1
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
2
|
Wen C, Xu L, Xu X, Wang D, Liang Y, Duan L. Insulin-like growth factor-1 in articular cartilage repair for osteoarthritis treatment. Arthritis Res Ther 2021; 23:277. [PMID: 34717735 PMCID: PMC8556920 DOI: 10.1186/s13075-021-02662-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/17/2021] [Indexed: 11/10/2022] Open
Abstract
Articular cartilage repair is a critical issue in osteoarthritis (OA) treatment. The insulin-like growth factor (IGF) signaling pathway has been implicated in articular cartilage repair. IGF-1 is a member of a family of growth factors that are structurally closely related to pro-insulin and can promote chondrocyte proliferation, enhance matrix production, and inhibit chondrocyte apoptosis. Here, we reviewed the role of IGF-1 in cartilage anabolism and catabolism. Moreover, we discussed the potential role of IGF-1 in OA treatment. Of note, we summarized the recent progress on IGF delivery systems. Optimization of IGF delivery systems will facilitate treatment application in cartilage repair and improve OA treatment efficacy.
Collapse
Affiliation(s)
- Caining Wen
- Department of Orthopedics, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Limei Xu
- Department of Orthopedics, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xiao Xu
- Department of Orthopedics, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Daping Wang
- Department of Orthopedics, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujie Liang
- Department of Orthopedics, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China. .,Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518003, China.
| | - Li Duan
- Department of Orthopedics, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
3
|
Guo JL, Kim YS, Orchard EA, van den Beucken JJ, Jansen JA, Wong ME, Mikos AG. A Rabbit Femoral Condyle Defect Model for Assessment of Osteochondral Tissue Regeneration. Tissue Eng Part C Methods 2020; 26:554-564. [PMID: 33050806 PMCID: PMC7698983 DOI: 10.1089/ten.tec.2020.0261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Osteochondral tissue repair represents a common clinical need, with multiple approaches in tissue engineering and regenerative medicine being investigated for the repair of defects of articular cartilage and subchondral bone. A full thickness rabbit femoral condyle defect is a clinically relevant model of an articulating and load bearing joint surface for the investigation of osteochondral tissue repair by various cell-, biomolecule-, and biomaterial-based implants. In this protocol, we describe the methodology and 1.5- to 2-h surgical procedure for the generation of a reproducible, full thickness defect for construct implantation in the rabbit medial femoral condyle. Furthermore, we describe a step-by-step procedure for osteochondral tissue collection and the assessment of tissue formation using standardized histological, radiological, mechanical, and biochemical analytical techniques. This protocol illustrates the critical steps for reproducibility and minimally invasive surgery as well as applications to evaluate the efficacy of cartilage and bone tissue engineering implants, with emphasis on the usage of histological and radiological measures of tissue growth. Impact statement Although multiple surgical techniques have been developed for the treatment of osteochondral defects, repairing the tissues to their original state remains an unmet need. Such limitations have thus prompted the development of various constructs for osteochondral tissue regeneration. An in vivo model that is both clinically relevant and economically practical is necessary to evaluate the efficacy of different tissue engineered constructs. In this article, we present a full thickness rabbit femoral condyle defect model and describe the analytical techniques to assess the regeneration of osteochondral tissue.
Collapse
Affiliation(s)
- Jason L. Guo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Mark E. Wong
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
4
|
Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J Control Release 2020; 327:284-295. [PMID: 32763434 DOI: 10.1016/j.jconrel.2020.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022]
Abstract
Exogenous dual delivery of progenitor cell population and therapeutic growth factors (GFs) is one of alternative tissue engineering strategies for osteochondral tissue regeneration. In the present study, an implantable dual delivery platform was developed using coacervates (Coa) (i.e., a tertiary complex of poly(ethylene argininylaspartate diglyceride) (PEAD) polycation, heparin, and cargo insulin-like growth factor-1 (IGF-1), in thiolated gelatin (gelatin-SH)/ poly(ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN) hydrogels. Since Coa is able to protect cargo GF and maintain its long-term bioactivity, it is speculated that Coa-mediated delivery of chondrogenic factor IGF-1 with the aid of adipose-derived stem cells (ADSCs) would synergistically facilitate osteochondral tissue repair during physiological regeneration process. Our results indicate that gelatin-SH/PEGDA IPN hydrogels demonstrated biocompatibility and mechanical properties for a possible long-term transplantation, and PEAD-base Coa exhibited a sustained release of bioactive IGF-1 over 3 weeks. Subsequently, released IGF-1 from Coa could effectively induce chondrogenic differentiation of embedded ADSCs in the hydrogel, by showing enhanced glycosaminoglycan deposition and expression of chondrogenesis-associated genes. More importantly, at 12 weeks post-implantation in a rabbit full thickness osteochondral defect model, the quality of regenerative tissues in both chondral and subchondral layers was significantly improved in dual delivery of ADSC and IGF-1 in Coa encapsulated in gelatin-SH/PEGDA IPN hydrogels, as compared with a single delivery of ADSC only and a dual delivery without Coa. Therefore, we conclude that our Coa-embedded composite hydrogel platform could effectively augment osteochondral tissue regeneration holds promise for a feasible osteoarthritis therapeutic application.
