1
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA, Maurice NW. Uncovering SIRT3 and SHMT2-dependent pathways as novel targets for apigenin in modulating colorectal cancer: In vitro and in vivo studies. Exp Cell Res 2024; 441:114150. [PMID: 38971519 DOI: 10.1016/j.yexcr.2024.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Despite significant advances in the treatment of colorectal cancer (CRC), identification of novel targets and treatment options are imperative for improving its prognosis and survival rates. The mitochondrial SIRT3 and SHMT2 have key roles in metabolic reprogramming and cell proliferation. This study investigated the potential use of the natural product apigenin in CRC treatment employing both in vivo and in vitro models and explored the role of SIRT3 and SHMT2 in apigenin-induced CRC apoptosis. The role of SHMT2 in CRC patients' survival was verified using TCGA database. In vivo, apigenin treatment restored the normal colon appearance. On the molecular level, apigenin augmented the immunohistochemical expression of cleaved caspase-3 and attenuated SIRT3 and SHMT2 mRNA expression CRC patients with decreased SHMT2 expression had improved overall and disease-free survival rates. In vitro, apigenin reduced the cell viability in a time-dependent manner, induced G0/G1 cell cycle arrest, and increased the apoptotic cell population compared to the untreated control. Mechanistically, apigenin treatment mitigated the expression of SHMT2, SIRT3, and its upstream long intergenic noncoding RNA LINC01234 in CRC cells. Conclusively, apigenin induces caspase-3-dependent apoptosis in CRC through modulation of SIRT3-triggered mitochondrial pathway suggesting it as a promising therapeutic agent to improve patient outcomes.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11823, Egypt; Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Seifi Z, Khazaei M, Cheraghali D, Rezakhani L. Decellularized tissues as platforms for digestive system cancer models. Heliyon 2024; 10:e31589. [PMID: 38845895 PMCID: PMC11153114 DOI: 10.1016/j.heliyon.2024.e31589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
The extracellular matrix (ECM) is a multifunctional network of macromolecules that regulate various cellular functions and physically support the tissues. Besides physiological conditions, the ECM also changes during pathological conditions such as cancer. As tumor cells proliferate, notable changes occur in the quantity and makeup of the surrounding ECM. Therefore, the role of this noncellular component of tissues in studies of tumor microenvironments should be considered. So far, many attempts have been made to create 2-dimensional (2D) or 3-dimensional (3D) models that can replicate the intricate connections within the tumor microenvironment. Decellularized tissues are proper scaffolds that imitate the complex nature of native ECM. This review aims to summarize 3D models of digestive system cancers based on decellularized ECMs. These ECM-based scaffolds will enable us to study the interactive communication between cells and their surrounding environment which brings new potential for a better understanding of the pathophysiology of cancer.
Collapse
Affiliation(s)
- Zahra Seifi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Danial Cheraghali
- Department of Mechanical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Liu T, Gu J, Fu C, Su L. Three-Dimensional Scaffolds for Intestinal Cell Culture: Fabrication, Utilization, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:158-175. [PMID: 37646409 DOI: 10.1089/ten.teb.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The intestine is a visceral organ that integrates absorption, metabolism, and immunity, which is vulnerable to external stimulus. Researchers in the fields such as food science, immunology, and pharmacology have committed to developing appropriate in vitro intestinal cell models to study the intestinal absorption and metabolism mechanisms of various nutrients and drugs, or pathogenesis of intestinal diseases. In the past three decades, the intestinal cell models have undergone a significant transformation from conventional two-dimensional cultures to three-dimensional (3D) systems, and the achievements of 3D cell culture have been greatly contributed by the fabrication of different scaffolds. In this review, we first introduce the developing trend of existing intestinal models. Then, four types of scaffolds, including Transwell, hydrogel, tubular scaffolds, and intestine-on-a-chip, are discussed for their 3D structure, composition, advantages, and limitations in the establishment of intestinal cell models. Excitingly, some of the in vitro intestinal cell models based on these scaffolds could successfully mimic the 3D structure, microenvironment, mechanical peristalsis, fluid system, signaling gradients, or other important aspects of the original human intestine. Furthermore, we discuss the potential applications of the intestinal cell models in drug screening, disease modeling, and even regenerative repair of intestinal tissues. This review presents an overview of state-of-the-art scaffold-based cell models within the context of intestines, and highlights their major advances and applications contributing to a better knowledge of intestinal diseases. Impact statement The intestine tract is crucial in the absorption and metabolism of nutrients and drugs, as well as immune responses against external pathogens or antigens in a complex microenvironment. The appropriate experimental cell model in vitro is needed for in-depth studies of intestines, due to the limitation of animal models in dynamic control and real-time assessment of key intestinal physiological and pathological processes, as well as the "R" principles in laboratory animal experiments. Three-dimensional (3D) scaffold-based cell cultivation has become a developing tendency because of the superior cell proliferation and differentiation and more physiologically relevant environment supported by the customized 3D scaffolds. In this review, we summarize four types of up-to-date 3D cell culture scaffolds fabricated by various materials and techniques for a better recapitulation of some essential physiological and functional characteristics of original intestines compared to conventional cell models. These emerging 3D intestinal models have shown promising results in not only evaluating the pharmacokinetic characteristics, security, and effectiveness of drugs, but also studying the pathological mechanisms of intestinal diseases at cellular and molecular levels. Importantly, the weakness of the representative 3D models for intestines is also discussed.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Jia Gu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Lingshan Su
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Funk C, Uhlig N, Ruzsics Z, Baur F, Peindl M, Nietzer S, Epting K, Vacun G, Dandekar G, Botteron C, Werno C, Grunwald T, Bailer SM. TheraVision: Engineering platform technology for the development of oncolytic viruses based on herpes simplex virus type 1. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200784. [PMID: 38596296 PMCID: PMC10950833 DOI: 10.1016/j.omton.2024.200784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Viruses are able to efficiently penetrate cells, multiply, and eventually kill infected cells, release tumor antigens, and activate the immune system. Therefore, viruses are highly attractive novel agents for cancer therapy. Clinical trials with first generations of oncolytic viruses (OVs) are very promising but show significant need for optimization. The aim of TheraVision was to establish a broadly applicable engineering platform technology for combinatorial oncolytic virus and immunotherapy. Through genetic engineering, an attenuated herpes simplex virus type 1 (HSV1) was generated that showed increased safety compared to the wild-type strain. To demonstrate the modularity and the facilitated generation of new OVs, two transgenes encoding retargeting as well as immunomodulating single-chain variable fragments (scFvs) were integrated into the platform vector. The resulting virus selectively infected epidermal growth factor receptor (EGFR)-expressing cells and produced a functional immune checkpoint inhibitor against programmed cell death protein 1 (PD-1). Thus, both viral-mediated oncolysis and immune-cell-mediated therapy were combined into a single viral vector. Safety and functionality of the armed OVs have been shown in novel preclinical models ranging from patient-derived organoids and tissue-engineered human in vitro 3D tumor models to complex humanized mouse models. Consequently, a novel and proprietary engineering platform vector based on HSV1 is available for the facilitated preclinical development of oncolytic virotherapy.
