1
|
Trask L, Ward NA, Tarpey R, Beatty R, Wallace E, O'Dwyer J, Ronan W, Duffy GP, Dolan EB. Exploring therapy transport from implantable medical devices using experimentally informed computational methods. Biomater Sci 2024; 12:2899-2913. [PMID: 38683198 DOI: 10.1039/d4bm00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Implantable medical devices that can facilitate therapy transport to localized sites are being developed for a number of diverse applications, including the treatment of diseases such as diabetes and cancer, and tissue regeneration after myocardial infraction. These implants can take the form of an encapsulation device which encases therapy in the form of drugs, proteins, cells, and bioactive agents, in semi-permeable membranes. Such implants have shown some success but the nature of these devices pose a barrier to the diffusion of vital factors, which is further exacerbated upon implantation due to the foreign body response (FBR). The FBR results in the formation of a dense hypo-permeable fibrous capsule around devices and is a leading cause of failure in many implantable technologies. One potential method for overcoming this diffusion barrier and enhancing therapy transport from the device is to incorporate local fluid flow. In this work, we used experimentally informed inputs to characterize the change in the fibrous capsule over time and quantified how this impacts therapy release from a device using computational methods. Insulin was used as a representative therapy as encapsulation devices for Type 1 diabetes are among the most-well characterised. We then explored how local fluid flow may be used to counteract these diffusion barriers, as well as how a more practical pulsatile flow regimen could be implemented to achieve similar results to continuous fluid flow. The generated model is a versatile tool toward informing future device design through its ability to capture the expected decrease in insulin release over time resulting from the FBR and investigate potential methods to overcome these effects.
Collapse
Affiliation(s)
- Lesley Trask
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Niamh A Ward
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Ruth Tarpey
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Eimear Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - William Ronan
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Eimear B Dolan
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Beatty R, Mendez KL, Schreiber LHJ, Tarpey R, Whyte W, Fan Y, Robinson ST, O'Dwyer J, Simpkin AJ, Tannian J, Dockery P, Dolan EB, Roche ET, Duffy GP. Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery. Sci Robot 2023; 8:eabq4821. [PMID: 37647382 DOI: 10.1126/scirobotics.abq4821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The foreign body response impedes the function and longevity of implantable drug delivery devices. As a dense fibrotic capsule forms, integration of the device with the host tissue becomes compromised, ultimately resulting in device seclusion and treatment failure. We present FibroSensing Dynamic Soft Reservoir (FSDSR), an implantable drug delivery device capable of monitoring fibrotic capsule formation and overcoming its effects via soft robotic actuations. Occlusion of the FSDSR porous membrane was monitored over 7 days in a rodent model using electrochemical impedance spectroscopy. The electrical resistance of the fibrotic capsule correlated to its increase in thickness and volume. Our FibroSensing membrane showed great sensitivity in detecting changes at the abiotic/biotic interface, such as collagen deposition and myofibroblast proliferation. The potential of the FSDSR to overcome fibrotic capsule formation and maintain constant drug dosing over time was demonstrated in silico and in vitro. Controlled closed loop release of methylene blue into agarose gels (with a comparable fold change in permeability relating to 7 and 28 days in vivo) was achieved by adjusting the magnitude and frequency of pneumatic actuations after impedance measurements by the FibroSensing membrane. By sensing fibrotic capsule formation in vivo, the FSDSR will be capable of probing and adapting to the foreign body response through dynamic actuation changes. Informed by real-time sensor signals, this device offers the potential for long-term efficacy and sustained drug dosing, even in the setting of fibrotic capsule formation.
