1
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
2
|
Koda Y, Watanabe T, Kawaji K, Mo F, Beaser AD, Vaicik M, Hibino N, Ota T. In Situ Myocardial Regeneration With Tissue Engineered Cardiac Patch Using Spheroid-Based 3-Dimensional Tissue. ANNALS OF THORACIC SURGERY SHORT REPORTS 2024; 2:150-155. [PMID: 38464466 PMCID: PMC10922669 DOI: 10.1016/j.atssr.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND We have developed a tissue engineered cardiac patch derived from a 3-dimensional (3D) myocardial tissue reinforced with extracellular matrix in an effort to enhance in situ myocardial regeneration. The feasibility of the patch was evaluated in a porcine model by various modalities to assess both the constructive and functional aspects of regeneration. METHODS A spheroid-based 3D multicellular tissue was created using a 3D net mold system that incorporated cardiomyocytes and embryonic fibroblast cells. The 3D multicellular tissue was incorporated with extracellular matrix sheets and surgically implanted into the right ventricle of a healthy porcine model (n = 4). After 60 days, the implanted patches were evaluated by cardiac magnetic resonance imaging and electroanatomic mapping studies as well as by post-euthanasia analyses, including measurements of mechanical viscoelasticity. RESULTS Cardiac magnetic resonance imaging revealed improved regional tissue perfusion in the patch area. Electroanatomic mapping exhibited regenerated electrical conductivity in the patch, as evidenced by relatively preserved voltage regions (1.11 ± 0.8 mV) in comparison to the normal right ventricle (4.7 ± 2.8 mV). Histologic and tissue analyses confirmed repopulation of site-specific host cells, including premature cardiomyocytes and active vasculogenesis. These findings were supported by quantitative reverse transcription-polymerase chain reaction. CONCLUSIONS The tissue engineered cardiac patch effectively facilitated in situ constructive and functional myocardial regeneration, characterized by increased regional tissue perfusion and positive electrical activity in the porcine model.
Collapse
Affiliation(s)
- Yojiro Koda
- Department of Surgery, University of Chicago Medicine, Chicago, Illinois
| | - Tatsuya Watanabe
- Department of Surgery, University of Chicago Medicine, Chicago, Illinois
| | - Keigo Kawaji
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Fei Mo
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Andrew D Beaser
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| | - Marcella Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago Medicine, Chicago, Illinois
| | - Takeyoshi Ota
- Department of Surgery, University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
3
|
Paz-Artigas L, González-Lana S, Polo N, Vicente P, Montero-Calle P, Martínez MA, Rábago G, Serra M, Prósper F, Mazo MM, González A, Ochoa I, Ciriza J. Generation of Self-Induced Myocardial Ischemia in Large-Sized Cardiac Spheroids without Alteration of Environmental Conditions Recreates Fibrotic Remodeling and Tissue Stiffening Revealed by Constriction Assays. ACS Biomater Sci Eng 2024; 10:987-997. [PMID: 38234159 PMCID: PMC10865285 DOI: 10.1021/acsbiomaterials.3c01302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
A combination of human-induced pluripotent stem cells (hiPSCs) and 3D microtissue culture techniques allows the generation of models that recapitulate the cardiac microenvironment for preclinical research of new treatments. In particular, spheroids represent the simplest approach to culture cells in 3D and generate gradients of cellular access to the media, mimicking the effects of an ischemic event. However, previous models required incubation under low oxygen conditions or deprived nutrient media to recreate ischemia. Here, we describe the generation of large spheroids (i.e., larger than 500 μm diameter) that self-induce an ischemic core. Spheroids were generated by coculture of cardiomyocytes derived from hiPSCs (hiPSC-CMs) and primary human cardiac fibroblast (hCF). In the proper medium, cells formed aggregates that generated an ischemic core 2 days after seeding. Spheroids also showed spontaneous cellular reorganization after 10 days, with hiPSC-CMs located at the center and surrounded by hCFs. This led to an increase in microtissue stiffness, characterized by the implementation of a constriction assay. All in all, these phenomena are hints of the fibrotic tissue remodeling secondary to a cardiac ischemic event, thus demonstrating the suitability of these spheroids for the modeling of human cardiac ischemia and its potential application for new treatments and drug research.