Collapse
Affiliation(s)
- Christina Funk
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Florentin Baur
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Matthias Peindl
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Sarah Nietzer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Karina Epting
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gabriele Vacun
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Catherine Botteron
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christian Werno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Susanne M. Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
5
|
Katti PD, Jasuja H. Current Advances in the Use of Tissue Engineering for Cancer Metastasis Therapeutics. Polymers (Basel) 2024; 16:617. [PMID: 38475301 PMCID: PMC10934711 DOI: 10.3390/polym16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion. The spread of cancer to distant organs through metastasis is the leading cause of death due to cancer. However, as of today, there is no cure for metastasis. Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis. This review covers the current studies in developing tissue-engineered metastasis structures. This article reports recent developments in in vitro models for breast, prostate, colon, and pancreatic cancer. The review also identifies challenges and opportunities in the use of tissue engineering toward new, clinically relevant therapies that aim to reduce the cancer burden.
Collapse
|
6
|
Murkar R, von Heckel C, Walles H, Moch TB, Arens C, Davaris N, Weber A, Zuschratter W, Baumann S, Reinhardt J, Kopp S. Establishment of a Human Immunocompetent 3D Tissue Model to Enable the Long-Term Examination of Biofilm-Tissue Interactions. Bioengineering (Basel) 2024; 11:187. [PMID: 38391673 PMCID: PMC10885984 DOI: 10.3390/bioengineering11020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Different studies suggest an impact of biofilms on carcinogenic lesion formation in varying human tissues. However, the mechanisms of cancer formation are difficult to examine in vivo as well as in vitro. Cell culture approaches, in most cases, are unable to keep a bacterial steady state without any overgrowth. In our approach, we aimed to develop an immunocompetent 3D tissue model which can mitigate bacterial outgrowth. We established a three-dimensional (3D) co-culture of human primary fibroblasts with pre-differentiated THP-1-derived macrophages on an SIS-muc scaffold which was derived by decellularisation of a porcine intestine. After establishment, we exposed the tissue models to define the biofilms of the Pseudomonas spec. and Staphylococcus spec. cultivated on implant mesh material. After 3 days of incubation, the cell culture medium in models with M0 and M2 pre-differentiated macrophages presented a noticeable turbidity, while models with M1 macrophages presented no noticeable bacterial growth. These results were validated by optical density measurements and a streak test. Immunohistology and immunofluorescent staining of the tissue presented a positive impact of the M1 macrophages on the structural integrity of the tissue model. Furthermore, multiplex ELISA highlighted the increased release of inflammatory cytokines for all the three model types, suggesting the immunocompetence of the developed model. Overall, in this proof-of-principle study, we were able to mitigate bacterial overgrowth and prepared a first step for the development of more complex 3D tissue models to understand the impact of biofilms on carcinogenic lesion formation.
Collapse
Affiliation(s)
- Rasika Murkar
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Charlotte von Heckel
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Heike Walles
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Theresia Barbara Moch
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Christoph Arens
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Giessen, 35392 Giessen, Germany
| | - Nikolaos Davaris
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Giessen, 35392 Giessen, Germany
| | - André Weber
- Photonscore GmbH, Brenneckestr. 20, 39118 Magdeburg, Germany
| | | | - Sönke Baumann
- Omicron-Laserage® Laserprodukte GmbH, Raiffeisenstr. 5e, 63110 Rodgau, Germany
| | - Jörg Reinhardt
- MedFact Engineering GmbH, Hammerstrasse 3, 79540 Lörrach, Germany
| | - Sascha Kopp
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
7
|
Wang H, Walles T, Wiese-Rischke C. Patient-Derived Lung Cancer "Sandwich Cultures" with a Preserved Tumor Microenvironment. Tissue Eng Part C Methods 2024; 30:27-37. [PMID: 38115596 PMCID: PMC10818046 DOI: 10.1089/ten.tec.2023.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
In the past, different spheroid-, organotypic-, and three-dimensional (3D) bioprinting lung cancer models were established for in vitro drug testing and personalized medicine. These tissue models cannot depict the tumor microenvironment (TME) and, therefore, research addressing tumor cell-TME interactions is limited. To overcome this hurdle, we applied patient-derived lung tumor samples to establish new in vitro models. To analyze the tissue model properties, we established two-dimensional (2D) and 3D coculture tissue models exposed to static and dynamic culture conditions that afforded tissue culture for up to 28 days. Our tissue models were characterized by hematoxylin eosin staining, M30 enzyme-linked immunosorbent assay, and immunofluorescence staining against specific lung cancer markers (TTF-1 and p40/p63), cancer-associated fibroblast (CAF) markers (α-SMA and MCT4), and fibronectin (FN). The 3D models were generated with higher success rate than the corresponding 2D model. The cell density of the static 3D model increased from 21 to 28 days, whereas the apoptosis decreased. The dynamic 3D model possessed an even higher cell density than the static 3D model. We identified lung cancer cells, CAFs, and FN. Therefore, a novel in vitro 3D lung cancer model was established, which simulated the TME for 28 days and possessed a structural complexity.
Collapse
Affiliation(s)
- Hailong Wang
- University Clinic for Cardiac and Thoracic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thorsten Walles
- University Clinic for Cardiac and Thoracic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Cornelia Wiese-Rischke
- University Clinic for Cardiac and Thoracic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
8
|
Jarak I, Isabel Santos A, Helena Pinto A, Domingues C, Silva I, Melo R, Veiga F, Figueiras A. Colorectal cancer cell exosome and cytoplasmic membrane for homotypic delivery of therapeutic molecules. Int J Pharm 2023; 646:123456. [PMID: 37778515 DOI: 10.1016/j.ijpharm.2023.123456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of death in the world. The multi-drug resistance, especially in metastatic colorectal cancer, drives the development of new strategies that secure a positive outcome and reduce undesirable side effects. Nanotechnology has made an impact in addressing some pharmacokinetic and safety issues related to administration of free therapeutic agents. However, demands of managing complex biointerfacing require equally complex methods for introducing stimuli-responsive or targeting elements. In order to procure a more efficient solution to the overcoming of biological barriers, the physiological functions of cancer cell plasma and exosomal membranes provided the source of highly functionalized coatings. Biomimetic nanovehicles based on colorectal cancer (CRC) membranes imparted enhanced biological compatibility, immune escape and protection to diverse classes of therapeutic molecules. When loaded with therapeutic load or used as a coating for other therapeutic nanovehicles, they provide highly efficient and selective cell targeting and uptake. This review presents a detailed overview of the recent application of homotypic biomimetic nanovehicles in the management of CRC. We also address some of the current possibilities and challenges associated with the CRC membrane biomimetics.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Porto, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ana Isabel Santos
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Ana Helena Pinto
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Inês Silva
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Raquel Melo
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal.
