase the engraftment of the scaffolds. Among different signaling molecules, the role of erythropoietin (EPO) in regenerative medicine is increasingly being appreciated. It is a biological macromolecule which can prevent programed cell death, modulate inflammation, induce cell proliferation, and provide tissue protection in different disease models. In this review, we have outlined and critically analyzed different techniques of scaffolds' modification with EPO or EPO-loaded nanoparticles. We have also explored different strategies for the incorporation of EPO into scaffolds. Non-hematopoietic functions of EPO have also been discussed. Finalizing with detailed discussion surrounding the applications, challenges, and future perspectives of EPO-modified scaffolds in regenerative medicine.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Yi-Miao Zhu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Yang Qi
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| | - Jing-Zhai
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
3
|
Lee MC, Seonwoo H, Jang KJ, Pandey S, Lim J, Park S, Kim JE, Choung YH, Garg P, Chung JH. Development of novel gene carrier using modified nano hydroxyapatite derived from equine bone for osteogenic differentiation of dental pulp stem cells. Bioact Mater 2021; 6:2742-2751. [PMID: 33665505 PMCID: PMC7895645 DOI: 10.1016/j.bioactmat.2021.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hydroxyapatite (HA) is a representative substance that induces bone regeneration. Our research team extracted nanohydroxyapatite (EH) from natural resources, especially equine bones, and developed it as a molecular biological tool. Polyethylenimine (PEI) was used to coat the EH to develop a gene carrier. To verify that PEI is well coated in the EH, we first observed the morphology and dispersity of PEI-coated EH (pEH) by electron microscopy. The pEH particles were well distributed, while only the EH particles were not distributed and aggregated. Then, the existence of nitrogen elements of PEI on the surface of the pEH was confirmed by EDS, calcium concentration measurement and fourier transform infrared spectroscopy (FT-IR). Additionally, the pEH was confirmed to have a more positive charge than the 25 kD PEI by comparing the zeta potentials. As a result of pGL3 transfection, pEH was better able to transport genes to cells than 25 kD PEI. After verification as a gene carrier for pEH, we induced osteogenic differentiation of DPSCs by loading the BMP-2 gene in pEH (BMP-2/pEH) and delivering it to the cells. As a result, it was confirmed that osteogenic differentiation was promoted by showing that the expression of osteopontin (OPN), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) was significantly increased in the group treated with BMP-2/pEH. In conclusion, we have not only developed a novel nonviral gene carrier that is better performing and less toxic than 25 kD PEI by modifying natural HA (the agricultural byproduct) but also proved that bone differentiation can be effectively promoted by delivering BMP-2 with pEH to stem cells.
Collapse
Affiliation(s)
- Myung Chul Lee
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, Sunchon National University, 315 Maegok-dong, Sunchon, 57922, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Kyoung Je Jang
- Division of Agro-system Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shambhavi Pandey
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaewoon Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangbae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Ajou University Graduate School of Medicine, Bk21 Plus Research Center for Biomedical Sciences, Suwon, 16499, Republic of Korea
| | - Pankaj Garg
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Global Smart Farm Educational Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Abramowicz S, Crotts SJ, Hollister SJ, Goudy S. Tissue-engineered vascularized patient-specific temporomandibular joint reconstruction in a Yucatan pig model. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:145-152. [PMID: 33785329 DOI: 10.1016/j.oooo.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE Current pediatric temporomandibular joint (TMJ) reconstruction options are limited. The aim of this project was to develop a proof-of-principle porcine model for a load-bearing, customized, 3D-printed and bone morphogenic protein 2 (BMP-2)-coated scaffold implanted in a pedicled (temporal) flap as a regenerative approach to pediatric TMJ mandibular condyle reconstruction. MATERIALS AND METHODS Scaffolds were customized, 3D-printed based on porcine computed tomography, and coated with BMP-2. Two operations occurred: (1) implantation of the scaffold in temporalis muscle to establish vascularity and, (2) 6 weeks later, unilateral condylectomy and rotation of the vascularized scaffold (with preservation of superficial temporal artery) onto the defect. Six months later, pigs were sacrified. The experimental side (muscle-scaffold) and control side (unoperated condyle) were individually evaluated by clinical, mechanical, radiographic, and histologic methods. RESULTS Scaffolds maintained physical properties similar in appearance to unoperated condyles. Vascularized scaffolds had new bone formation. Condyle height on the reconstructed side was 68% and 78% of the control side. Reconstructed condyle stiffness was between 20% and 45% of the control side. CONCLUSION In our porcine model, customized 3D-printed TMJ scaffolds coated with BMP-2 and implanted in vascularized temporalis muscle have the ability to (1) reconstruct a TMJ, (2) maintain appropriate condylar height, and (3) generate new bone, without impacting functional outcomes.