Collapse
Affiliation(s)
- Laura Paz-Artigas
- Tissue
Microenvironment (TME) Lab, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
- Institute
for Health Research Aragón (IIS Aragón), Zaragoza 50009, Spain
| | - Sandra González-Lana
- Tissue
Microenvironment (TME) Lab, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
- BEONCHIP
S.L., CEMINEM, Campus
Río Ebro, Zaragoza 50018, Spain
| | - Nicolás Polo
- Tissue
Microenvironment (TME) Lab, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| | - Pedro Vicente
- Instituto
de Biologia Experimental e Tecnológica (iBET), Oeiras 2780-157, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Pilar Montero-Calle
- Cardiology
and Cardiac Surgery Department, Clínica
Universidad de Navarra, Pamplona 31009, Spain
| | - Miguel A. Martínez
- Tissue
Microenvironment (TME) Lab, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
- CIBER-BBN,
ISCIII, Zaragoza 50018, Spain
| | - Gregorio Rábago
- Cardiology
and Cardiac Surgery Department, Clínica
Universidad de Navarra, Pamplona 31009, Spain
| | - Margarida Serra
- Instituto
de Biologia Experimental e Tecnológica (iBET), Oeiras 2780-157, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Felipe Prósper
- Regenerative
Medicine Program, Cima Universidad de Navarra,
and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
- Hematology
and Cell Therapy, Clínica Universidad
de Navarra, and Instituto de Investigación Sanitaria de Navarra
(IdiSNA), Pamplona 31008, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Manuel M. Mazo
- Regenerative
Medicine Program, Cima Universidad de Navarra,
and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
- Hematology
and Cell Therapy, Clínica Universidad
de Navarra, and Instituto de Investigación Sanitaria de Navarra
(IdiSNA), Pamplona 31008, Spain
| | - Arantxa González
- Tissue
Microenvironment (TME) Lab, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
- Program of Cardiovascular Diseases, CIMA
Universidad de Navarra, and Instituto de Investigación Sanitaria
de Navarra (IdiSNA), Pamplona 31008, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ignacio Ochoa
- Tissue
Microenvironment (TME) Lab, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
- Institute
for Health Research Aragón (IIS Aragón), Zaragoza 50009, Spain
- CIBER-BBN,
ISCIII, Zaragoza 50018, Spain
| | - Jesús Ciriza
- Tissue
Microenvironment (TME) Lab, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
- Institute
for Health Research Aragón (IIS Aragón), Zaragoza 50009, Spain
- CIBER-BBN,
ISCIII, Zaragoza 50018, Spain
| |
Collapse
|
4
|
House A, Cornick J, Butt Q, Guvendiren M. Elastomeric platform with surface wrinkling patterns to control cardiac cell alignment. J Biomed Mater Res A 2023; 111:1228-1242. [PMID: 36762538 DOI: 10.1002/jbm.a.37511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
There is a growing interest in creating 2D cardiac tissue models that display native extracellular matrix (ECM) cues of the heart tissue. Cellular alignment alone is known to be a crucial cue for cardiac tissue development by regulating cell-cell and cell-ECM interactions. In this study, we report a simple and robust approach to create lamellar surface wrinkling patterns enabling spatial control of pattern dimensions with a wide range of pattern amplitude (A ≈ 2-55 μm) and wavelength (λ ≈ 35-100 μm). For human cardiomyocytes (hCMs) and human cardiac fibroblasts (hCFs), our results indicate that the degree of cellular alignment and pattern recognition are correlated with pattern A and λ. We also demonstrate fabrication of devices composed of micro-well arrays with user-defined lamellar patterns on the bottom surface of each well for high-throughput screening studies. Results from a screening study indicate that cellular alignment is strongly diminished with increasing seeding density. In another study, we show our ability to vary hCM/hCF seeding ratio for each well to create co-culture systems where seeding ratio is independent of cellular alignment.