| |
Collapse
|
9
|
Wang Y, Wu J, Chen J, Lu C, Liang J, Shan Y, Liu J, Li Q, Miao L, He M, Wang X, Zhang J, Wu Z. Mesenchymal stem cells paracrine proteins from three-dimensional dynamic culture system promoted wound healing in third-degree burn models. Bioeng Transl Med 2023; 8:e10569. [PMID: 38023693 PMCID: PMC10658564 DOI: 10.1002/btm2.10569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 12/01/2023] Open
Abstract
Recovery of skin function remains a significant clinical challenge for deep burns owing to the severe scar formation and poor appendage regeneration, and stem cell therapy has shown great potential for injured tissue regeneration. Here, a cell-free therapy system for deep burn skin was explored using mesenchymal stem cell paracrine proteins (MSC-PP) and polyethylene glycol (PEG) temperature-sensitive hydrogels. A three-dimensional (3D) dynamic culture system for MSCs' large-scale expansion was established using a porous gelatin microcarrier crosslinked with hyaluronic acid (PGM-HA), and the purified MSC-PP from culture supernatant was characterized by mass spectrometric analysis. The results showed the 3D dynamic culture system regulated MSCs cell cycle, reduced apoptosis, and decreased lactic acid content, and the MSC-PP produced in 3D group can promote cell proliferation, migration, and adhesion. The MSC-PP + PEG system maintained stable release in 28 days of observation in vitro. The in vivo therapeutic efficacy was investigated in the rabbit's third-degree burn model, and saline, PEG, MSC-PP, and MSC-PP + PEG treatments groups were set. The in vivo results showed that the MSC-PP + PEG group significantly improved wound healing, inhibited scar formation, and facilitated skin appendage regeneration. In conclusion, the MSC-PP + PEG sustained-release system provides a potentially effective treatment for deep burn skin healing.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of OphthalmologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Cheng Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jinchao Liang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Yingyi Shan
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Liang Miao
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Mu He
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Xiaoying Wang
- Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jianhua Zhang
- Special WardsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
10
|
Sensi F, D'angelo E, Biccari A, Marangio A, Battisti G, Crotti S, Fassan M, Laterza C, Giomo M, Elvassore N, Spolverato G, Pucciarelli S, Agostini M. Establishment of a human 3D pancreatic adenocarcinoma model based on a patient-derived extracellular matrix scaffold. Transl Res 2023; 253:57-67. [PMID: 36096350 DOI: 10.1016/j.trsl.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
Pancreatic cancer is likely to become one of the leading causes of cancer-related death in many countries within the next decade. Surgery is the potentially curative treatment for pancreatic ductal adenocarcinoma (PDAC), although only 10%-20% of patients have a resectable disease after diagnosis. Despite recent advances in curative surgery the current prognosis ranges from 6% to 10% globally. One of the main issues at the pre-clinical level is the lacking of model which simultaneously reflects the tumour microenvironment (TME) at both structural and cellular levels. Here we describe an innovative tissue engineering approach applied to PDAC starting from decellularized human biopsies in order to generate an organotypic 3D in vitro model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence, mechanical analysis, and scanning electron microscopy. Mass spectrometry confirmed a different extracellular matrix (ECM) composition between decellularized healthy pancreas and PDAC by identifying a total of 110 non-redundant differently expressed proteins. Immunofluorescence analyses after 7 days of scaffold recellularization with PANC-1 and AsPC-1 pancreatic cell lines, were performed to assess the biocompatibility of 3D matrices to sustain engraftment, localization and infiltration. Finally, both PANC-1 and AsPC-1 cells cultured in 3D matrices showed a reduced response to treatment with FOLFIRINOX if compared to conventional bi-dimensional culture. Our 3D culture system with patient-derived tissue-specific decellularized ECM better recapitulates the pancreatic cancer microenvironment compared to conventional 2D culture conditions and represents a relevant approach for the study of pancreatic cancer response to chemotherapy agents.
Collapse
Affiliation(s)
- Francesca Sensi
- Department of Women and Children's Health, University of Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Edoardo D'angelo
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy; Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, Padova, Italy
| | - Andrea Biccari
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, Padova, Italy
| | - Asia Marangio
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Italy
| | - Giulia Battisti
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Italy
| | - Sara Crotti
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | | | - Cecilia Laterza
- Department of Industrial Engineering, University of Padova, Italy
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Italy
| | - Gaya Spolverato
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Italy.
| | - Salvatore Pucciarelli
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Italy
| | - Marco Agostini
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy; Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, Padova, Italy.
| |
Collapse
|
11
|
Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, Vemuganti G, Singh V. Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocul Surf 2022; 25:129-141. [PMID: 35753665 DOI: 10.1016/j.jtos.2022.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
DED (Dry eye disease) is a common multifactorial disease of the ocular surface and the tear film. DED has gained attention globally, with millions of people affected.. Although treatment strategies for DED have shifted towards Tear Film Oriented Therapy (TFOT), all the existing strategies fall under standard palliative care when addressed as a long-term goal. Therefore, different approaches have been explored by various groups to uncover alternative treatment strategies that can contribute to a full regeneration of the damaged lacrimal gland. For this, multiple groups have investigated the role of lacrimal gland (LG) cells in DED based on their regenerating, homing, and differentiating capabilities. In this review, we discuss in detail therapeutic mechanisms and regenerative strategies that can potentially be applied for lacrimal gland regeneration as well as their therapeutic applications. This review mainly focuses on Aqueous Deficiency Dry Eye Disease (ADDE) caused by lacrimal gland dysfunction and possible future treatment strategies. The current key findings from cell and tissue-based regenerative therapy modalities that could be utilised to achieve lacrimal gland tissue regeneration are summarized. In addition, this review summarises the available literature from in vitro to in vivo animal studies, their limitations in relation to lacrimal gland regeneration and the possible clinical applications. Finally, current issues and unmet needs of cell-based therapies in providing complete lacrimal gland tissue regeneration are discussed.
Collapse
Affiliation(s)
- Induvahi Veernala
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jasmin Fried
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India
| | - Geeta Vemuganti
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India.
| |
Collapse
|
12
|
Gregory E, Baek IH, Ala-Kokko N, Dugan R, Pinzon-Herrera L, Almodóvar J, Song YH. Peripheral Nerve Decellularization for In Vitro Extracellular Matrix Hydrogel Use: A Comparative Study. ACS Biomater Sci Eng 2022; 8:2574-2588. [PMID: 35649243 PMCID: PMC9983633 DOI: 10.1021/acsbiomaterials.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rise of tissue-engineered biomaterials has introduced more clinically translatable models of disease, including three-dimensional (3D) decellularized extracellular matrix (dECM) hydrogels. Specifically, decellularized nerve hydrogels have been utilized to model peripheral nerve injuries and disorders in vitro; however, there lacks standardization in decellularization methods. Here, rat sciatic nerves of varying preparations were decellularized using previously established methods: sodium deoxycholate (SD)-based, 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS)-based, and apoptosis-mediated. These nerves were characterized for cellular debris removal, ECM retention, and low cytotoxicity with cultured Schwann cells. The best preparations of each decellularization method were digested into dECM hydrogels, and rheological characterization, gelation kinetics, and confocal reflectance imaging of collagen fibril assembly were performed. It was determined that the SD-based method with nerve epineurial removal best maintained the overall ECM composition and mechanical properties of physiological peripheral nerves while efficiently stripping the scaffolds of tissue-specific cells and debris. This method was then utilized as a culture platform for quiescent Schwann cells and cancer-nerve crosstalk. Hydrogel-embedded Schwann cells were found to have high viability and act in a more physiologically relevant manner than those cultured in monolayers, and the hydrogel platform allowed for the activation of Schwann cells following treatment with cancer secreted factors. These findings establish a standard for peripheral nerve decellularization for usage as a dECM hydrogel testbed for in vitro peripheral nerve disease modeling and may facilitate the development of treatments for peripheral nerve disease and injury.
