1
|
Wang X, Xiang C, Huang C, Cheng H, Zhou Z, Zhang J, Xie H. The treatment efficacy of bone tissue engineering strategy for repairing segmental bone defects under diabetic condition. Front Bioeng Biotechnol 2024; 12:1379679. [PMID: 38737542 PMCID: PMC11082311 DOI: 10.3389/fbioe.2024.1379679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Background Diabetes mellitus is a systematic disease which exert detrimental effect on bone tissue. The repair and reconstruction of bone defects in diabetic patients still remain a major clinical challenge. This study aims to investigate the potential of bone tissue engineering approach to improve bone regeneration under diabetic condition. Methods In the present study, decalcified bone matrix (DBM) scaffolds were seeded with allogenic fetal bone marrow-derived mesenchymal stem cells (BMSCs) and cultured in osteogenic induction medium to fabricate BMSC/DBM constructs. Then the BMSC/DBM constructs were implanted in both subcutaneous pouches and large femoral bone defects in diabetic (BMSC/DBM in DM group) and non-diabetic rats (BMSC/DBM in non-DM group), cell-free DBM scaffolds were implanted in diabetic rats to serve as the control group (DBM in DM group). X-ray, micro-CT and histological analyses were carried out to evaluate the bone regenerative potential of BMSC/DBM constructs under diabetic condition. Results In the rat subcutaneous implantation model, quantitative micro-CT analysis demonstrated that BMSC/DBM in DM group showed impaired bone regeneration activity compared with the BMSC/DBM in non-DM group (bone volume: 46 ± 4.4 mm3 vs 58.9 ± 7.15 mm3, *p < 0.05). In the rat femoral defect model, X-ray examination demonstrated that bone union was delayed in BMSC/DBM in DM group compared with BMSC/DBM in non-DM group. However, quantitative micro-CT analysis showed that after 6 months of implantation, there was no significant difference in bone volume and bone density between the BMSC/DBM in DM group (199 ± 63 mm3 and 593 ± 65 mg HA/ccm) and the BMSC/DBM in non-DM group (211 ± 39 mm3 and 608 ± 53 mg HA/ccm). Our data suggested that BMSC/DBM constructs could repair large bone defects in diabetic rats, but with delayed healing process compared with non-diabetic rats. Conclusion Our study suggest that biomaterial sacffolds seeded with allogenic fetal BMSCs represent a promising strategy to induce and improve bone regeneration under diabetic condition.
Collapse
Affiliation(s)
- Xiangsheng Wang
- Department of Plastic Surgery, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Hubei, China
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Can Xiang
- Department of Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunhua Huang
- Department of Plastic Surgery, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Hubei, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhentao Zhou
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Xie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Pathogenic Role of Adipose Tissue-Derived Mesenchymal Stem Cells in Obesity and Obesity-Related Inflammatory Diseases. Cells 2023; 12:cells12030348. [PMID: 36766689 PMCID: PMC9913687 DOI: 10.3390/cells12030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ASCs) are adult stem cells, endowed with self-renewal, multipotent capacities, and immunomodulatory properties, as mesenchymal stem cells (MSCs) from other origins. However, in a pathological context, ASCs like MSCs can exhibit pro-inflammatory properties and attract inflammatory immune cells at their neighborhood. Subsequently, this creates an inflammatory microenvironment leading to ASCs' or MSCs' dysfunctions. One such example is given by obesity where adipogenesis is impaired and insulin resistance is initiated. These opposite properties have led to the classification of MSCs into two categories defined as pro-inflammatory ASC1 or anti-inflammatory ASC2, in which plasticity depends on the micro-environmental stimuli. The aim of this review is to (i) highlight the pathogenic role of ASCs during obesity and obesity-related inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, and cancer; and (ii) describe some of the mechanisms leading to ASCs dysfunctions. Thus, the role of soluble factors, adhesion molecules; TLRs, Th17, and Th22 cells; γδ T cells; and immune checkpoint overexpression will be addressed.