Collapse
Affiliation(s)
- Shelly Abramowicz
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Sarah Jo Crotts
- Center for 3D Medical Fabrication, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Scott J Hollister
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Steve Goudy
- Pediatric Otolaryngology, Department of Otolaryngology, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
5
|
Xia B, Deng Y, Lv Y, Chen G. Stem cell recruitment based on scaffold features for bone tissue engineering. Biomater Sci 2020; 9:1189-1203. [PMID: 33355545 DOI: 10.1039/d0bm01591a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem-cell based therapy strategies are promising approaches for the treatment of bone defects. However, extensive cell expansion steps, the low rate of cell survival and uncontrolled differentiation of stem cells transplanted into the body currently remain key challenges in advancing stem cell therapeutics. An alternative strategy is to use specifically designed bone scaffolds to recruit endogenous stem cells upon implantation and to stimulate new bone formation and remodeling. Stem cell recruitment based on scaffold features for bone tissue engineering relies on the development of scaffolds that can effectively mobilize and recruit endogenous stem cells to the implantation site. This article addresses the recent advances in the recruitment of endogenous stem cells in applications of bone scaffolds, particularly focusing on chemical modification and physical characteristic modification of the scaffold for endogenous stem cell homing and recruitment. Finally, the continuing challenges and future directions of scaffold-based stem cell recruitment are discussed.
Collapse
Affiliation(s)
- Bin Xia
- Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | | | | | | |
Collapse
|
6
|
Salehi M, Bastami F, Rezai Rad M, Nokhbatolfoghahaei H, Paknejad Z, Nazeman P, Hassani A, Khojasteh A. Investigation of cell‐free poly lactic acid/nanoclay scaffolds prepared via thermally induced phase separation technique containing hydroxyapatite nanocarriers of erythropoietin for bone tissue engineering applications. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Majid Salehi
- Department of Tissue Engineering, School of Medicine Shahroud University of Medical Sciences Shahroud Iran
- Tissue Engineering and Stem Cell Research Center Shahroud University of Medical Sciences Shahroud Iran
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahrasadat Paknejad
- Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Pantea Nazeman
- Department of Periodontics, School of Dentistry University of Washington Seattle WA USA
| | - Ali Hassani
- Department of Oral and Maxillofacial Surgery and Implant Research Center Islamic Azad University, Tehran Dental Branch Tehran Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
7
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
8
|
Sundermann J, Oehmichen S, Sydow S, Burmeister L, Quaas B, Hänsch R, Rinas U, Hoffmann A, Menzel H, Bunjes H. Varying the sustained release of BMP-2 from chitosan nanogel-functionalized polycaprolactone fiber mats by different polycaprolactone surface modifications. J Biomed Mater Res A 2020; 109:600-614. [PMID: 32608183 DOI: 10.1002/jbm.a.37045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Polycaprolactone (PCL) fiber mats with different surface modifications were functionalized with a chitosan nanogel coating to attach the growth factor human bone morphogenetic protein 2 (BMP-2). Three different hydrophilic surface modifications were compared with regard to the binding and in vitro release of BMP-2. The type of surface modification and the specific surface area derived from the fiber thickness had an important influence on the degree of protein loading. Coating the PCL fibers with polydopamine resulted in the binding of the largest BMP-2 quantity per surface area. However, most of the binding was irreversible over the investigated period of time, causing a low release in vitro. PCL fiber mats with a chitosan-graft-PCL coating and an additional alginate layer, as well as PCL fiber mats with an air plasma surface modification boundless BMP-2, but the immobilized protein could almost completely be released. With polydopamine and plasma modifications as well as with unmodified PCL, high amounts of BMP-2 could also be attached directly to the surface. Integration of BMP-2 into the chitosan nanogel functionalization considerably increased binding on all hydrophilized surfaces and resulted in a sustained release with an initial burst release of BMP-2 without detectable loss of bioactivity in vitro.
Collapse
Affiliation(s)
- Julius Sundermann
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Braunschweig, Germany
| | - Sarah Oehmichen
- Technische Universität Braunschweig, Institut für Technische Chemie, Braunschweig, Germany
| | - Steffen Sydow
- Technische Universität Braunschweig, Institut für Technische Chemie, Braunschweig, Germany
| | - Laura Burmeister
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), Hannover, Germany.,Medizinische Hochschule Hannover (MHH), Labor für Biomechanik und Biomaterialien, Orthopädische Klinik, Gradierte Implantate und Regenerative Strategien im Skelettsystem, Hannover, Germany
| | - Bastian Quaas
- Leibniz Universität Hannover, Institut für Technische Chemie, Hannover, Germany
| | - Robert Hänsch
- Technische Universität Braunschweig, Institut für Pflanzenbiologie, Braunschweig, Germany.,Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Ursula Rinas
- Leibniz Universität Hannover, Institut für Technische Chemie, Hannover, Germany.,Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Andrea Hoffmann
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), Hannover, Germany.,Medizinische Hochschule Hannover (MHH), Labor für Biomechanik und Biomaterialien, Orthopädische Klinik, Gradierte Implantate und Regenerative Strategien im Skelettsystem, Hannover, Germany
| | - Henning Menzel
- Technische Universität Braunschweig, Institut für Technische Chemie, Braunschweig, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Braunschweig, Germany
| |
Collapse
|
9
|
Yu Y, Ma L, Zhang H, Sun W, Zheng L, Liu C, Miao L. EPO could be regulated by HIF-1 and promote osteogenesis and accelerate bone repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:206-217. [PMID: 31851837 DOI: 10.1080/21691401.2019.1699827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone defects caused by many factors prompt further study of pathological process and restoration methods. This study was aimed to clarify the effect of erythropoietin on the repair of bone defect. We added the designated concentration of rhEPO to endothelial progenitor cells and marrow stromal cells, then detected its osteogenic and angiogenesis effects. The results showed that rhEPO promoted the proliferation of EPC and ST2 by promoting the mitosis without affecting cell apoptosis. The protein and mRNA levels of angiogenesis and osteogenic related factors exhibited higher expressions. Additionally, rhEPO encapsulated in PLGA scaffolds accelerated the new bone formation in rat calvaria bone defect model. Since the centre of bone defect was hypoxia environment, we cultured EPC and ST2 under hypoxia. SiRNA and an inhibitor of HIF-1 were used to interfere HIF-1, then the following changes of VEGF and EPO were detected. The results showed that all the factors were upregulated under the hypoxia environment. The expression of VEGF at protein and mRNA level decreased as HIF-1 was inhibited or interfered from 6 h, while the mRNA expression of EPO from 6 h and changed significantly at protein level from 12 h. Therefore, EPO is a promising factor for further studies.