Collapse
|
13
|
EMT, Stemness, and Drug Resistance in Biological Context: A 3D Tumor Tissue/In Silico Platform for Analysis of Combinatorial Treatment in NSCLC with Aggressive KRAS-Biomarker Signatures. Cancers (Basel) 2022; 14:cancers14092176. [PMID: 35565305 PMCID: PMC9099837 DOI: 10.3390/cancers14092176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The phenotypic transition of tumor cells from epithelial to mesenchymal characteristics is called EMT and is widely discussed in the scientific community as a game changer in drug resistance and metastasis formation. However, clinical studies could not prove the efficacy of EMT-interfering treatments, and in clinical routine, EMT is not investigated to assess invasion. To fill this gap between bench and bedside, we use in this study a lung tumor tissue model with a preserved basement membrane for investigation of EMT functions with respect to invasion across this membrane and drug resistance. Our results suggest EMT is more a marker of drug resistance than a maker. Invasion is enhanced by EMT but more dependent on intrinsic factors, and EMT is not detected in the center of invasive tumor nodules. An in silico signaling network model is used to integrate these in vitro results and to reveal determinants for drug response. Abstract Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRASG12C or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRASG12C inhibitor in KRASG12C mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.
Collapse
|
14
|
Wan J, Wu T, Liu Y, Yang M, Fichna J, Guo Y, Yin L, Chen C. Mast Cells Tryptase Promotes Intestinal Fibrosis in Natural Decellularized Intestinal Scaffolds. Tissue Eng Regen Med 2022; 19:717-726. [PMID: 35218507 PMCID: PMC9294124 DOI: 10.1007/s13770-022-00433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Standard two-dimensional (2D) culture has confirmed the mechanism of mast cells (MCs) in the pathogenesis of inflammatory bowel disease (IBD), but the regulation of signaling responses of MCs may well differ in three-dimensional (3D) microenvironments. The aim of the study was to develop a 3D culture model based on decellularized intestinal scaffolds (DIS) and verify how MCs influenced fibroblasts phenotype in the 3D model. METHODS DIS were achieved using the detergent technique and extracellular matrix (ECM) components were verified by histologic analysis, quantification and scanning electron microscope. After human colon fibroblasts recellularized into the scaffolds and activated by MCs tryptase and TGFβ1, the changes in genes and signaling pathways during fibroblasts activation in 3D were studied and compared with the changes in 2D cell culture on plastic plates. RESULTS Decellularization process effectively removed native cell debris while retaining natural ECM components and structure. The engrafted fibroblasts could penetrate into the scaffolds and maintain its phenotype. No matter whether fibroblasts were cultured in 2D or 3D, MCs tryptase and transforming growth factor β1 (TGF-β1) could promote the differentiation of fibroblasts into fibrotic-phenotype myofibroblasts through Akt and Smad2/3 signaling pathways. Furthermore, the pro-collagen1α1 and fibronectin synthesis of myofibroblasts in 3D was higher than in 2D culture. CONCLUSION Our results demonstrated that the DIS can be used as a bioactive microenvironment for the study of intestinal fibrosis, providing an innovative platform for future intestinal disease modeling and screening of genes and signaling pathways.
Collapse
Affiliation(s)
- Jian Wan
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Tianqi Wu
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ying Liu
- Department of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Muqing Yang
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000 China
| | - Lu Yin
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chunqiu Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
15
|
Asadian S, Piryaei A, Gheibi N, Aziz Kalantari B, Reza Davarpanah M, Azad M, Kapustina V, Alikhani M, Moghbeli Nejad S, Keshavarz Alikhani H, Mohamadi M, Shpichka A, Timashev P, Hassan M, Vosough M. Rhenium Perrhenate ( 188ReO 4) Induced Apoptosis and Reduced Cancerous Phenotype in Liver Cancer Cells. Cells 2022; 11:305. [PMID: 35053421 PMCID: PMC8774126 DOI: 10.3390/cells11020305] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Recurrence in hepatocellular carcinoma (HCC) after conventional treatments is a crucial challenge. Despite the promising progress in advanced targeted therapies, HCC is the fourth leading cause of cancer death worldwide. Radionuclide therapy can potentially be a practical targeted approach to address this concern. Rhenium-188 (188Re) is a β-emitting radionuclide used in the clinic to induce apoptosis and inhibit cell proliferation. Although adherent cell cultures are efficient and reliable, appropriate cell-cell and cell-extracellular matrix (ECM) contact is still lacking. Thus, we herein aimed to assess 188Re as a potential therapeutic component for HCC in 2D and 3D models. The death rate in treated Huh7 and HepG2 lines was significantly higher than in untreated control groups using viability assay. After treatment with 188ReO4, Annexin/PI data indicated considerable apoptosis induction in HepG2 cells after 48 h but not Huh7 cells. Quantitative RT-PCR and western blotting data also showed increased apoptosis in response to 188ReO4 treatment. In Huh7 cells, exposure to an effective dose of 188ReO4 led to cell cycle arrest in the G2 phase. Moreover, colony formation assay confirmed post-exposure growth suppression in Huh7 and HepG2 cells. Then, the immunostaining displayed proliferation inhibition in the 188ReO4-treated cells on 3D scaffolds of liver ECM. The PI3-AKT signaling pathway was activated in 3D culture but not in 2D culture. In nude mice, Huh7 cells treated with an effective dose of 188ReO4 lost their tumor formation ability compared to the control group. These findings suggest that 188ReO4 can be a potential new therapeutic agent against HCC through induction of apoptosis and cell cycle arrest and inhibition of tumor formation. This approach can be effectively combined with antibodies and peptides for more selective and personalized therapy.