Collapse
|
3
|
Babajani A, Hosseini-Monfared P, Abbaspour S, Jamshidi E, Niknejad H. Targeted Mitochondrial Therapy With Over-Expressed MAVS Protein From Mesenchymal Stem Cells: A New Therapeutic Approach for COVID-19. Front Cell Dev Biol 2021; 9:695362. [PMID: 34179022 PMCID: PMC8226075 DOI: 10.3389/fcell.2021.695362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2, the virus that causes COVID-19, has infected millions of people worldwide. The symptoms of this disease are primarily due to pulmonary involvement, uncontrolled tissue inflammation, and inadequate immune response against the invader virus. Impaired interferon (IFN) production is one of the leading causes of the immune system's inability to control the replication of the SARS-CoV-2. Mitochondria play an essential role in developing and maintaining innate cellular immunity and IFN production. Mitochondrial function is impaired during cellular stress, affecting cell bioenergy and innate immune responses. The mitochondrial antiviral-signaling protein (MAVS), located in the outer membrane of mitochondria, is one of the key elements in engaging the innate immune system and interferon production. Transferring healthy mitochondria to the damaged cells by mesenchymal stem cells (MSCs) is a proposed option for regenerative medicine and a viable treatment approach to many diseases. In addition to mitochondrial transport, these cells can regulate inflammation, repair the damaged tissue, and control the pathogenesis of COVID-19. The immune regulatory nature of MSCs dramatically reduces the probability of an immune rejection. In order to induce an appropriate immune response against the SARS-CoV-2, we hypothesize to donate mitochondria to the host cells of the virus. We consider MSCs as an appropriate biological carrier for mitochondria. Besides, enhancing the expression of MAVS protein in MSCs and promoting the expression of SARS-CoV-2 viral spike protein as a specific ligand for ACE2+ cells will improve IFN production and innate immune responses in a targeted manner.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Hosseini-Monfared
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Abbaspour
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Jamshidi E, Babajani A, Soltani P, Niknejad H. Proposed Mechanisms of Targeting COVID-19 by Delivering Mesenchymal Stem Cells and Their Exosomes to Damaged Organs. Stem Cell Rev Rep 2021; 17:176-192. [PMID: 33432484 PMCID: PMC7799400 DOI: 10.1007/s12015-020-10109-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
With the outbreak of coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the world has been facing an unprecedented challenge. Considering the lack of appropriate therapy for COVID-19, it is crucial to develop effective treatments instead of supportive approaches. Mesenchymal stem cells (MSCs) as multipotent stromal cells have been shown to possess treating potency through inhibiting or modulating the pathological events in COVID-19. MSCs and their exosomes participate in immunomodulation by controlling cell-mediated immunity and cytokine release. Furthermore, they repair the renin-angiotensin-aldosterone system (RAAS) malfunction, increase alveolar fluid clearance, and reduce the chance of hypercoagulation. Besides the lung, which is the primary target of SARS-CoV-2, the heart, kidney, nervous system, and gastrointestinal tract are also affected by COVID-19. Thus, the efficacy of targeting these organs via different delivery routes of MSCs and their exosomes should be evaluated to ensure safe and effective MSCs administration in COVID-19. This review focuses on the proposed therapeutic mechanisms and delivery routes of MSCs and their exosomes to the damaged organs. It also discusses the possible application of primed and genetically modified MSCs as a promising drug delivery system in COVID-19. Moreover, the recent advances in the clinical trials of MSCs and MSCs-derived exosomes as one of the promising therapeutic approaches in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Advanced Medical Therapies in the Management of Non-Scarring Alopecia: Areata and Androgenic Alopecia. Int J Mol Sci 2020; 21:ijms21218390. [PMID: 33182308 PMCID: PMC7664905 DOI: 10.3390/ijms21218390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Alopecia is a challenging condition for both physicians and patients. Several topical, intralesional, oral, and surgical treatments have been developed in recent decades, but some of those therapies only provide partial improvement. Advanced medical therapies are medical products based on genes, cells, and/or tissue engineering products that have properties in regenerating, repairing, or replacing human tissue. In recent years, numerous applications have been described for advanced medical therapies. With this background, those therapies may have a role in the treatment of various types of alopecia such as alopecia areata and androgenic alopecia. The aim of this review is to provide dermatologists an overview of the different advanced medical therapies that have been applied in the treatment of alopecia, by reviewing clinical and basic research studies as well as ongoing clinical trials.