Collapse
Affiliation(s)
- Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Lan Ma
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - He Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Lichun Zheng
- Department of Preventive Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| |
Collapse
|
10
|
Senatov F, Amanbek G, Orlova P, Bartov M, Grunina T, Kolesnikov E, Maksimkin A, Kaloshkin S, Poponova M, Nikitin K, Krivozubov M, Strukova N, Manskikh V, Anisimova N, Kiselevskiy M, Scholz R, Knyazeva M, Walther F, Lunin V, Gromov A, Karyagina A. Biomimetic UHMWPE/HA scaffolds with rhBMP-2 and erythropoietin for reconstructive surgery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110750. [PMID: 32279822 DOI: 10.1016/j.msec.2020.110750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/27/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022]
Abstract
A promising direction for the replacement of expanded bone defects is the development of bioimplants based on synthetic biocompatible materials impregnated with growth factors that stimulate bone remodeling. Novel biomimetic highly porous ultra-high molecular weight polyethylene (UHMWPE)/40% hydroxyapatite (HA) scaffold for reconstructive surgery with the porosity of 85 ± 1% vol. and a diameter of pores in the range of 50-800 μm was developed. The manufacturing process allowed the formation of trabecular-like architecture without additional solvents and thermo-oxidative degradation. Biomimetic UHMWPE/HA scaffold was biocompatible and provided effective tissue ingrowth on a model of critical-sized cranial defects in mice. The combined use of UHMWPE/HA with Bone Morphogenetic Protein-2 (BMP-2) demonstrated intensive mineralized bone formation as early as 3 weeks after surgery. The addition of erythropoietin (EPO) significantly enhanced angiogenesis in newly formed tissues. The effect of EPO of bacterial origin on bone tissue defect healing was demonstrated for the first time. The developed biomimetic highly porous UHMWPE/HA scaffold can be used separately or in combination with rhBMP-2 and EPO for reconstructive surgery to solve the problems associated with difference between implant architecture and trabecular bone, low osteointegration and bioinertness.
Collapse
Affiliation(s)
- Fedor Senatov
- National University of Science and Technology "MISIS", Leninskiy pr. 4, 119049 Moscow, Russia; N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia.
| | - Gulbanu Amanbek
- National University of Science and Technology "MISIS", Leninskiy pr. 4, 119049 Moscow, Russia
| | - Polina Orlova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia
| | - Mikhail Bartov
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia
| | - Tatyana Grunina
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia
| | - Evgeniy Kolesnikov
- National University of Science and Technology "MISIS", Leninskiy pr. 4, 119049 Moscow, Russia
| | - Aleksey Maksimkin
- National University of Science and Technology "MISIS", Leninskiy pr. 4, 119049 Moscow, Russia
| | - Sergey Kaloshkin
- National University of Science and Technology "MISIS", Leninskiy pr. 4, 119049 Moscow, Russia
| | - Maria Poponova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia
| | - Kirill Nikitin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia
| | - Mikhail Krivozubov
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia
| | - Natalia Strukova
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia
| | - Vasily Manskikh
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalya Anisimova
- National University of Science and Technology "MISIS", Leninskiy pr. 4, 119049 Moscow, Russia; N. N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia, Kashirskoye sh. 24, 115478 Moscow, Russia
| | - Mikhail Kiselevskiy
- National University of Science and Technology "MISIS", Leninskiy pr. 4, 119049 Moscow, Russia; N. N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia, Kashirskoye sh. 24, 115478 Moscow, Russia
| | - Ronja Scholz
- TU Dortmund University "TUD", Department of Materials Test Engineering (WPT), Baroper Str. 303, 44227 Dortmund, Germany
| | - Marina Knyazeva
- TU Dortmund University "TUD", Department of Materials Test Engineering (WPT), Baroper Str. 303, 44227 Dortmund, Germany
| | - Frank Walther
- TU Dortmund University "TUD", Department of Materials Test Engineering (WPT), Baroper Str. 303, 44227 Dortmund, Germany
| | - Vladimir Lunin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Alexander Gromov
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia
| | - Anna Karyagina
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, 123098 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| |
Collapse
|
11
|
Suresh S, de Castro LF, Dey S, Robey PG, Noguchi CT. Erythropoietin modulates bone marrow stromal cell differentiation. Bone Res 2019; 7:21. [PMID: 31666996 PMCID: PMC6804931 DOI: 10.1038/s41413-019-0060-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Erythropoietin is essential for bone marrow erythropoiesis and erythropoietin receptor on non-erythroid cells including bone marrow stromal cells suggests systemic effects of erythropoietin. Tg6 mice with chronic erythropoietin overexpression have a high hematocrit, reduced trabecular and cortical bone and bone marrow adipocytes, and decreased bone morphogenic protein 2 driven ectopic bone and adipocyte formation. Erythropoietin treatment (1 200 IU·kg–1) for 10 days similarly exhibit increased hematocrit, reduced bone and bone marrow adipocytes without increased osteoclasts, and reduced bone morphogenic protein signaling in the bone marrow. Interestingly, endogenous erythropoietin is required