Collapse
Affiliation(s)
- Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Keegan L Mendez
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucien H J Schreiber
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Ruth Tarpey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott T Robinson
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Joanne O'Dwyer
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Andrew J Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Joseph Tannian
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Peter Dockery
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Eimear B Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Ellen T Roche
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Lu CE, Levey RE, Ghersi G, Schueller N, Liebscher S, Layland SL, Schenke-Layland K, Duffy GP, Marzi J. Monitoring the macrophage response towards biomaterial implants using label-free imaging. Mater Today Bio 2023; 21:100696. [PMID: 37361552 PMCID: PMC10285553 DOI: 10.1016/j.mtbio.2023.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Understanding the immune system's foreign body response (FBR) is essential when developing and validating a biomaterial. Macrophage activation and proliferation are critical events in FBR that can determine the material's biocompatibility and fate in vivo. In this study, two different macro-encapsulation pouches intended for pancreatic islet transplantation were implanted into streptozotocin-induced diabetes rat models for 15 days. Post-explantation, the fibrotic capsules were analyzed by standard immunohistochemistry as well as non-invasive Raman microspectroscopy to determine the degree of FBR induced by both materials. The potential of Raman microspectroscopy to discern different processes of FBR was investigated and it was shown that Raman microspectroscopy is capable of targeting ECM components of the fibrotic capsule as well as pro and anti-inflammatory macrophage activation states, in a molecular-sensitive and marker-independent manner. In combination with multivariate analysis, spectral shifts reflecting conformational differences in Col I were identified and allowed to discriminate fibrotic and native interstitial connective tissue fibers. Moreover, spectral signatures retrieved from nuclei demonstrated changes in methylation states of nucleic acids in M1 and M2 phenotypes, relevant as indicator for fibrosis progression. This study could successfully implement Raman microspectroscopy as complementary tool to study in vivo immune-compatibility providing insightful information of FBR of biomaterials and medical devices, post-implantation.
Collapse
Affiliation(s)
- Chuan-en Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ruth E. Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Ireland
| | - Giulio Ghersi
- ABIEL Srl, C/o ARCA Incubatore di Imprese, Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
| | - Nathan Schueller
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Simone Liebscher
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L. Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence IFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry P. Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), University of Galway, Ireland
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence IFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Becker L, Lu CE, Montes-Mojarro IA, Layland SL, Khalil S, Nsair A, Duffy GP, Fend F, Marzi J, Schenke-Layland K. Raman microspectroscopy identifies fibrotic tissues in collagen-related disorders via deconvoluted collagen type I spectra. Acta Biomater 2023; 162:278-291. [PMID: 36931422 DOI: 10.1016/j.actbio.2023.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Fibrosis is a consequence of the pathological remodeling of extracellular matrix (ECM) structures in the connective tissue of an organ. It is often caused by chronic inflammation, which over time, progressively leads to an excess deposition of collagen type I (COL I) that replaces healthy tissue structures, in many cases leaving a stiff scar. Increasing fibrosis can lead to organ failure and death; therefore, developing methods that potentially allow real-time monitoring of early onset or progression of fibrosis are highly valuable. In this study, the ECM structures of diseased and healthy human tissue from multiple organs were investigated for the presence of fibrosis using routine histology and marker-independent Raman microspectroscopy and Raman imaging. Spectral deconvolution of COL I Raman spectra allowed the discrimination of fibrotic and non-fibrotic COL I fibers. Statistically significant differences were identified in the amide I region of the spectral subpeak at 1608 cm-1, which was deemed to be representative for structural changes in COL I fibers in all examined fibrotic tissues. Raman spectroscopy-based methods in combination with this newly discovered spectroscopic biomarker potentially offer a diagnostic approach to non-invasively track and monitor the progression of fibrosis. STATEMENT OF SIGNIFICANCE: Current diagnosis of fibrosis still relies on histopathological examination with invasive biopsy procedures. Although, several non-invasive imaging techniques such as positron emission tomography, single-photon emission computed tomography and second harmonic generation are gradually employed in preclinical or clinical studies, these techniques are limited in spatial resolution and the morphological interpretation highly relies on individual experience and knowledge. In this study, we propose a non-destructive technique, Raman microspectroscopy, to discriminate fibrotic changes of collagen type I based on a molecular biomarker. The changes of the secondary structure of collagen type I can be identified by spectral deconvolution, which potentially can provide an automatic diagnosis for fibrotic tissues in the clinical applicaion.
Collapse
Affiliation(s)
- Lucas Becker
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany
| | | | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany
| | - Suzan Khalil
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645 Los Angeles, CA, USA
| | - Ali Nsair
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645 Los Angeles, CA, USA
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Silcherstr. 7/1, Eberhard Karls University, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany.