Collapse
Affiliation(s)
- Andrew House
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jason Cornick
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Quratulain Butt
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
5
|
Wu P, Asada H, Hakamada M, Mabuchi M. Bioengineering of High Cell Density Tissues with Hierarchical Vascular Networks for Ex Vivo Whole Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209149. [PMID: 36545785 DOI: 10.1002/adma.202209149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The development of tissue-like structures such as cell sheets, spheroids, and organoids has contributed to progress in regenerative medicine. Simultaneous achievement of scale up and high cell density of these tissues is challenging because sufficient oxygen cannot be supplied to the inside of large, high cell density tissues. Here, in vitro fabrication of vessels to supply oxygen to the inside of millimeter-sized scaffold-free tissues whose cell density is ≈200 million cells mL-1 , corresponding to those of native tissues, is shown. Hierarchical vascular networks by anastomosis of capillaries and a large vessel are essential for oxygen supply, whereas a large vessel or capillary networks alone make negligible contributions to the supply. The hierarchical vascular networks are formed by a top-down approach, which offers a new option for ex vivo whole organs without decellularization and 3D-bioprinting.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Hiroki Asada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Paz-Artigas L, Montero-Calle P, Iglesias-García O, Mazo MM, Ochoa I, Ciriza J. Current approaches for the recreation of cardiac ischaemic environment in vitro. Int J Pharm 2023; 632:122589. [PMID: 36623742 DOI: 10.1016/j.ijpharm.2023.122589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Myocardial ischaemia is one of the leading dead causes worldwide. Although animal experiments have historically provided a wealth of information, animal models are time and money consuming, and they usually miss typical human patient's characteristics associated with ischemia prevalence, including aging and comorbidities. Generating reliable in vitro models that recapitulate the human cardiac microenvironment during an ischaemic event can boost the development of new drugs and therapeutic strategies, as well as our understanding of the underlying cellular and molecular events, helping the optimization of therapeutic approaches prior to animal and clinical testing. Although several culture systems have emerged for the recreation of cardiac physiology, mimicking the features of an ischaemic heart tissue in vitro is challenging and certain aspects of the disease process remain poorly addressed. Here, current in vitro cardiac culture systems used for modelling cardiac ischaemia, from self-aggregated organoids to scaffold-based constructs and heart-on-chip platforms are described. The advantages of these models to recreate ischaemic hallmarks such as oxygen gradients, pathological alterations of mechanical strength or fibrotic responses are highlighted. The new models represent a step forward to be considered, but unfortunately, we are far away from recapitulating all complexity of the clinical situations.
Collapse
Affiliation(s)
- Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Pilar Montero-Calle
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Manuel M Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Hematology and Cell Therapy, Clínica Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; CIBER-BBN, ISCIII, Zaragoza, Spain.
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; CIBER-BBN, ISCIII, Zaragoza, Spain.
| |
Collapse
|
7
|
Nomura T, Takeuchi M, Kim E, Huang Q, Hasegawa Y, Fukuda T. Development of High-Cell-Density Tissue Method for Compressed Modular Bioactuator. MICROMACHINES 2022; 13:1725. [PMID: 36296079 PMCID: PMC9607352 DOI: 10.3390/mi13101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Bioactuators have been developed in many studies in the recent decade for actuators of micro-biorobots. However, bioactuators have not shown the same power as animal muscles. Centrifugal force was used in this study to increase the cell density of cultured muscle cells that make up the bioactuator. The effect of the centrifugal force on cells in the matrix gel before curing was investigated, and the optimal centrifugal force was identified to be around 450× g. The compressed modular bioactuator (C-MBA) fabricated in this study exhibited 1.71 times higher cell density than the conventional method. In addition, the contractile force per unit cross-sectional area was 1.88 times higher. The proposed method will contribute to new bioactuators with the same power as living muscles in animals.
Collapse
Affiliation(s)
- Takuto Nomura
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| | - Masaru Takeuchi
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| | - Eunhye Kim
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yasuhisa Hasegawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| | - Toshio Fukuda
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| |
Collapse
|
8
|
Development and Application of 3D Bioprinted Scaffolds Supporting Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4910816. [PMID: 34552987 PMCID: PMC8452409 DOI: 10.1155/2021/4910816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) bioprinting is a revolutionary technology that replicates 3D functional living tissue scaffolds in vitro by controlling the layer-by-layer deposition of biomaterials and enables highly precise positioning of cells. With the development of this technology, more advanced research on the mechanisms of tissue morphogenesis, clinical drug screening, and organ regeneration may be pursued. Because of their self-renewal characteristics and multidirectional differentiation potential, induced pluripotent stem cells (iPSCs) have outstanding advantages in stem cell research and applications. In this review, we discuss the advantages of different bioinks containing human iPSCs that are fabricated by using 3D bioprinting. In particular, we focus on the ability of these bioinks to support iPSCs and promote their proliferation and differentiation. In addition, we summarize the applications of 3D bioprinting with iPSC-containing bioinks and put forward new views on the current research status.