for normal differentiation of bone marrow stromal cells to osteoblasts and bone marrow adipocytes. ΔEpoRE mice with erythroid restricted erythropoietin receptor exhibit reduced trabecular bone, increased bone marrow adipocytes, and decreased bone morphogenic protein 2 ectopic bone formation. Erythropoietin treated ΔEpoRE mice achieved hematocrit similar to wild-type mice without reduced bone, suggesting that bone reduction with erythropoietin treatment is associated with non-erythropoietic erythropoietin response. Bone marrow stromal cells from wild-type, Tg6, and ΔEpoRE-mice were transplanted into immunodeficient mice to assess development into a bone/marrow organ. Like endogenous bone formation, Tg6 bone marrow cells exhibited reduced differentiation to bone and adipocytes indicating that high erythropoietin inhibits osteogenesis and adipogenesis, while ΔEpoRE bone marrow cells formed ectopic bones with reduced trabecular regions and increased adipocytes, indicating that loss of erythropoietin signaling favors adipogenesis at the expense of osteogenesis. In summary, endogenous erythropoietin signaling regulates bone marrow stromal cell fate and aberrant erythropoietin levels result in their impaired differentiation.
Collapse
Affiliation(s)
- Sukanya Suresh
- 1Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Luis Fernandez de Castro
- 2Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Soumyadeep Dey
- 1Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Pamela G Robey
- 2Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Constance Tom Noguchi
- 1Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
12
|
Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109761. [PMID: 31349418 DOI: 10.1016/j.msec.2019.109761] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Bone fracture healing is a multistep and overlapping process of inflammation, angiogenesis and osteogenesis. It is initiated by inflammation, causing the release of various cytokines and growth factors. It leads to the recruitment of stem cells and formation of vasculature resulting in the functional bone formation. This combined phenomenon is used by bone tissue engineers from past few years to address the problem of vasculature and osteogenic differentiation during bone regeneration. In this review, we have discussed all major studies reporting the dual functioning approach to promote osteogenesis coupled angiogenesis using various scaffolds. These scaffolds are broadly classified into four types based on the nature of their structural and functional components. The functionality of the scaffold is either due to the structural components or the loaded cargo which conducts or induces the coupled functionality. Dual delivery system for osteoinductive and angioinductive factors ensures the co-delivery of two different types of molecules to induce osteogenesis and angiogenesis. Single delivery scaffold for angioinductive and osteoinductive molecule releases single type of molecules which could induce both angiogenesis and osteogenesis. Osteoconductive scaffold consisted of bone constituents releases angioinductive factors. Osteoconductive and angioconductive scaffold composed of components which provide the native substrate features for osteogenesis and angiogenesis. This review article also discusses the studies highlighting the synergism of physico-chemical stimuli as dual functioning feature to enhance angiogenesis and osteogenesis simultaneously. In addition, this article covers one of the least discussed area of the bone regeneration i.e. 'cartilage formation as a median between angiogenesis and osteogenesis'.
Collapse
|
13
|
Karyagina AS, Grunina TM, Lyaschuk AM, Voronina EV, Marigin RA, Cherepushkin SA, Trusova IN, Grishin AV, Poponova MS, Orlova PA, Manskikh VN, Strukova NV, Generalova MS, Nikitin KE, Soboleva LA, Boksha IS, Gromov AV. Recombinant Human Erythropoietin Proteins Synthesized in Escherichia coli Cells: Effects of Additional Domains on the in vitro and in vivo Activities. BIOCHEMISTRY (MOSCOW) 2019; 84:20-32. [PMID: 30927522 DOI: 10.1134/s0006297919010036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this work was to compare biological activities of three variants of bacterially expressed human recombinant erythropoietin (EPO) with additional protein domains: 6His-s-tag-EPO protein carrying the s-tag (15-a.a. oligopeptide from bovine pancreatic ribonuclease A) at the N-terminus and HBD-EPO and EPO-HBD proteins containing heparin-binding protein domains (HBD) of the bone morphogenetic protein 2 from Danio rerio at the N- and C-termini, respectively. The commercial preparation Epostim (LLC Pharmapark, Russia) produced by synthesis in Chinese hamster ovary cells was used for comparison. The EPO variant with the C-terminal HBD domain connected by a rigid linker (EPO-HBD) possesses the best properties as compared to HBD-EPO with the reverse domain arrangement. It was ~13 times more active in vitro (i.e., promoted proliferation of human erythroleukemia TF-1 cells) and demonstrated a higher rate of association with the erythropoietin receptor. EPO-HBD also exhibited the greatest binding to the demineralized bone matrix (DBM) and more prolonged release from the DBM among the four proteins studied. Subcutaneous administration of EPO-HBD immobilized on DBM resulted in significantly more pronounced vascularization of surrounding tissues in comparison with the other proteins and DBM alone. Therefore, EPO-HBD displayed better performance with regard to all the investigated parameters than other examined EPO variants, and it seems promising to study the possibility of its medical use.