Collapse
|
6
|
Dulany K, Hepburn K, Goins A, Allen JB. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A 2019; 108:301-315. [PMID: 31606924 DOI: 10.1002/jbm.a.36816] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
Bone is the second most transplanted tissue in the world, resulting in increased demand for bone grafts leading to the fabrication of synthetic scaffold grafting alternatives. Fracture sites are under increased oxidative stress after injuries, affecting osteoblast function and hindering fracture healing and remodeling. To counter oxidative stress, free radical scavenging agents, such as cerium oxide nanoparticles, have gained traction in tissue engineering. Toward the goal of developing a functional synthetic system for bone tissue engineering, we characterized the biocompatibility of a porous, bioactive, free radical scavenging nanocomposite scaffold composed of poly(1,8 octanediol-co-citrate), beta-tricalcium phosphate, and cerium oxide nanoparticles. We studied cellular and tissue compatibility utilizing in vitro and in vivo models to assess nanocomposite interactions with both human osteoblast cells and rat subcutaneous tissue. We found the scaffolds were biocompatible in both models and supported cell attachment, proliferation, mineralization, and infiltration. Using hydrogen peroxide, we simulated oxidative stress to study the protective properties of the nanocomposite scaffolds via a reduction in cytotoxicity and recovered mineralization of osteoblast cells in vitro. We also found after implantation in vivo the scaffolds exhibited biocompatible properties essential for successful scaffolds for bone tissue engineering. Cells were able to infiltrate through the scaffolds, the surrounding tissues elicited a minimal immune response, and there were signs of scaffold degradation after 30 days of implantation. After the array of biological characterization, we had confirmed the development of a nanocomposite scaffold system capable of supporting bone-remodeling processes while providing a protective free radical scavenging effect.
Collapse
Affiliation(s)
- Krista Dulany
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Katie Hepburn
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Allison Goins
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Westhauser F, Widholz B, Nawaz Q, Tsitlakidis S, Hagmann S, Moghaddam A, Boccaccini AR. Favorable angiogenic properties of the borosilicate bioactive glass 0106-B1 result in enhanced in vivo osteoid formation compared to 45S5 Bioglass. Biomater Sci 2019; 7:5161-5176. [PMID: 31584047 DOI: 10.1039/c9bm01220f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 45S5-bioactive glass (BG) composition is the most commonly investigated amongst BG-based bone substitutes. By changing BG compositions and by addition of therapeutically active ions such as boron, the biological features of BGs can be tailored towards specific needs and possible drawbacks can be overcome. The borosilicate glass 0106-B1 (composition in wt%: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3) has demonstrated pro-angiogenic properties. However, the osteogenic performance of the 0106-B1-BG and its influence on cell viability and proliferation in vitro as well as its osteogenic and angiogenic properties in vivo have not been investigated. Therefore, in this study, the impact of 0106-B1-BG and 45S5-BG on osteogenic differentiation, viability and proliferation on human mesenchymal stromal cells (MSCs) was assessed in vitro. Furthermore, MSC-seeded scaffolds made from both BG types were implanted subcutaneously in immunodeficient mice for 10 weeks. Osteoid formation was quantified by histomorphometry, vascularization was visualized by immunohistological staining. Additionally, the in vivo expression patterns of genes correlating with osteogenesis and angiogenesis were analyzed. In vitro, the impact of 45S5-BG and 0106-B1-BG on the proliferation, viability and osteogenic differentiation of MSCs was comparable. In vivo, scaffolds made from 0106-B1-BG significantly outperformed the 45S5-BG-based scaffolds regarding the amount and maturation of the osteoid. Furthermore, 0106-B1-BG-based scaffolds showed significantly increased angiogenic gene expression patterns. In conclusion, the beneficial angiogenic properties of 0106-B1-BG result in improved osteogenic properties in vivo, making the 0106-B1-BG a promising candidate for further investigation, e.g. in a bone defect model.