Collapse
|
9
|
Wagner KT, Nash TR, Liu B, Vunjak-Novakovic G, Radisic M. Extracellular Vesicles in Cardiac Regeneration: Potential Applications for Tissues-on-a-Chip. Trends Biotechnol 2021; 39:755-773. [PMID: 32958383 PMCID: PMC7969481 DOI: 10.1016/j.tibtech.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022]
Abstract
Strategies to regenerate cardiac tissue postinjury are limited and heart transplantation remains the only 'cure' for a failing heart. Extracellular vesicles (EVs), membrane-bound cell secretions important in intercellular signaling, have been shown to play a crucial role in regulating heart function. A mechanistic understanding of the role of EVs in the heart remains elusive due to the challenges in studying the native human heart. Tissue-on-a-chip platforms, comprising functional, physiologically relevant human tissue models, are an emerging technology that has yet to be fully applied to the study of EVs. In this review, we summarize recent advances in cardiac tissue-on-a-chip (CTC) platforms and discuss how they are uniquely situated to advance our understanding of EVs in cardiac disease and regeneration.
Collapse
Affiliation(s)
- Karl T Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Trevor R Nash
- Department of Medicine, Columbia University, New York, NY, USA; Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bohao Liu
- Department of Medicine, Columbia University, New York, NY, USA; Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
10
|
Campostrini G, Windt LM, van Meer BJ, Bellin M, Mummery CL. Cardiac Tissues From Stem Cells: New Routes to Maturation and Cardiac Regeneration. Circ Res 2021; 128:775-801. [PMID: 33734815 PMCID: PMC8410091 DOI: 10.1161/circresaha.121.318183] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability of human pluripotent stem cells to form all cells of the body has provided many opportunities to study disease and produce cells that can be used for therapy in regenerative medicine. Even though beating cardiomyocytes were among the first cell types to be differentiated from human pluripotent stem cell, cardiac applications have advanced more slowly than those, for example, for the brain, eye, and pancreas. This is, in part, because simple 2-dimensional human pluripotent stem cell cardiomyocyte cultures appear to need crucial functional cues normally present in the 3-dimensional heart structure. Recent tissue engineering approaches combined with new insights into the dialogue between noncardiomyocytes and cardiomyocytes have addressed and provided solutions to issues such as cardiomyocyte immaturity and inability to recapitulate adult heart values for features like contraction force, electrophysiology, or metabolism. Three-dimensional bioengineered heart tissues are thus poised to contribute significantly to disease modeling, drug discovery, and safety pharmacology, as well as provide new modalities for heart repair. Here, we review the current status of 3-dimensional engineered heart tissues.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
| | - Laura M. Windt
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
- MESA+ Institute (B.J.v.M.), University of Twente, Enschede, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
- Department of Biology, University of Padua, Italy (M.B.)
- Veneto Institute of Molecular Medicine, Padua, Padua, Italy (M.B.)
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
- Department of Applied Stem Cell Technologies (C.L.M.), University of Twente, Enschede, the Netherlands
| |
Collapse
|
11
|
Agrawal G, Ramesh A, Aishwarya P, Sally J, Ravi M. Devices and techniques used to obtain and analyze three-dimensional cell cultures. Biotechnol Prog 2021; 37:e3126. [PMID: 33460298 DOI: 10.1002/btpr.3126] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
Cell cultures are indispensable for both basic and applied research. Advancements in cell culture and analysis increase their utility for basic research and translational applications. A marked development in this direction is advent of three-dimensional (3D) cultures. The extent of advancement in 3D cell culture methods over the past decade has warranted referring to a single cell type being cultured as an aggregate or spheroid using simple scaffolds as "traditional." In recent years, the development of "next-generation" devices has enabled cultured cells to mimic their natural environments much better than the traditional 3D culture systems. Automated platforms like chip-based devices, magnetic- and acoustics-based assembly devices, di-electrophoresis (DEP), micro pocket cultures (MPoC), and 3D bio-printing provide a dynamic environment compared to the rather static conditions of the traditional simple scaffold-based 3D cultures. Chip-based technologies, which are centered on principles of microfluidics, are revolutionizing the ways in which cell culture and analysis can be compacted into table-top instruments. A parallel evolution in analytical devices enabled efficient assessment of various complex physiological and pathological endpoints. This is augmented by concurrent development of software enabling rapid large-scale automated data acquisition and analysis like image cytometry, elastography, optical coherence tomography, surface-enhanced Raman scattering (SERS), and biosensors. The techniques and devices utilized for the purpose of 3D cell culture and subsequent analysis depend primarily on the requirement of the study. We present here an in-depth account of the devices for obtaining and analyzing 3D cell cultures.