| |
Collapse
|
5
|
Yu X, Wang Y, Zhang M, Ma H, Feng C, Zhang B, Wang X, Ma B, Yao Q, Wu C. 3D printing of gear-inspired biomaterials: Immunomodulation and bone regeneration. Acta Biomater 2023; 156:222-233. [PMID: 36100177 DOI: 10.1016/j.actbio.2022.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
It is of significance to construct the immunomodulatory and osteogenic microenvironment for three dimension (3D) regeneration of bone tissues. 3D scaffolds, with various chemical composition, macroporous structure and surface characteristics offer a beneficial microenvironment for bone tissue regeneration. However, there is a gap between the well-ordered surface microstructure of bioceramic scaffolds and immune microenvironment for bone regeneration. In this study, a gear-inspired 3D scaffold with well-ordered surface microstructure was successfully prepared through a modified extrusion-based 3D printing strategy for immunomodulation and bone regeneration. The prepared gear-inspired scaffolds could induce M2 phenotype polarization of macrophages and further promoted osteogenic differentiation of bone mesenchymal stem cells in vitro. The subsequent in vivo study demonstrated that the gear-inspired scaffolds were able to attenuate inflammation and further promote new bone formation. The study develops a facile strategy to construct well-ordered surface microstructure which plays a key role in 3D immunomodulatory and osteogenic microenvironment for bone tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
Marzi J, Munnig Schmidt EC, Brauchle EM, Wissing TB, Bauer H, Serrero A, Söntjens SHM, Bosman AW, Cox MAJ, Smits AIPM, Schenke-Layland K. Marker-Independent Monitoring of in vitro and in vivo Degradation of Supramolecular Polymers Applied in Cardiovascular in situ Tissue Engineering. Front Cardiovasc Med 2022; 9:885873. [PMID: 35656396 PMCID: PMC9152121 DOI: 10.3389/fcvm.2022.885873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The equilibrium between scaffold degradation and neotissue formation, is highly essential for in situ tissue engineering. Herein, biodegradable grafts function as temporal roadmap to guide regeneration. The ability to monitor and understand the dynamics of degradation and tissue deposition in in situ cardiovascular graft materials is therefore of great value to accelerate the implementation of safe and sustainable tissue-engineered vascular grafts (TEVGs) as a substitute for conventional prosthetic grafts. In this study, we investigated the potential of Raman microspectroscopy and Raman imaging to monitor degradation kinetics of supramolecular polymers, which are employed as degradable scaffolds in in situ tissue engineering. Raman imaging was applied on in vitro degraded polymers, investigating two different polymer materials, subjected to oxidative and enzymatically-induced degradation. Furthermore, the method was transferred to analyze in vivo degradation of tissue-engineered carotid grafts after 6 and 12 months in a sheep model. Multivariate data analysis allowed to trace degradation and to compare the data from in vitro and in vivo degradation, indicating similar molecular observations in spectral signatures between implants and oxidative in vitro degradation. In vivo degradation appeared to be dominated by oxidative pathways. Furthermore, information on collagen deposition and composition could simultaneously be obtained from the same image scans. Our results demonstrate the sensitivity of Raman microspectroscopy to determine degradation stages and the assigned molecular changes non-destructively, encouraging future exploration of this techniques for time-resolved quality assessment of in situ tissue engineering processes.
Collapse
Affiliation(s)
- Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- *Correspondence: Julia Marzi
| | - Emma C. Munnig Schmidt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eva M. Brauchle
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tamar B. Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | | | | | | | | | | | - Anthal I. P. M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
McDermott B, Robinson S, Holcombe S, Levey RE, Dockery P, Johnson P, Wang S, Dolan EB, Duffy GP. Developing a morphomics framework to optimize implant site-specific design parameters for islet macroencapsulation devices. J R Soc Interface 2021; 18:20210673. [PMID: 34932928 PMCID: PMC8692035 DOI: 10.1098/rsif.2021.0673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Delivering a clinically impactful cell number is a major design challenge for cell macroencapsulation devices for Type 1 diabetes. It is important to understand the transplant site anatomy to design a device that is practical and that can achieve a sufficient cell dose. We identify the posterior rectus sheath plane as a potential implant site as it is easily accessible, can facilitate longitudinal monitoring of transplants, and can provide nutritive support for cell survival. We have investigated this space using morphomics across a representative patient cohort (642 participants) and have analysed the data in terms of gender, age and BMI. We used a shape optimization process to maximize the volume and identified that elliptical devices achieve a clinically impactful cell dose while meeting device manufacture and delivery requirements. This morphomics framework has the potential to significantly influence the design of future macroencapsulation devices to better suit the needs of patients.
Collapse
Affiliation(s)
- Barry McDermott
- Translational Medical Device Lab, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Scott Robinson
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Sven Holcombe
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ruth E. Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Peter Dockery
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Paul Johnson
- Nuffield Department of Surgical Sciences and NIHR Biomedical Research Centre, Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Stewart Wang
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Eimear B. Dolan
- Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland (NUI) Galway, Galway, Ireland
- CURAM, Centre for Research in Medical Devices, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Garry P. Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
- CURAM, Centre for Research in Medical Devices, National University of Ireland (NUI) Galway, Galway, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|