Collapse
Affiliation(s)
- Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 16123798, Iran;
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 16123798, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Bagher Aziz Kalantari
- Department of Organic Chemistry, Karaj Branch, Islamic Azad University, Karaj 16255879, Iran;
| | | | - Mehdi Azad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Valentina Kapustina
- Department of Internal Medicine N1, Sechenov University, 119991 Moscow, Russia;
| | - Mehdi Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Sahar Moghbeli Nejad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Morteza Mohamadi
- Department of Physical Chemistry, Faculty of Science, University of Tehran, Tehran 17456987, Iran;
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia;
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia;
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden;
- Clinical Research Center, Karolinska University Hospital Huddinge, 141-83 Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden;
- Clinical Research Center, Karolinska University Hospital Huddinge, 141-83 Stockholm, Sweden
| |
Collapse
|
16
|
Marques-Magalhães Â, Cruz T, Costa ÂM, Estêvão D, Rios E, Canão PA, Velho S, Carneiro F, Oliveira MJ, Cardoso AP. Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers (Basel) 2022; 14:cancers14020359. [PMID: 35053521 PMCID: PMC8773780 DOI: 10.3390/cancers14020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
More than a physical structure providing support to tissues, the extracellular matrix (ECM) is a complex and dynamic network of macromolecules that modulates the behavior of both cancer cells and associated stromal cells of the tumor microenvironment (TME). Over the last few years, several efforts have been made to develop new models that accurately mimic the interconnections within the TME and specifically the biomechanical and biomolecular complexity of the tumor ECM. Particularly in colorectal cancer, the ECM is highly remodeled and disorganized and constitutes a key component that affects cancer hallmarks, such as cell differentiation, proliferation, angiogenesis, invasion and metastasis. Therefore, several scaffolds produced from natural and/or synthetic polymers and ceramics have been used in 3D biomimetic strategies for colorectal cancer research. Nevertheless, decellularized ECM from colorectal tumors is a unique model that offers the maintenance of native ECM architecture and molecular composition. This review will focus on innovative and advanced 3D-based models of decellularized ECM as high-throughput strategies in colorectal cancer research that potentially fill some of the gaps between in vitro 2D and in vivo models. Our aim is to highlight the need for strategies that accurately mimic the TME for precision medicine and for studying the pathophysiology of the disease.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Tânia Cruz
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Ângela Margarida Costa
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Diogo Estêvão
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Rios
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Pedro Amoroso Canão
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Sérgia Velho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Carneiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Maria José Oliveira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Patrícia Cardoso
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
17
|
Vasanthan KS, Srinivasan V, Pandita D. Extracellular matrix extraction techniques and applications in biomedical engineering. Regen Med 2021; 16:775-802. [PMID: 34427104 DOI: 10.2217/rme-2021-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of tissue engineering involves regeneration and repair of damaged tissue and organs using various combinations of cells, growth factors and scaffolds. The extracellular matrix (ECM) forms the integral part of the scaffold to induce cell proliferation thereby leading to new tissue formation. Decellularization technique provides decellularized ECM (dECM), free of cells while preserving the in vivo biomolecules. In this review, we focus on the detailed methodology of diverse decellularization techniques for various organs of different animals, and the biomedical applications employing the dECM. A culmination of different methods of decellularization is optimized, which offers a suitable microenvironment mimicking the native in vivo topography for in vitro organ regeneration. A detailed assessment of the dECM provides information on the microarchitecture, presence of ECM proteins, biocompatibility and cell proliferation. dECM has also been processed as scaffolds and drug-delivery vehicles, and utilized for regeneration.
Collapse
Affiliation(s)
- Kirthanashri S Vasanthan
- Amity Institute of Molecular Medicine & Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Deepti Pandita
- Delhi Pharmaceutical Science & Research University, Government of NCT of Delhi, New Delhi, 110017, India
| |
Collapse
|
18
|
Castro F, Leite Pereira C, Helena Macedo M, Almeida A, José Silveira M, Dias S, Patrícia Cardoso A, José Oliveira M, Sarmento B. Advances on colorectal cancer 3D models: The needed translational technology for nanomedicine screening. Adv Drug Deliv Rev 2021; 175:113824. [PMID: 34090966 DOI: 10.1016/j.addr.2021.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous and molecularly complex disease, associated with high mortality worldwide, exposing the urgent need for novel therapeutic approaches. Their development and translation to the clinic have been hampered, partially due to the absence of reliable cellular models that resemble key features of the human disease. While traditional 2D models are not able to provide consistent and predictive responses about the in vivo efficiency of the formulation, animal models frequently fail to recapitulate cancer progression and to reproduce adverse effects. On its turn, multicellular 3D systems, by mimicking key genetic, physical and mechanical cues of the tumor microenvironment, constitute a promising tool in cancer research. In addition, they constitute more physiological and relevant environment for anticancer drugs screening and for predicting patient's response towards personalized approaches, bridging the gap between simplified 2D models and unrepresentative animal models. In this review, we provide an overview of CRC 3D models for translational research, with focus on their potential for nanomedicines screening.
Collapse
|
19
|
Hughes DL, Hughes A, Soonawalla Z, Mukherjee S, O’Neill E. Dynamic Physiological Culture of Ex Vivo Human Tissue: A Systematic Review. Cancers (Basel) 2021; 13:2870. [PMID: 34201273 PMCID: PMC8229413 DOI: 10.3390/cancers13122870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Conventional static culture fails to replicate the physiological conditions that exist in vivo. Recent advances in biomedical engineering have resulted in the creation of novel dynamic culturing systems that permit the recapitulation of normal physiological processes ex vivo. Whilst the physiological benefit for its use in the culture of two-dimensional cellular monolayer has been validated, its role in the context of primary human tissue culture has yet to be determined. This systematic review identified 22 articles that combined dynamic physiological culture techniques with primary human tissue culture. The most frequent method described (55%) utilised dynamic perfusion culture. A diverse range of primary human tissue was successfully cultured. The median duration of successful ex vivo culture of primary human tissue for all articles was eight days; however, a wide range was noted (5 h-60 days). Six articles (27%) reported successful culture of primary human tissue for greater than 20 days. This review illustrates the physiological benefit of combining dynamic culture with primary human tissue culture in both long-term culture success rates and preservation of native functionality of the tissue ex vivo. Further research efforts should focus on developing precise biochemical sensors that would allow for real-time monitoring and automated self-regulation of the culture system in order to maintain homeostasis. Combining these techniques allows the creation of an accurate system that can be used to gain a greater understanding of human physiology.
Collapse
Affiliation(s)
- Daniel Ll Hughes
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (D.L.H.); (S.M.)
| | - Aron Hughes
- Undergraduate Centre, Cardiff University Medical School, Cardiff CF14 4YS, UK;
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS, Oxford OX3 7LE, UK;
| | - Somnath Mukherjee
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (D.L.H.); (S.M.)
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (D.L.H.); (S.M.)
| |
Collapse
|
20
|
Krokker L, Szabó B, Németh K, Tóháti R, Sarkadi B, Mészáros K, Patócs A, Butz H. Three Dimensional Cell Culturing for Modeling Adrenal and Pituitary Tumors. Pathol Oncol Res 2021; 27:640676. [PMID: 34257605 PMCID: PMC8262162 DOI: 10.3389/pore.2021.640676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022]
Abstract
In vitro monolayer conditions are not able to reproduce the complexity of solid tumors, still, there is scarce information about the 3D cell culture models of endocrine tumor types. Therefore, our aim was to develop in vitro 3D tumor models by different methodologies for adrenocortical carcinoma (H295R), pituitary neuroendocrine tumor (RC-4B/C and GH3) and pheochromocytoma (PC-12). Various methodologies were tested. Cell biological assays (cell viability, proliferation and live cell ratio) and steroid hormone production by HPLC-MS/MS method were applied to monitor cellular well-being. Cells in hanging drops and embedded in matrigel formed multicellular aggregates but they were difficult to handle and propagate for further experiments. The most widely used methods: ultra-low attachment plate (ULA) and spheroid inducing media (SFDM) were not the most viable 3D model of RC-4B/C and GH3 cells that would be suitable for further experiments. Combining spheroid generation with matrigel scaffold H295R 3D models were viable for 7 days, RC-4B/C and GH3 3D models for 7–10 days. ULA and SFDM 3D models of PC-12 cells could be used for further experiments up to 4 days. Higher steroid production in 3D models compared to conventional monolayer culture was detected. Endocrine tumor cells require extracellular matrix as scaffold for viable 3D models that can be one reason behind the lack of the usage of endocrine 3D cultures. Our models help understanding the pathogenesis of endocrine tumors and revealing potential biomarkers and therapeutic targets. They could also serve as an excellent platform for preclinical drug test screening.