Collapse
Affiliation(s)
- A S Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia. .,All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - T M Grunina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - A M Lyaschuk
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - E V Voronina
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Kurchatov Institute National Research Center, Moscow, 117545, Russia
| | - R A Marigin
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Kurchatov Institute National Research Center, Moscow, 117545, Russia
| | - S A Cherepushkin
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Kurchatov Institute National Research Center, Moscow, 117545, Russia
| | - I N Trusova
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Kurchatov Institute National Research Center, Moscow, 117545, Russia
| | - A V Grishin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - M S Poponova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - P A Orlova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - V N Manskikh
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - N V Strukova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - M S Generalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - K E Nikitin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - L A Soboleva
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - I S Boksha
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.,Research Center of Mental Health, Moscow, 115522, Russia
| | - A V Gromov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.
| |
Collapse
|
14
|
Karyagina AS, Grunina TM, Poponova MS, Orlova PA, Manskikh VN, Demidenko AV, Strukova NV, Manukhina MS, Nikitin KE, Lyaschuk AM, Galushkina ZM, Cherepushkin SA, Polyakov NB, Solovyev AI, Zhukhovitsky VG, Tretyak DA, Boksha IS, Gromov AV, Lunin VG. Synthesis in Escherichia coli and Characterization of Human Recombinant Erythropoietin with Additional Heparin-Binding Domain. BIOCHEMISTRY (MOSCOW) 2018; 83:1207-1221. [PMID: 30472958 DOI: 10.1134/s0006297918100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recombinant human erythropoietin (EPO) with additional N-terminal heparin-binding protein domain (HBD) from bone morphogenetic protein 2 was synthesized in Escherichia coli cells. A procedure for HBD-EPO purification and refolding was developed for obtaining highly-purified HBD-EPO. The structure of recombinant HBD-EPO was close to that of the native EPO protein. HBD-EPO contained two disulfide bonds, as shown by MALDI-TOF mass spectrometry. The protein demonstrated in vitro biological activity in the proliferation of human erythroleukemia TF-1 cell test and in vivo activity in animal models. HBD-EPO increased the number of reticulocytes in the blood after subcutaneous injection and displayed local angiogenic activity after subcutaneous implantation of demineralized bone matrix (DBM) discs with immobilized HBD-EPO. We developed a quantitative sandwich ELISA method for measuring HBD-EPO concentration in solution using rabbit polyclonal serum and commercial monoclonal anti-EPO antibodies. Pharmacokinetic properties of HBD-EPO were typical for bacterially produced EPO. Under physiological conditions, HBD-EPO can reversibly bind to DBM, which is often used as an osteoplastic material for treatment of bone pathologies. The data on HBD-EPO binding to DBM and local angiogenic activity of this protein give hope for successful application of HBD-EPO immobilized on DBM in experiments on bone regeneration.
Collapse
Affiliation(s)
- A S Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia. .,All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia.,Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T M Grunina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - M S Poponova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - P A Orlova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - V N Manskikh
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.,Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A V Demidenko
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - N V Strukova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - M S Manukhina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - K E Nikitin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - A M Lyaschuk
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Z M Galushkina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - S A Cherepushkin
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Kurchatov Institute National Research Centre, Moscow, 117545, Russia
| | - N B Polyakov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.,Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A I Solovyev
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - V G Zhukhovitsky
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - D A Tretyak
- Moscow Technological University (Lomonosov Institute of Fine Chemical Technologies), Moscow, 119571, Russia
| | - I S Boksha
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.,Research Center of Mental Health, Moscow, 115522, Russia
| | - A V Gromov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
| | - V G Lunin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| |
Collapse
|
15
|
He J, Zhong X, Zhao L, Gan H. JAK2/STAT3/BMP-2 axis and NF-κB pathway are involved in erythropoietin-induced calcification in rat vascular smooth muscle cells. Clin Exp Nephrol 2018; 23:501-512. [PMID: 30406500 DOI: 10.1007/s10157-018-1666-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/28/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Vascular calcification is common in chronic kidney disease (CKD) patients, while erythropoietin (EPO) is widely used in the treatment of renal anemia in CKD patients, whether there is a link between the two is still not clear. METHODS The primary rat vascular smooth muscle cells (VSMCs) and CKD rats were treated with EPO and the calcium deposition was observed by alizarin red staining, von Kossa staining and calcium quantification. Activation of JAK2/STAT3/BMP-2 axis and NF-κB signaling pathways was investigated by Western blotting. RESULTS EPO-induced calcium deposition in VSMCs and significantly potentiated calcification in CKD rats. Furthermore, EPO activated JAK2/STAT3/BMP-2 axis, NF-κB pathway and the pro-calcification effect of EPO was partially blocked by the STAT3 inhibitor (Cryptotanshinone) or NF-κB inhibitor (BAY 11-7082), respectively, in vitro. CONCLUSION EPO could promote VSMCs calcification in vitro and in vivo and this effect may be achieved through the JAK2/STAT3/BMP-2 axis and NF-κB pathway.