Collapse
Affiliation(s)
- F Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - B Widholz
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Q Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - S Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - S Hagmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - A Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany. and ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| |
Collapse
|
8
|
Westhauser F, Essers C, Karadjian M, Reible B, Schmidmaier G, Hagmann S, Moghaddam A. Supplementation with 45S5 Bioactive Glass Reduces In Vivo Resorption of the β-Tricalcium-Phosphate-Based Bone Substitute Material Vitoss. Int J Mol Sci 2019; 20:ijms20174253. [PMID: 31480285 PMCID: PMC6747147 DOI: 10.3390/ijms20174253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Compared to other materials such as 45S5 bioactive glass (BG), β-tricalcium phosphate (β-TCP)-based bone substitutes such as Vitoss show limited material-driven stimulation of osteogenesis and/or angiogenesis. The unfavorable degradation kinetics of β-TCP-based bone substitutes may result in an imbalance between resorption and osseous regeneration. Composite materials like Vitoss BA (Vitoss supplemented with 20 wt % 45S5-BG particles) might help to overcome these limitations. However, the influence of BG particles in Vitoss BA compared to unsupplemented Vitoss on osteogenesis, resorption behavior, and angiogenesis is not yet described. In this study, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stromal cells before subcutaneous implantation in immunodeficient mice for 10 weeks. Scaffold resorption was monitored by micro-computed tomography, while osteoid formation and vascularization were assessed by histomorphometry and gene expression analysis. Whilst slightly more osteoid and improved angiogenesis were found in Vitoss BA, maturation of the osteoid was more advanced in Vitoss scaffolds. The volume of Vitoss implants decreased significantly, combined with a significantly increased presence of resorbing cells, whilst the volume remained stable in Vitoss BA scaffolds. Future studies should evaluate the interaction of 45S5-BG with resorbing cells and bone precursor cells in greater detail to improve the understanding and application of β-TCP/45S5-BG composite bone substitute materials.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Maria Karadjian
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Bruno Reible
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Sébastien Hagmann
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
- ATORG-Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany
| |
Collapse
|
9
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
10
|
Bougioukli S, Saitta B, Sugiyama O, Tang AH, Elphingstone J, Evseenko D, Lieberman JR. Lentiviral Gene Therapy for Bone Repair Using Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Hum Gene Ther 2019; 30:906-917. [PMID: 30773946 DOI: 10.1089/hum.2018.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Umbilical cord blood (UCB) has been increasingly explored as an alternative source of stem cells for use in regenerative medicine due to several advantages over other stem-cell sources, including the need for less stringent human leukocyte antigen matching. Combined with an osteoinductive signal, UCB-derived mesenchymal stem cells (MSCs) could revolutionize the treatment of challenging bone defects. This study aimed to develop an ex vivo regional gene-therapy strategy using BMP-2-transduced allogeneic UCB-MSCs to promote bone repair. To this end, human UCB-MSCs were transduced with a lentiviral vector carrying the cDNA for BMP-2 (LV-BMP-2). In vitro assays to determine the UCB-MSC osteogenic potential and BMP-2 production were followed by in vivo implantation of LV-BMP-2-transduced UCB-MSCs in a mouse hind-limb muscle pouch. Non-transduced and LV-GFP-transduced UCB-MSCs were used as controls. Transduction with LV-BMP-2 was associated with abundant BMP-2 production and induction of osteogenic differentiation in vitro. Implantation of BMP-2-transduced UCB-MSCs led to robust heterotopic bone formation 4 weeks postoperatively, as seen on radiographs and histology. These results, along with the fact that UCB-MSCs can be easily collected with no donor-site morbidity and low immunogenicity, suggest that UCB might be a preferable allogeneic source of MSCs to develop an ex vivo gene-therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
11
|
Westhauser F, Karadjian M, Essers C, Senger AS, Hagmann S, Schmidmaier G, Moghaddam A. Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented β-TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA. PLoS One 2019; 14:e0212799. [PMID: 30811492 PMCID: PMC6392320 DOI: 10.1371/journal.pone.0212799] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Since the amount of autologous bone for the treatment of bone defects is limited and harvesting might cause complications, synthetic bone substitutes such as the popular β-tricalcium phosphate (β-TCP) based Vitoss have been developed as an alternative grafting material. β-TCPs exhibit osteoconductive properties, however material-initiated stimulation of osteogenic differentiation is limited. These limitations might be overcome by addition of 45S5 bioactive glass (BG) particles. This study aims to analyze the influence of BG particles in Vitoss BA (20 wt% BG particles with a size of 90–150 μm) on osteogenic properties, cell vitality and cell proliferation in direct comparison to Vitoss by evaluation of the underlying cellular mechanisms. For that purpose, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stem cells (MSC) and underwent osteogenic differentiation in-vitro for up to 42 days. Cell vitality, proliferation, and osteogenic differentiation were monitored by quantitative gene expression analysis, determination of alkaline phosphatase activity, PrestoBlue cell viability assay, dsDNA quantification, and a fluorescence-microscopy-based live/dead-assay. It was demonstrated that BG particles decrease cell proliferation but do not have a negative impact on cell vitality. Especially the early stages of osteogenic differentiation were significantly improved in the presence of BG particles, resulting in earlier maturation of the MSC towards osteoblasts. Since most of the stimulatory effects induced by BG particles took place initially, particles exhibiting another surface-area-to-volume ratio should be considered in order to provide long-lasting stimulation.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- * E-mail:
| | - Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne-Sophie Senger
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| |
Collapse
|
12
|
Karadjian M, Essers C, Tsitlakidis S, Reible B, Moghaddam A, Boccaccini AR, Westhauser F. Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. Int J Mol Sci 2019; 20:ijms20020305. [PMID: 30646516 PMCID: PMC6359412 DOI: 10.3390/ijms20020305] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Standard treatment for bone defects is the biological reconstruction using autologous bone—a therapeutical approach that suffers from limitations such as the restricted amount of bone available for harvesting and the necessity for an additional intervention that is potentially followed by donor-site complications. Therefore, synthetic bone substitutes have been developed in order to reduce or even replace the usage of autologous bone as grafting material. This structured review focuses on the question whether calcium phosphates (CaPs) and bioactive glasses (BGs), both established bone substitute materials, show improved properties when combined in CaP/BG composites. It therefore summarizes the most recent experimental data in order to provide a better understanding of the biological properties in general and the osteogenic properties in particular of CaP/BG composite bone substitute materials. As a result, BGs seem to be beneficial for the osteogenic differentiation of precursor cell populations in-vitro when added to CaPs. Furthermore, the presence of BG supports integration of CaP/BG composites into bone in-vivo and enhances bone formation under certain circumstances.