Collapse
Affiliation(s)
- Lilla Krokker
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Borbála Szabó
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Kinga Németh
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Rebeka Tóháti
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Sarkadi
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Katalin Mészáros
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
21
|
Gregory E, Dugan R, David G, Song YH. The biology and engineered modeling strategies of cancer-nerve crosstalk. Biochim Biophys Acta Rev Cancer 2020; 1874:188406. [PMID: 32827578 DOI: 10.1016/j.bbcan.2020.188406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
A recent finding critical to cancer aggravation is the interaction between cancer cells and nerves. There exist two main modes of cancer-nerve interaction: perineural invasion (PNI) and tumor innervation. PNI occurs when cancer cells infiltrate the adjacent nerves, and its relative opposite, tumor innervation, occurs when axons extend into tumor bodies. Like most cancer studies, these crosstalk interactions have mostly been observed in patient samples and animal models at this point, making it difficult to understand the mechanisms in a controlled manner. As such, in recent years in vitro studies have emerged that have helped identify various microenvironmental factors responsible for cancer-nerve crosstalk, including but not limited to neurotrophic factors, neurotransmitters, chemokines, cancer-derived exosomes, and Schwann cells. The versatility of in vitro systems warrants continuous development to increase physiological relevance to study PNI and tumor innervation, for example by utilizing biomimetic three-dimensional (3D) culture systems. Despite the wealth of 3D in vitro cancer models, comparatively there exists a lack of 3D in vitro models of nerve, PNI, and tumor innervation. Native-like 3D in vitro models of cancer-nerve interactions may further help develop therapeutic strategies to curb nerve-mediated cancer aggravation. As such, we provide an overview of the key players of cancer-nerve crosstalk and current in vitro models of the crosstalk, as well as cancer and nerve models. We also discuss a few future directions in cancer-nerve crosstalk research.
Collapse
Affiliation(s)
- Emory Gregory
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America.
| | - Reagan Dugan
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America.
| | - Gabriel David
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America.
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
22
|
Breun M, Martellotta DD, Leberle A, Nietzer S, Baur F, Ernestus RI, Matthies C, Löhr M, Hagemann C. 3D in vitro test system for vestibular schwannoma. J Neurosci Methods 2020; 336:108633. [PMID: 32061689 DOI: 10.1016/j.jneumeth.2020.108633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Maria Breun
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Donato Daniel Martellotta
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Anna Leberle
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Sarah Nietzer
- Institute of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Florentin Baur
- Institute of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Cordula Matthies
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| |
Collapse
|
23
|
Baur F, Nietzer SL, Kunz M, Saal F, Jeromin J, Matschos S, Linnebacher M, Walles H, Dandekar T, Dandekar G. Connecting Cancer Pathways to Tumor Engines: A Stratification Tool for Colorectal Cancer Combining Human In Vitro Tissue Models with Boolean In Silico Models. Cancers (Basel) 2019; 12:cancers12010028. [PMID: 31861874 PMCID: PMC7017315 DOI: 10.3390/cancers12010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is-in contrast to melanoma-not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification.
Collapse
Affiliation(s)
- Florentin Baur
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
| | - Sarah L. Nietzer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Fabian Saal
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Julian Jeromin
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Stephanie Matschos
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany; (S.M.); (M.L.)
| | - Michael Linnebacher
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany; (S.M.); (M.L.)
| | - Heike Walles
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
- EMBL Heidelberg, Structural and Computational Biology, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Correspondence: (T.D.); (G.D.); Tel.: +49-931-3184551 (T.D.); +49-931-3182597 (G.D.)
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
- Correspondence: (T.D.); (G.D.); Tel.: +49-931-3184551 (T.D.); +49-931-3182597 (G.D.)
| |
Collapse
|
24
|
Levin D. Bench to Bedside: Approaches for Engineered Intestine, Esophagus, and Colon. Gastroenterol Clin North Am 2019; 48:607-623. [PMID: 31668186 DOI: 10.1016/j.gtc.2019.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The generation of tissue engineered organs from autologous cells will allow replacement of diseased or absent organs without the need for immunosuppression. Common steps of tissue engineering include isolation of pluripotent or multipotent stem cells, preparation of synthetic or biologic scaffold, and implantation into a host to support the proliferation of engineered tissue. Some organs have been successfully transplanted in human patients; gastrointestinal tract tissues are nearing clinical introduction. The state of the science has progressed rapidly and providers and researchers alike must take appropriate steps to ensure strict adherence to ethical standards before introduction to human therapy.
Collapse
Affiliation(s)
- Daniel Levin
- Division of Pediatric Surgery, Department of Surgery, University of Virginia, 1300 Jefferson Park Avenue, PO BOX 800709, Charlottesville, VA 22908-0709, USA.
| |
Collapse
|
25
|
Wallstabe L, Göttlich C, Nelke LC, Kühnemundt J, Schwarz T, Nerreter T, Einsele H, Walles H, Dandekar G, Nietzer SL, Hudecek M. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight 2019; 4:126345. [PMID: 31415244 DOI: 10.1172/jci.insight.126345] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Solid tumors impose immunologic and physical barriers to the efficacy of chimeric antigen receptor (CAR) T cell therapy that are not reflected in conventional preclinical testing against singularized tumor cells in 2-dimensional culture. Here, we established microphysiologic three-dimensional (3D) lung and breast cancer models that resemble architectural and phenotypical features of primary tumors and evaluated the antitumor function of receptor tyrosine kinase-like orphan receptor 1-specific (ROR1-specific) CAR T cells. 3D tumors were established from A549 (non-small cell lung cancer) and MDA-MB-231 (triple-negative breast cancer) cell lines on a biological scaffold with intact basement membrane (BM) under static and dynamic culture conditions, which resulted in progressively increasing cell mass and invasive growth phenotype (dynamic > static; MDA-MB-231 > A549). Treatment with ROR1-CAR T cells conferred potent antitumor effects. In dynamic culture, CAR T cells actively entered arterial medium flow and adhered to and infiltrated the tumor mass. ROR1-CAR T cells penetrated deep into tumor tissue and eliminated multiple layers of tumor cells located above and below the BM. The microphysiologic 3D tumor models developed in this study are standardized, scalable test systems that can be used either in conjunction with or in lieu of animal testing to interrogate the antitumor function of CAR T cells and to obtain proof of concept for their safety and efficacy before clinical application.