Collapse
Affiliation(s)
- Jin He
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaoyi Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lin Zhao
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
16
|
Alhamdi J, Jacobs E, Gronowicz G, Benkirane-Jessel N, Hurley M, Kuhn L. Cell Type Influences Local Delivery of Biomolecules from a Bioinspired Apatite Drug Delivery System. MATERIALS 2018; 11:ma11091703. [PMID: 30217000 PMCID: PMC6163578 DOI: 10.3390/ma11091703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Abstract
Recently, the benefit of step-wise sequential delivery of fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 from a bioinspired apatite drug delivery system on mouse calvarial bone repair was demonstrated. The thicknesses of the nanostructured poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) and the bone-like apatite barrier layer that make up the delivery system, were varied. The effects of the structural variations of the coating on the kinetics of cell access to a cytotoxic factor delivered by the layered structure were evaluated. FGF-2 was adsorbed into the outer PEM, and cytotoxic antimycin-A (AntiA) was adsorbed to the substrate below the barrier layer to detect the timing of the cell access. While MC3T3-E1 osteoprogenitor cells accessed AntiA after three days, the RAW 264.7 macrophage access occurred within 4 h, unless the PEM layer was removed, in which case the results were reversed. Pits were created in the coating by the RAW 264.7 macrophages and initiated delivery, while the osteoprogenitor cell access to drugs occurred through a solution-mediated coating dissolution, at junctions between the islands of crystals. Macrophage-mediated degradation is therefore a mechanism that controls drug release from coatings containing bioinspired apatite.
Collapse
Affiliation(s)
- Jumana Alhamdi
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Emily Jacobs
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Gloria Gronowicz
- Department of Surgery, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Nadia Benkirane-Jessel
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Faculté de Médecine, University of Strasbourg, 67085 Strasbourg, France.
| | - Marja Hurley
- Department of Medicine, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Liisa Kuhn
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
17
|
Aragón J, Salerno S, De Bartolo L, Irusta S, Mendoza G. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. J Colloid Interface Sci 2018; 531:126-137. [PMID: 30029031 DOI: 10.1016/j.jcis.2018.07.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS The development of novel scaffolds based on biocompatible polymers is of great interest in the field of bone repair for fabrication of biodegradable scaffolds that mimic the extracellular matrix and have osteoconductive and osteoinductive properties for enhanced bone regeneration. EXPERIMENTS Polycaprolactone (PCL) and polycaprolactone/polyvinyl acetate (PCL/PVAc) core-shell fibers were synthesised and decorated with poly(lactic-co-glycolic acid) [PLGA] particles loaded with bone morphogenetic protein 2 (BMP2) by simultaneous electrospinning and electrospraying. Hydroxyapatite nanorods (HAn) were loaded into the core of fibers. The obtained scaffolds were characterised by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The in vitro potential of these materials for bone regeneration was assessed in biodegradation assays, osteoblast viability assays, and analyses of expression of specific bone markers, such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). FINDINGS PLGA particles were homogeneously distributed in the entire fibre mat. The growth factor load was 1.2-1.7 μg/g of the scaffold whereas the HAn load was in the 8.8-12.6 wt% range. These scaffolds were able to support and enhance cell growth and proliferation facilitating the expression of osteogenic and osteoconductive markers (OCN and OPN). These observations underline the great importance of the presence of BMP2 in scaffolds for bone remodelling as well as the good potential of the newly developed scaffolds for clinical use in tissue engineering.
Collapse
Affiliation(s)
- Javier Aragón
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| | - Simona Salerno
- Institute for Membrane Technology, National Research Council of Italy, ITM-CNR c/o University of Calabria, Via P. Bucci cubo 17/C, I-87036 Rende, Italy.
| | - Loredana De Bartolo
- Institute for Membrane Technology, National Research Council of Italy, ITM-CNR c/o University of Calabria, Via P. Bucci cubo 17/C, I-87036 Rende, Italy.
| | - Silvia Irusta
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| |
Collapse
|
18
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:863-893. [PMID: 29053081 DOI: 10.1080/09205063.2017.1394711] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biodegradable polymers have met with an increasing demand in medical usage over the last decades. One of such polymers is poly(ε-caprolactone) (PCL), which is a polyester that has been widely used in tissue engineering field for its availability, relatively inexpensive price and suitability for modification. Its chemical and biological properties, physicochemical state, degradability and mechanical strength can be adjusted, and therefore, it can be used under harsh mechanical, physical and chemical conditions without significant loss of its properties. Degradation time of PCL is quite long, thus it is used mainly in the replacement of hard tissues in the body where healing also takes an extended period of time. It is also used at load-bearing tissues of the body by enhancing its stiffness. However, due to its tailorability, use of PCL is not restricted to one type of tissue and it can be extended to engineering of soft tissues by decreasing its molecular weight and degradation time. This review outlines the basic properties of PCL, its composites, blends and copolymers. We report on various techniques for the production of different forms, and provide examples of medical applications such as tissue engineering and drug delivery systems covering the studies performed in the last decades.