Collapse
Affiliation(s)
- Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Stefanos Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
- ATORG-Aschaffenburg Trauma and Orthopedics Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
13
|
Westhauser F, Reible B, Höllig M, Heller R, Schmidmaier G, Moghaddam A. Combining advantages: Direct correlation of two-dimensional microcomputed tomography datasets onto histomorphometric slides to quantify three-dimensional bone volume in scaffolds. J Biomed Mater Res A 2018; 106:1812-1821. [DOI: 10.1002/jbm.a.36377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/24/2018] [Accepted: 02/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- F. Westhauser
- HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury; Heidelberg University Hospital, Schlierbacher Landstraße 200a; Heidelberg 69118 Germany
| | - B. Reible
- HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury; Heidelberg University Hospital, Schlierbacher Landstraße 200a; Heidelberg 69118 Germany
| | - M. Höllig
- Clinic for Trauma Surgery, Orthopedic Surgery, and Hand Surgery; SLK-Kliniken Heilbronn GmbH, Am Gesundbrunnen 20-26; Heilbronn 74078 Germany
| | - R. Heller
- HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury; Heidelberg University Hospital, Schlierbacher Landstraße 200a; Heidelberg 69118 Germany
| | - G. Schmidmaier
- HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury; Heidelberg University Hospital, Schlierbacher Landstraße 200a; Heidelberg 69118 Germany
| | - A. Moghaddam
- ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Clinic for Orthopedic Surgery, Trauma Surgery, and Hand Surgery, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1; Aschaffenburg 63739 Germany
| |
Collapse
|
14
|
Micro-Computed-Tomography-Guided Analysis of In Vitro Structural Modifications in Two Types of 45S5 Bioactive Glass Based Scaffolds. MATERIALS 2017; 10:ma10121341. [PMID: 29168763 PMCID: PMC5744276 DOI: 10.3390/ma10121341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
Three-dimensional 45S5 bioactive glass (BG)-based scaffolds are being investigated for bone regeneration. Besides structural properties, controlled time-dependent alteration of scaffold morphology is crucial to achieve optimal scaffold characteristics for successful bone repair. There is no in vitro evidence concerning the dependence between structural characteristics and dissolution behavior of 45S5 BG-based scaffolds of different morphology. In this study, the dissolution behavior of scaffolds fabricated by the foam replica method using polyurethane foam (Group A) and maritime sponge Spongia Agaricina (Group B) as sacrificial templates was analyzed by micro-computed-tomography (µCT). The scaffolds were immersed in Dulbecco’s Modified Eagle Medium for 56 days under static cell culture conditions and underwent µCT-analysis initially, and after 7, 14, and 56 days. Group A showed high porosity (91%) and trabecular structure formed by macro-pores (average diameter 692 µm ± 72 µm). Group-B-scaffolds were less porous (51%), revealing an optimal pore size distribution within the window of 110–500 µm pore size diameter, combined with superior mechanical stability. Both groups showed similar structural alteration upon immersion. Surface area and scaffold volume increased whilst density decreased, reflecting initial dissolution followed by hydroxycarbonate-apatite-layer-formation on the scaffold surfaces. In vitro- and/or in vivo-testing of cell-seeded BG-scaffolds used in this study should be performed to evaluate the BG-scaffolds’ time-dependent osteogenic properties in relation to the measured in vitro structural changes.
Collapse
|