Collapse
|
5
|
Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW, Fisher JP, Mikos AG. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater 2019; 90:37-48. [PMID: 30905862 PMCID: PMC6744258 DOI: 10.1016/j.actbio.2019.03.041] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/10/2023]
Abstract
Recent developments in 3D printing (3DP) research have led to a variety of scaffold designs and techniques for osteochondral tissue engineering; however, the simultaneous incorporation of multiple types of gradients within the same construct remains a challenge. Herein, we describe the fabrication and mechanical characterization of porous poly(ε-caprolactone) (PCL) and PCL-hydroxyapatite (HA) scaffolds with incorporated vertical porosity and ceramic content gradients via a multimaterial extrusion 3DP system. Scaffolds of 0 wt% HA (PCL), 15 wt% HA (HA15), or 30 wt% HA (HA30) were fabricated with uniform composition and porosity (using 0.2 mm, 0.5 mm, or 0.9 mm on-center fiber spacing), uniform composition and gradient porosity, and gradient composition (PCL-HA15-HA30) and porosity. Micro-CT imaging and porosity analysis demonstrated the ability to incorporate both vertical porosity and pore size gradients and a ceramic gradient, which collectively recapitulate gradients found in native osteochondral tissues. Uniaxial compression testing demonstrated an inverse relationship between porosity, ϕ, and compressive modulus, E, and yield stress, σy, for uniform porosity scaffolds, however, no differences were observed as a result of ceramic incorporation. All scaffolds demonstrated compressive moduli within the appropriate range for trabecular bone, with average moduli between 86 ± 14-220 ± 26 MPa. Uniform porosity and pore size scaffolds for all ceramic levels had compressive moduli between 205 ± 37-220 ± 26 MPa, 112 ± 13-118 ± 23 MPa, and 86 ± 14-97 ± 8 MPa respectively for porosities ranging between 14 ± 4-20 ± 6%, 36 ± 3-43 ± 4%, and 54 ± 2-57 ± 2%, with the moduli and yield stresses of low porosity scaffolds being significantly greater (p < 0.05) than those of all other groups. Single (porosity) gradient and dual (composition/porosity) gradient scaffolds demonstrated compressive properties similar (p > 0.05) to those of the highest porosity uniform scaffolds (porosity gradient scaffolds 98 ± 23-107 ± 6 MPa, and 102 ± 7 MPa for dual composition/porosity gradient scaffolds), indicating that these properties are more heavily influenced by the weakest section of the gradient. The compression data for uniform scaffolds were also readily modeled, yielding scaling laws of the form E ∼ (1 - ϕ)1.27 and σy ∼ (1 - ϕ)1.37, which demonstrated that the compressive properties evaluated in this study were well-aligned with expectations from previous literature and were readily modeled with good fidelity independent of polymer scaffold geometry and ceramic content. All uniform scaffolds were similarly deformed and recovered despite different porosities, while the large-pore sections of porosity gradient scaffolds were significantly more deformed than all other groups, indicating that porosity may not be an independent factor in determining strain recovery. Moving forward, the technique described here will serve as the template for more complex multimaterial constructs with bioactive cues that better match native tissue physiology and promote tissue regeneration. STATEMENT OF SIGNIFICANCE: This manuscript describes the fabrication and mechanical characterization of "dual" porosity/ceramic content gradient scaffolds produced via a multimaterial extrusion 3D printing system for osteochondral tissue engineering. Such scaffolds are designed to better address the simultaneous gradients in architecture and mineralization found in native osteochondral tissue. The results of this study demonstrate that this technique may serve as a template for future advances in 3D printing technology that may better address the inherent complexity in such heterogeneous tissues.