Collapse
Affiliation(s)
- Elbay Malikmammadov
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey
| | - Tugba Endogan Tanir
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,c Central Laboratory , Middle East Technical University , Ankara , Turkey
| | - Aysel Kiziltay
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,c Central Laboratory , Middle East Technical University , Ankara , Turkey
| | - Vasif Hasirci
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey.,d Department of Biological Sciences , Middle East Technical University , Ankara , Turkey
| | - Nesrin Hasirci
- a BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering , Middle East Technical University , Ankara , Turkey.,b Graduate Department of Micro and Nanotechnology, Graduate School of Natural and Applied Sciences , Middle East Technical University , Ankara , Turkey.,e Department of Chemistry , Middle East Technical University , Ankara , Turkey
| |
Collapse
|
19
|
Bioreactor as a New Resource of Autologous Bone Graft to Overcome Bone Defect In Vivo. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-017-9237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Hiram-Bab S, Neumann D, Gabet Y. Context-Dependent Skeletal Effects of Erythropoietin. VITAMINS AND HORMONES 2017. [PMID: 28629516 DOI: 10.1016/bs.vh.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart, and retina. The skeletal system is also affected by Epo; however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct vs indirect effect of Epo on the osteoblastic and osteoclastic cell lineages. The current controversy may derive from a context-dependent mode of function of Epo, namely, opposite skeletal actions during bone regeneration and steady-state bone remodeling. Differences in conclusions deriving from the published in vitro studies may thus relate to the different experimental conditions. Taken together, the current state-of-the-art indicates definite Epo effects on bone cells and points to the complexity of the mode of function.
Collapse
Affiliation(s)
- Sahar Hiram-Bab
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Drorit Neumann
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yankel Gabet
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
21
|
Huang RL, Kobayashi E, Liu K, Li Q. Bone Graft Prefabrication Following the In Vivo Bioreactor Principle. EBioMedicine 2016; 12:43-54. [PMID: 27693103 PMCID: PMC5078640 DOI: 10.1016/j.ebiom.2016.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/11/2016] [Accepted: 09/16/2016] [Indexed: 01/31/2023] Open
Abstract
Large bone defect treatment represents a great challenge due to the difficulty of functional and esthetic reconstruction. Tissue-engineered bone grafts created by in vitro manipulation of bioscaffolds, seed cells, and growth factors have been considered potential treatments for bone defect reconstruction. However, a significant gap remains between experimental successes and clinical translation. An emerging strategy for bridging this gap is using the in vivo bioreactor principle and flap prefabrication techniques. This principle focuses on using the body as a bioreactor to cultivate the traditional triad (bioscaffolds, seed cells, and growth factors) and leveraging the body's self-regenerative capacity to regenerate new tissue. Additionally, flap prefabrication techniques allow the regenerated bone grafts to be transferred as prefabricated bone flaps for bone defect reconstruction. Such a strategy has been used successfully for reconstructing critical-sized bone defects in animal models and humans. Here, we highlight this concept and provide some perspective on how to translate current knowledge into clinical practice. The in vivo bioreactor principle and flap prefabrication technique is a promising strategy for bone defect reconstruction. The in vivo bioreactor principle focuses on using the body’s self-regenerative capacity to regenerate new tissue. This strategy has been successfully used to reconstruct critical-sized bone defects in humans.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
22
|
Huang RL, Liu K, Li Q. Bone regeneration following the in vivo bioreactor principle: is in vitro manipulation of exogenous elements still needed? Regen Med 2016; 11:475-81. [PMID: 27357365 DOI: 10.2217/rme-2016-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large bone defect treatment is a key challenge due to the difficulty of functional and aesthetic reconstruction. A promising approach for bone regeneration is bone tissue engineering which is based on in vitro manipulation of seed cells, growth factors and bioscaffolds. However, many formidable conceptual and technical challenges impede clinical translation of experimental successes into clinical practices. An emerging strategy for bone regeneration is using the body as a bioreactor to cultivate the traditional triad and leveraging the body's own regenerative capacity to create new bone tissue. Based on the understanding of bone regeneration and in vivo bioreactor principle, we hypothesize that functional bone tissue may be eventually generated in vivo only using autologous costal periosteum, without participation of any exogenous elements.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Kai Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
23
|
Evaluation of multi-scale mineralized collagen-polycaprolactone composites for bone tissue engineering. J Mech Behav Biomed Mater 2016; 61:318-327. [PMID: 27104930 DOI: 10.1016/j.jmbbm.2016.03.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Abstract
A particular challenge in biomaterial development for treating orthopedic injuries stems from the need to balance bioactive design criteria with the mechanical and geometric constraints governed by the physiological wound environment. Such trade-offs are of particular importance in large craniofacial bone defects which arise from both acute trauma and chronic conditions. Ongoing efforts in our laboratory have demonstrated a mineralized collagen biomaterial that can promote human mesenchymal stem cell osteogenesis in the absence of osteogenic media but that possesses suboptimal mechanical properties in regards to use in loaded wound sites. Here we demonstrate a multi-scale composite consisting of a highly bioactive mineralized collagen-glycosaminoglycan scaffold with micron-scale porosity and a polycaprolactone support frame (PCL) with millimeter-scale porosity. Fabrication of the composite was performed by impregnating the PCL support frame with the mineral scaffold precursor suspension prior to lyophilization. Here we evaluate the mechanical properties, permeability, and bioactivity of the resulting composite. Results indicated that the PCL support frame dominates the bulk mechanical response of the composite resulting in a 6000-fold increase in modulus compared to the mineral scaffold alone. Similarly, the incorporation of the mineral scaffold matrix into the composite resulted in a higher specific surface area compared to the PCL frame alone. The increased specific surface area in the collagen-PCL composite promoted increased initial attachment of porcine adipose derived stem cells versus the PCL construct.