Collapse
Affiliation(s)
| | - Claudia Göttlich
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Lena C Nelke
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Johanna Kühnemundt
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Thomas Schwarz
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | | | | | - Heike Walles
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Gudrun Dandekar
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Sarah L Nietzer
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | | |
Collapse
|
26
|
Lübtow MM, Nelke LC, Seifert J, Kühnemundt J, Sahay G, Dandekar G, Nietzer SL, Luxenhofer R. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. J Control Release 2019; 303:162-180. [DOI: 10.1016/j.jconrel.2019.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
|
27
|
Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, Martin I, Iezzi G. Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactor-Based 3D Culture System. ACTA ACUST UNITED AC 2019; 3:e1800300. [PMID: 32627426 DOI: 10.1002/adbi.201800300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/03/2019] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death. Conventional chemotherapeutic regimens have limited success rates, and a major challenge for the development of novel therapies is the lack of adequate in vitro models. Nonmalignant mesenchymal and immune cells of the tumor microenvironment (TME) are known to critically affect CRC progression and drug responsiveness. However, tumor drug sensitivity is still evaluated on systems, such as cell monolayers, spheroids, or tumor xenografts, which typically neglect the original TME. Here, it is investigated whether a bioreactor-based 3D culture system can preserve the main TME cellular components in primary CRC samples. Freshly excised CRC fragments are inserted between two collagen scaffolds in a "sandwich-like" format and cultured under static or perfused conditions up to 3 d. Perfused cultures maintain tumor tissue architecture and densities of proliferating tumor cells to significantly higher extents than static cultures. Stromal and immune cells are also preserved and fully viable, as indicated by their responsiveness to microenvironmental stimuli. Importantly, perfusion-based cultures prove suitable for testing the sensitivity of primary tumor cells to chemotherapies currently in use for CRC. Perfusion-based culture of primary CRC specimens recapitulates TME key features and may allow assessment of tumor drug response in a patient-specific context.
Collapse
Affiliation(s)
- Celeste Manfredonia
- Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Manuele G Muraro
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Oncology Surgery, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Christian Hirt
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Oncology Surgery, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Valentina Mele
- Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Valeria Governa
- Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Oncology Surgery, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Adam Papadimitropoulos
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Silvio Däster
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Savas D Soysal
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Raoul A Droeser
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Robert Mechera
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Daniel Oertli
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Raffaele Rosso
- Department of Surgery, Canton Hospital Lugano, Lugano, 6900, Switzerland
| | - Martin Bolli
- Department of Surgery, Claraspital, Basel, 4058, Switzerland
| | | | | | - Giulio C Spagnoli
- Oncology Surgery, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Giandomenica Iezzi
- Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Department of Surgery, Ente Ospedaliero Cantonale and Università Svizzera Italiana, Bellinzona, 6500, Switzerland
| |
Collapse
|
28
|
Wang L, Wu S, Cao G, Fan Y, Dunne N, Li X. Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. J Mater Chem B 2019; 7:7439-7459. [DOI: 10.1039/c9tb01539f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of biomechanical studies on biomaterial degradation and co-cultured cells as well as valuable biomechanical ideas on how to design or optimize cell biomaterial co-culture system.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Nicholas Dunne
- Centre for Medical Engineering Research
- School of Mechanical and Manufacturing Engineering
- Dublin City University
- Dublin 9
- Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| |
Collapse
|
29
|
Cattin S, Ramont L, Rüegg C. Characterization and In Vivo Validation of a Three-Dimensional Multi-Cellular Culture Model to Study Heterotypic Interactions in Colorectal Cancer Cell Growth, Invasion and Metastasis. Front Bioeng Biotechnol 2018; 6:97. [PMID: 30065926 PMCID: PMC6056662 DOI: 10.3389/fbioe.2018.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third cause of cancer-related mortality in industrialized countries. Local invasion and metastasis formation are events associated with poor prognosis for which today there are no effective therapeutic options. Invasion and metastasis are strongly modulated by cells of the tumor microenvironment (TME), in particular fibroblasts and endothelial cells. Unraveling interactions between tumor cells and cells of the TME may identify novel mechanisms and therapeutic targets to prevent or treat metastasis. We report here the development and in vivo validation of a 3D tumor spheroid model to study the interactions between CRC cells, fibroblasts and endothelial cells in vitro. Co-cultured fibroblasts promoted SW620 and HCT116 CRC spheroid invasion, and this was prevented by the SRC and FGFR kinase inhibitors Dasatinib and Erdafitinib, respectively. To validate these findings in vivo, we injected SW620 cells alone or together with fibroblasts orthotopically in the caecum of mice. Co-injection with fibroblasts promoted lung metastasis growth, which was fully reversed by treatment with Dasatinib or Erdafitinib. Co-culture of SW620 or HCT116 CRC spheroids with endothelial cells suppressed spheroid growth while it had no effect on cancer cell migration or invasion. Consistent with this in vitro effect, co-injected endothelial cells significantly inhibited primary tumor growth in vivo. From these experiments we conclude that effects on cancer cell invasion and growth induced by co-cultured TME cells and drug treatment in the 3D spheroid model in vitro, are predictive of in vivo effects. The 3D spheroid model may be considered as an attractive model to study the effect of heterotypic cellular interactions and drug activities on cancer cells, as animal testing alternative. This model may be adapted and further developed to include different types of cancer and host cells and to investigate additional functions and drugs.
Collapse
Affiliation(s)
- Sarah Cattin
- Department of Oncology, Faculty of Science and Medicine, Immunology and Microbiology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Ramont
- Laboratory of Medical and Molecular Biology, Centre National de la Recherche Scientifique, Reims, France
| | - Curzio Rüegg
- Department of Oncology, Faculty of Science and Medicine, Immunology and Microbiology, University of Fribourg, Fribourg, Switzerland.,Swiss Integrative Center for Human Health, Fribourg, Switzerland
| |
Collapse
|
30
|
Göttlich C, Kunz M, Zapp C, Nietzer SL, Walles H, Dandekar T, Dandekar G. A combined tissue-engineered/in silico signature tool patient stratification in lung cancer. Mol Oncol 2018; 12:1264-1285. [PMID: 29797762 PMCID: PMC6068345 DOI: 10.1002/1878-0261.12323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/10/2023] Open
Abstract
Patient‐tailored therapy based on tumor drivers is promising for lung cancer treatment. For this, we combined in vitro tissue models with in silico analyses. Using individual cell lines with specific mutations, we demonstrate a generic and rapid stratification pipeline for targeted tumor therapy. We improve in vitro models of tissue conditions by a biological matrix‐based three‐dimensional (3D) tissue culture that allows in vitro drug testing: It correctly shows a strong drug response upon gefitinib (Gef) treatment in a cell line harboring an EGFR‐activating mutation (HCC827), but no clear drug response upon treatment with the HSP90 inhibitor 17AAG in two cell lines with KRAS mutations (H441, A549). In contrast, 2D testing implies wrongly KRAS as a biomarker for HSP90 inhibitor treatment, although this fails in clinical studies. Signaling analysis by phospho‐arrays showed similar effects of EGFR inhibition by Gef in HCC827 cells, under both 2D and 3D conditions. Western blot analysis confirmed that for 3D conditions, HSP90 inhibitor treatment implies different p53 regulation and decreased MET inhibition in HCC827 and H441 cells. Using in vitro data (western, phospho‐kinase array, proliferation, and apoptosis), we generated cell line‐specific in silico topologies and condition‐specific (2D, 3D) simulations of signaling correctly mirroring in vitro treatment responses. Networks predict drug targets considering key interactions and individual cell line mutations using the Human Protein Reference Database and the COSMIC database. A signature of potential biomarkers and matching drugs improve stratification and treatment in KRAS‐mutated tumors. In silico screening and dynamic simulation of drug actions resulted in individual therapeutic suggestions, that is, targeting HIF1A in H441 and LKB1 in A549 cells. In conclusion, our in vitro tumor tissue model combined with an in silico tool improves drug effect prediction and patient stratification. Our tool is used in our comprehensive cancer center and is made now publicly available for targeted therapy decisions.