Collapse
Affiliation(s)
- Sean M Bittner
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Brandon T Smith
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Carrigan D Hudgins
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Anthony J Melchiorri
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - David W Scott
- Department of Statistics, Rice University, 6100 Main Street, Houston, TX 77030, USA
| | - John P Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA.
| |
Collapse
|
6
|
Bittner SM, Guo JL, Mikos AG. Spatiotemporal Control of Growth Factors in Three-Dimensional Printed Scaffolds. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2018; 12:e00032. [PMID: 31106279 PMCID: PMC6519969 DOI: 10.1016/j.bprint.2018.e00032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional printing (3DP) has enabled the fabrication of tissue engineering scaffolds that recapitulate the physical, architectural, and biochemical cues of native tissue matrix more effectively than ever before. One key component of biomimetic scaffold fabrication is the patterning of growth factors, whose spatial distribution and temporal release profile should ideally match that seen in native tissue development. Tissue engineers have made significant progress in improving the degree of spatiotemporal control over which growth factors are presented within 3DP scaffolds. However, significant limitations remain in terms in pattern resolution, the fabrication of true gradients, temporal control of growth factor release, the maintenance of growth factor distributions against diffusion, and more. This review summarizes several key areas for advancement of the field in terms of improving spatiotemporal control over growth factor presentation, and additionally highlights several major tissues of interest that have been targeted by 3DP growth factor patterning strategies.
Collapse
Affiliation(s)
- Sean M. Bittner
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Engineering Complex Tissues, United States
| | - Jason L. Guo
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Engineering Complex Tissues, United States
| |
Collapse
|
7
|
Bittner SM, Guo JL, Melchiorri A, Mikos AG. Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:861-874. [PMID: 30450010 PMCID: PMC6233733 DOI: 10.1016/j.mattod.2018.02.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The field of tissue engineering has produced new therapies for the repair of damaged tissues and organs, utilizing biomimetic scaffolds that mirror the mechanical and biological properties of host tissue. The emergence of three-dimensional printing (3DP) technologies has enabled the fabrication of highly complex scaffolds which offer a more accurate replication of native tissue properties and architecture than previously possible. Of strong interest to tissue engineers is the construction of multilayered scaffolds that target distinct regions of complex tissues. Musculoskeletal and dental tissues in particular, such as the osteochondral unit and periodontal complex, are composed of multiple interfacing tissue types, and thus benefit from the usage of multilayered scaffold fabrication. Traditional 3DP technologies such as extrusion printing and selective laser sintering have been used for the construction of scaffolds with gradient architectures and mixed material compositions. Additionally, emerging bioprinting strategies have been used for the direct printing and spatial patterning of cells and chemical factors, capturing the complex organization found in the body. To better replicate the varied and gradated properties of larger tissues, researchers have created scaffolds composed of multiple materials spanning natural polymers, synthetic polymers, and ceramics. By utilizing high precision 3DP techniques and judicious material selection, scaffolds can thus be designed to address the regeneration of previously challenging musculoskeletal, dental, and other heterogeneous target tissues. These multilayered 3DP strategies show great promise in the future of tissue engineering.
Collapse
Affiliation(s)
- Sean M Bittner
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| | - Jason L Guo
- Department of Bioengineering, Rice University, Houston, TX
| | - Anthony Melchiorri
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| |
Collapse
|
8
|
Yang W, Cao Y, Zhang Z, Du F, Shi Y, Li X, Zhang Q. Targeted delivery of FGF2 to subchondral bone enhanced the repair of articular cartilage defect. Acta Biomater 2018; 69:170-182. [PMID: 29408545 DOI: 10.1016/j.actbio.2018.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/28/2017] [Accepted: 01/25/2018] [Indexed: 01/25/2023]
Abstract
It is reported that growth factor (GF) is able to enhance the repair of articular cartilage (AC) defect, however underlying mechanisms of which are not fully elucidated yet. Moreover, the strategy for delivering GF needs to be optimized. The crosstalk between AC and subchondral bone (SB) play important role in the homeostasis and integrity of AC, therefore SB targeted delivery of GF represents one promising way to facilitate the repair of AC defect. In this study, we firstly investigated the effects and mechanism of FGF2 on surrounding SB and cartilage of detect defects in rabbits by using a homogenous collagen-based membranes. It was found that FGF2 had a modulating effect on the defect-surrounding SB via upregulation of bone morphogenetic protein (BMP)-2, BMP4 and SOX9 at the early stage. Low dose FGF2 improved the repair upon directly injected to SB. Inhibition of BMP signaling pathway compromised the beneficial effects of FGF2, which indicated the pivotal roles of BMP in the process. To facilitate SB targeted FGF2 delivery, a double-layered inhomogeneous collagen membrane was prepared and it induced increase of BMP2 and BMP4 in the synovial fluid, and subsequent successful repair of AC defect. Taken together, this targeted delivery of FGF2 to SB provides a promising strategy for AC repair owing to the relatively clear mechanism, less amount of it, and short duration of delivery. STATEMENT OF SIGNIFICANCE Articular cartilage (AC) and subchondral bone (SB) form an integral functional unit. The homeostasis and integrity of AC depend on its crosstalk with the SB. However, the function of the SB in AC defect repair is not completely understood. The application of growth factors to promote the repair articular cartilage defect is a promising strategy, but still under the optimization. Our study demonstrate that SB plays important roles in the repair of AC defect. Particularly, SB is the effective target of fibroblast growth factor 2 (FGF2), and targeted delivery of FGF2 can modulate SB and thus significantly enhances the repair of AC defect. Therefore, targeted delivery of growth factor to SB is a novel promising strategy to improve the repair of AC defect.