Collapse
Affiliation(s)
- Gatika Agrawal
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Anuradha Ramesh
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Pargaonkar Aishwarya
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Jennifer Sally
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
12
|
Mei X, Cheng K. Recent Development in Therapeutic Cardiac Patches. Front Cardiovasc Med 2020; 7:610364. [PMID: 33330673 PMCID: PMC7728668 DOI: 10.3389/fcvm.2020.610364] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
For the past decades, heart diseases remain the leading cause of death worldwide. In the adult mammalian heart, damaged cardiomyocytes will be replaced by non-contractile fibrotic scar tissues due to the poor regenerative ability of heart, causing heart failure subsequently. The development of tissue engineering has launched a new medical innovation for heart regeneration. As one of the most outstanding technology, cardiac patches hold the potential to restore cardiac function clinically. Consisted of two components: therapeutic ingredients and substrate scaffolds, the fabrication of cardiac patches requires both advanced bioactive molecules and biomaterials. In this review, we will present the most state-of-the-art cardiac patches and analysis their compositional details. The therapeutic ingredients will be discussed from cell sources to bioactive molecules. In the meanwhile, the recent advances to obtain scaffold biomaterials will be highlighted, including synthetic and natural materials. Also, we have focused on the challenges and potential strategies to fabricate clinically applicable cardiac patches.
Collapse
Affiliation(s)
- Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
13
|
Abdollahi S. Extracellular vesicles from organoids and 3D culture systems. Biotechnol Bioeng 2020; 118:1029-1049. [PMID: 33085083 DOI: 10.1002/bit.27606] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022]
Abstract
When discovered, extracellular vesicles (EVs) such as exosomes were thought of as junk carriers and a means by which the cell disposed of its waste material. Over the years, the role of EVs in cell communication has become apparent with the discovery that the nano-scale vesicles also transport RNA, DNA, and other bioactive components to and from the cells. These findings were originally made in EVs from body fluids of organisms and from in vitro two-dimensional (2D) cell culture models. Recently, organoids and other 3D multicellular in vitro models are being used to study EVs in the context of both physiologic and pathological states. However, standard, reproducible methods are lacking for EV analysis using these models. As a step toward understanding the implications of these platforms, this review provides a comprehensive picture of the progress using 3D in vitro culture models for EV analysis. Translational efforts and regulatory considerations for EV therapeutics are also briefly overviewed to understand what is needed for scale-up and, ultimately, commercialization.
Collapse
Affiliation(s)
- Sara Abdollahi
- Department of Human Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Roche CD, Brereton RJL, Ashton AW, Jackson C, Gentile C. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg 2020; 58:500-510. [PMID: 32391914 PMCID: PMC8456486 DOI: 10.1093/ejcts/ezaa093] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022] Open
Abstract
SUMMARY Previous attempts in cardiac bioengineering have failed to provide tissues for cardiac regeneration. Recent advances in 3-dimensional bioprinting technology using prevascularized myocardial microtissues as 'bioink' have provided a promising way forward. This review guides the reader to understand why myocardial tissue engineering is difficult to achieve and how revascularization and contractile function could be restored in 3-dimensional bioprinted heart tissue using patient-derived stem cells.
Collapse
Affiliation(s)
- Christopher D Roche
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Russell J L Brereton
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Anthony W Ashton
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Christopher Jackson
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| |
Collapse
|
15
|
Soman SS, Vijayavenkataraman S. Applications of 3D Bioprinted-Induced Pluripotent Stem Cells in Healthcare. Int J Bioprint 2020; 6:280. [PMID: 33088994 PMCID: PMC7557348 DOI: 10.18063/ijb.v6i4.280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology and advancements in three-dimensional (3D) bioprinting technology enable scientists to reprogram somatic cells to iPSCs and 3D print iPSC-derived organ constructs with native tissue architecture and function. iPSCs and iPSC-derived cells suspended in hydrogels (bioinks) allow to print tissues and organs for downstream medical applications. The bioprinted human tissues and organs are extremely valuable in regenerative medicine as bioprinting of autologous iPSC-derived organs eliminates the risk of immune rejection with organ transplants. Disease modeling and drug screening in bioprinted human tissues will give more precise information on disease mechanisms, drug efficacy, and drug toxicity than experimenting on animal models. Bioprinted iPSC-derived cancer tissues will aid in the study of early cancer development and precision oncology to discover patient-specific drugs. In this review, we present a brief summary of the combined use of two powerful technologies, iPSC technology, and 3D bioprinting in health-care applications.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, NY, USA
| |
Collapse
|