Collapse
|
24
|
Hao J, Cheng KCK, Kruger LG, Larsson L, Sugai JV, Lahann J, Giannobile WV. Multigrowth Factor Delivery via Immobilization of Gene Therapy Vectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3145-3151. [PMID: 26919685 PMCID: PMC5687504 DOI: 10.1002/adma.201600027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 05/29/2023]
Abstract
Molecules can be immobilized onto biomaterials by a chemical vapor deposition (CVD) coating strategy. Pentafluorophenolester groups react with amine side chains on antibodies, which can selectively immobilize adenoviral vectors for gene delivery of growth factors. These vectors can produce functional proteins within defined regions of biomaterials to produce customizable structures for targeted tissue regeneration.
Collapse
Affiliation(s)
- Jie Hao
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109-1078, USA
| | - Kenneth C K Cheng
- Biointerfaces Institute, Department of Materials Science and Engineering, B26-115S NCRC, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA
| | - Laura G Kruger
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109-1078, USA
| | - Lena Larsson
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109-1078, USA
- Department of Periodontology, Institute of Odontology, Medicinaregatan 12F, 6th Floor, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - James V Sugai
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109-1078, USA
| | - Joerg Lahann
- Biointerfaces Institute, Department of Chemical Engineering, Materials Science and Engineering, Biomedical Engineering, Macromolecular Science and Engineering, B10-A175 NCRC, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA
| | - William V Giannobile
- Department of Periodontics and Oral Medicine and Department of Biomedical Engineering, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109-1078, USA
| |
Collapse
|
25
|
Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, Hollister SJ, Giannobile WV. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo. Adv Healthc Mater 2016; 5:676-87. [PMID: 26820240 DOI: 10.1002/adhm.201500758] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/16/2015] [Indexed: 12/20/2022]
Abstract
Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes.
Collapse
Affiliation(s)
- Sophia P. Pilipchuk
- Department of Biomedical Engineering; 1101 Beal Ave; University of Michigan; Ann Arbor MI 48109 USA
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Alberto Monje
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Yizu Jiao
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Jie Hao
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Laura Kruger
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Colleen L. Flanagan
- Department of Biomedical Engineering; 1101 Beal Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Scott J. Hollister
- Department of Biomedical Engineering; 1101 Beal Ave; University of Michigan; Ann Arbor MI 48109 USA
- Department of Mechanical Engineering; Department of Surgery; University of Michigan; Ann Arbor MI 48109 USA
| | - William V. Giannobile
- Department of Biomedical Engineering; 1101 Beal Ave; University of Michigan; Ann Arbor MI 48109 USA
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
26
|
Hiram-Bab S, Neumann D, Gabet Y. Erythropoietin in bone - Controversies and consensus. Cytokine 2016; 89:155-159. [PMID: 26822707 DOI: 10.1016/j.cyto.2016.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 11/28/2022]
Abstract
Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart and retina. The skeletal system is also affected by Epo, however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct versus indirect effect of Epo on the osteoblastic and osteoclastic cell lineages. The current controversy may derive from a context-dependent mode of action of Epo, namely opposite skeletal actions during bone regeneration and steady-state bone remodeling. Differences in conclusions from the published in-vitro studies may thus relate to the different experimental conditions. Taken together, these studies indicate a complexity of Epo functions in bone cells.
Collapse
Affiliation(s)
- Sahar Hiram-Bab
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
27
|
Pei P, Qi X, Du X, Zhu M, Zhao S, Zhu Y. Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration. J Mater Chem B 2016; 4:7452-7463. [DOI: 10.1039/c6tb02055k] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tricalcium silicate/mesoporous bioactive glass (C3S/MBG) cement scaffolds were successfully fabricated for the first time by 3D printing with a curing process, which combined the hydraulicity of C3S with the excellent biological property of MBG together.
Collapse
Affiliation(s)
- Peng Pei
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Xin Qi
- Department of Orthopedics
- Shanghai Sixth People's Hospital
- Shanghai Jiaotong University
- Shanghai 200233
- China
| | - Xiaoyu Du
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Min Zhu
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shichang Zhao
- Department of Orthopedics
- Shanghai Sixth People's Hospital
- Shanghai Jiaotong University
- Shanghai 200233
- China
| | - Yufang Zhu
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|