Collapse
|
9
|
Bai Z, Guo XH, Tang C, Yue ST, Shi L, Qiang B. Effects of Artesunate on the Expressions of Insulin-Like Growth Factor-1, Osteopontin and C-Telopeptides of Type II Collagen in a Rat Model of Osteoarthritis. Pharmacology 2017; 101:1-8. [PMID: 28898893 DOI: 10.1159/000479160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/04/2017] [Indexed: 09/05/2024]
Abstract
OBJECTIVE The study aims to explore the effects of artesunate on insulin-like growth factor-1 (IGF-1), Osteopontin (OPN), and C-telopeptides of type II collagen (CTX-II) in serum, synovial fluid (SF), and cartilage tissues of rats with osteoarthritis (OA). METHODS OA models were established. Normal model, artesunate, and Viatril-S groups (20 rats respectively) were set. Enzyme-linked immunosorbent assay, IHC staining, and quantitative real-time polymerase chain reaction were conducted to calculate IGF-1, OPN, and CTX-II levels in serum, SF, and cartilage tissues of rats. The pathological changes in cartilage tissues were evaluated with Mankin score and Hematoxylin-Eosin staining. RESULTS Compared with the normal group, the model group showed increased IGF-1 level; decreased OPN, CTX-II levels in the serum and SF; and contrary results were seen in the cartilage tissues. A gradual ascending IGF-1 level and descending OPN and CTX-II levels existed in the serum and SF in the artesunate and Viatril-S groups after 2 weeks. The model group showed the most obvious pathological changes and highest Mankin score compared with the other groups. Higher IGF-1 level and lower OPN, CTX-II levels were exhibited in the cartilage tissue in the artesunate and Viatril-S groups but not in the model group. CONCLUSION Artesunate and Viatril-S inhibit OA development by elevating IGF-1 level and reducing OPN and CTX-II levels.
Collapse
Affiliation(s)
- Zhe Bai
- The Third Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Gupta V, Lyne DV, Laflin AD, Zabel TA, Barragan M, Bunch JT, Pacicca DM, Detamore MS. Microsphere-Based Osteochondral Scaffolds Carrying Opposing Gradients Of Decellularized Cartilage And Demineralized Bone Matrix. ACS Biomater Sci Eng 2016; 3:1955-1963. [PMID: 32793803 DOI: 10.1021/acsbiomaterials.6b00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular matrix (ECM) "raw materials" such as demineralized bone matrix (DBM) and cartilage matrix have emerged as leading scaffolding materials for osteochondral regeneration owing to their capacity to facilitate progenitor/resident cell recruitment, infiltration, and differentiation without adding growth factors. Scaffolds comprising synthetic polymers are sturdy yet generally lack cues for guiding cell differentiation. We hypothesized that opposing gradients of decellularized cartilage (DCC) and DBM in polymeric microsphere-based scaffolds would provide superior regeneration compared to polymer-only scaffolds in vivo. Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds were fabricated, either with opposing gradients of DCC and DBM encapsulated (GRADIENT) or without DCC and DBM (BLANK control), and implanted into rabbit osteochondral defects in medial femoral condyles. After 12 weeks, gross morphological evaluation showed that the repair tissue in about 30% of the implants was either slightly or significantly depressed, hinting toward rapid polymer degradation in scaffolds from both of the groups. Additionally, no differences were observed in gross morphology of the repair tissue between the BLANK and GRADIENT groups. Mechanical testing revealed no significant differences in model parameter values between the two groups. Histological observations demonstrated that the repair tissue in both of the groups was fibrous in nature with the cells demonstrating notable proliferation and matrix deposition activity. No adverse inflammatory response was observed in any of the implants from the two groups. Overall, the results emphasize the need to improve the technology in terms of altering the DBM and DCC concentrations, and tailoring the polymer degradation to these concentrations.
Collapse
Affiliation(s)
- Vineet Gupta
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States
| | - Dina V Lyne
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States
| | - Amy D Laflin
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States
| | - Taylor A Zabel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States
| | - Marilyn Barragan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States
| | - Joshua T Bunch
- Department of Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Donna M Pacicca
- Division of Orthopaedic Surgery, Children's Mercy Hospital, Kansas City, Missouri, United States.,School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Michael S Detamore
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States
| |
Collapse
|
11
|
Im GI. Endogenous Cartilage Repair by Recruitment of Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:160-71. [DOI: 10.1089/ten.teb.2015.0438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|