Collapse
Affiliation(s)
- Claudia Göttlich
- Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Germany.,Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Wuerzburg, Germany
| | - Meik Kunz
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Germany
| | - Cornelia Zapp
- Institute for Pharmaceutics and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Sarah L Nietzer
- Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Germany
| | - Heike Walles
- Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Germany.,Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Germany.,Structural and Computational Biology, EMBL Heidelberg, Germany
| | - Gudrun Dandekar
- Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Germany.,Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Wuerzburg, Germany
| |
Collapse
|
31
|
Chim LK, Mikos AG. Biomechanical forces in tissue engineered tumor models. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:42-50. [PMID: 30276358 PMCID: PMC6162057 DOI: 10.1016/j.cobme.2018.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors are complex three-dimensional (3D) networks of cancer and stromal cells within a dynamic extracellular matrix. Monolayer cultures fail to recapitulate the native microenvironment and therefore are poor candidates for pre-clinical drug studies and studying pathways in cancer. The tissue engineering toolkit allows us to make models that better recapitulate the 3D architecture present in tumors. Moreover, the role of the mechanical microenvironment, including matrix stiffness and shear stress from fluid flow, is known to contribute to cancer progression and drug resistance. We review recent developments in tissue engineered tumor models with a focus on the role of the biomechanical forces and propose future considerations to implement to improve physiological relevance of such models.
Collapse
Affiliation(s)
- Letitia K Chim
- Department of Bioengineering, Rice University, 6500 Main Street MS-142, Houston, Texas 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street MS-142, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Selden C, Fuller B. Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design. Bioengineering (Basel) 2018; 5:bioengineering5020032. [PMID: 29695077 PMCID: PMC6027481 DOI: 10.3390/bioengineering5020032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role.
Collapse
Affiliation(s)
- Clare Selden
- Institute for Liver and Digestive Health, Division of Medicine, Faculty of Medical Sciences, University College London, Royal Free Hospital Campus, Rowland Hill Street, Hampstead, London NW3 2PF, UK.
| | - Barry Fuller
- Department of Nanotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London NW3 2QG, UK.
| |
Collapse
|
33
|
Sun D, Liu Y, Wang H, Deng F, Zhang Y, Zhao S, Ma X, Wu H, Sun G. Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells. Int J Biol Macromol 2018; 109:1154-1163. [DOI: 10.1016/j.ijbiomac.2017.11.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
34
|
Suarez Muñoz M, Confalonieri D, Walles H, van Dongen EMWM, Dandekar G. Recombinant Collagen I Peptide Microcarriers for Cell Expansion and Their Potential Use As Cell Delivery System in a Bioreactor Model. J Vis Exp 2018:57363. [PMID: 29443081 PMCID: PMC5912385 DOI: 10.3791/57363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tissue engineering is a promising field, focused on developing solutions for the increasing demand on tissues and organs regarding transplantation purposes. The process to generate such tissues is complex, and includes an appropriate combination of specific cell types, scaffolds, and physical or biochemical stimuli to guide cell growth and differentiation. Microcarriers represent an appealing tool to expand cells in a three-dimensional (3D) microenvironment, since they provide higher surface-to volume ratios and mimic more closely the in vivo situation compared to traditional two-dimensional methods. The vascular system, supplying oxygen and nutrients to the cells and ensuring waste removal, constitutes an important building block when generating engineered tissues. In fact, most constructs fail after being implanted due to lacking vascular support. In this study, we present a protocol for endothelial cell expansion on recombinant collagen-based microcarriers under dynamic conditions in spinner flask and bioreactors, and we explain how to determine in this setting cell viability and functionality. In addition, we propose a method for cell delivery for vascularization purposes without additional detachment steps necessary. Furthermore, we provide a strategy to evaluate the cell vascularization potential in a perfusion bioreactor on a decellularized biological matrix. We believe that the use of the presented methods could lead to the development of new cell-based therapies for a large range of tissue engineering applications in the clinical practice.
Collapse
Affiliation(s)
- Melva Suarez Muñoz
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg;
| | - Davide Confalonieri
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg
| | - Heike Walles
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC
| | | | - Gudrun Dandekar
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC
| |
Collapse
|
35
|
Hussey GS, Cramer MC, Badylak SF. Extracellular Matrix Bioscaffolds for Building Gastrointestinal Tissue. Cell Mol Gastroenterol Hepatol 2017; 5:1-13. [PMID: 29276748 PMCID: PMC5736871 DOI: 10.1016/j.jcmgh.2017.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Regenerative medicine is a rapidly advancing field that uses principles of tissue engineering, developmental biology, stem cell biology, immunology, and bioengineering to reconstruct diseased or damaged tissues. Biologic scaffolds composed of extracellular matrix have shown great promise as an inductive substrate to facilitate the constructive remodeling of gastrointestinal (GI) tissue damaged by neoplasia, inflammatory bowel disease, and congenital or acquired defects. The present review summarizes the preparation and use of extracellular matrix scaffolds for bioengineering of the GI tract, identifies significant advances made in regenerative medicine for the reconstruction of functional GI tissue, and describes an emerging therapeutic approach.
Collapse
Affiliation(s)
- George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madeline C. Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence Address correspondence to: Stephen F. Badylak, DVM, PhD, MD, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania 15219-3110. fax: (412) 624-5256.McGowan Institute for Regenerative MedicineUniversity of Pittsburgh450 Technology Drive, Suite 300PittsburghPennsylvania15219-3110
| |
Collapse
|
36
|
Zhang YS, Duchamp M, Oklu R, Ellisen LW, Langer R, Khademhosseini A. Bioprinting the Cancer Microenvironment. ACS Biomater Sci Eng 2016; 2:1710-1721. [PMID: 28251176 PMCID: PMC5328669 DOI: 10.1021/acsbiomaterials.6b00246] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is intrinsically complex, comprising both heterogeneous cellular compositions and microenvironmental cues. During the various stages of cancer initiation, development, and metastasis, cell-cell interactions (involving vascular and immune cells besides cancerous cells) as well as cell-extracellular matrix (ECM) interactions (e.g., alteration in stiffness and composition of the surrounding matrix) play major roles. Conventional cancer models both two- and three-dimensional (2D and 3D) present numerous limitations as they lack good vascularization and cannot mimic the complexity of tumors, thereby restricting their use as biomimetic models for applications such as drug screening and fundamental cancer biology studies. Bioprinting as an emerging biofabrication platform enables the creation of high-resolution 3D structures and has been extensively used in the past decade to model multiple organs and diseases. More recently, this versatile technique has further found its application in studying cancer genesis, growth, metastasis, and drug responses through creation of accurate models that recreate the complexity of the cancer microenvironment. In this review we will focus first on cancer biology and limitations with current cancer models. We then detail the current bioprinting strategies including the selection of bioinks for capturing the properties of the tumor matrices, after which we discuss bioprinting of vascular structures that are critical toward construction of complex 3D cancer organoids. We finally conclude with current literature on bioprinted cancer models and propose future perspectives.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Margaux Duchamp
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, Lausanne 1015, Switzerland
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, Arizona 85259, United States
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Robert Langer
- Harvard–MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Abdullah Sulayman Street, Jeddah 21569, Saudi Arabia
| |
Collapse
|