1
|
Niesvizky-Kogan I, Bass M, Goldenholz SR, Goldenholz DM. Focal Cooling for Drug-Resistant Epilepsy: A Review. JAMA Neurol 2022; 79:937-944. [PMID: 35877102 PMCID: PMC10101767 DOI: 10.1001/jamaneurol.2022.1936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Epilepsy affects at least 1.2% of the population, with one-third of cases considered to be drug-resistant epilepsy (DRE). For these cases, focal cooling therapy may be a potential avenue for treatment, offering hope to people with DRE for freedom from seizure. The therapy leverages neuroscience and engineering principles to deliver a reversible treatment unhindered by pharmacology. Observations Analogous to (but safer than) the use of global cooling in postcardiac arrest and neonatal ischemic injury, extensive research supports the premise that focal cooling as a long-term treatment for epilepsy could be effective. The potential advantages of focal cooling are trifold: stopping epileptiform discharges, seizures, and status epilepticus safely across species (including humans). Conclusions and Relevance This Review presents the most current evidence supporting focal cooling in epilepsy. Cooling has been demonstrated as a potentially safe and effective treatment modality for DRE, although it is not yet ready for use in humans outside of randomized clinical trials. The Review will also offer a brief overview of the technical challenges related to focal cooling in humans, including the optimal device design and cooling parameters.
Collapse
Affiliation(s)
- Itamar Niesvizky-Kogan
- Harvard Medical School, Boston, Massachusetts.,Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Daniel M Goldenholz
- Harvard Medical School, Boston, Massachusetts.,Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
2
|
Csernyus B, Szabó Á, Fiáth R, Zátonyi A, Lázár C, Pongrácz A, Fekete Z. A multimodal, implantable sensor array and measurement system to investigate the suppression of focal epileptic seizure using hypothermia. J Neural Eng 2021; 18. [PMID: 34280911 DOI: 10.1088/1741-2552/ac15e6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
Objective.Local cooling of the brain as a therapeutic intervention is a promising alternative for patients with epilepsy who do not respond to medication.In vitroandin vivostudies have demonstrated the seizure-suppressing effect of local cooling in various animal models. In our work, focal brain cooling in a bicuculline induced epilepsy model in rats is demonstrated and evaluated using a multimodal micro-electrocorticography (microECoG) device.Approach.We designed and experimentally tested a novel polyimide-based sensor array capable of recording microECoG and temperature signals concurrently from the cortical surface of rats. The effect of cortical cooling after seizure onset was evaluated using 32 electrophysiological sites and eight temperature sensing elements covering the brain hemisphere, where injection of the epileptic drug was performed. The focal cooling of the cortex right above the injection site was accomplished using a miniaturized Peltier chip combined with a heat pipe to transfer heat. Control of cooling and collection of sensor data was provided by a custom designed Arduino based electronic board. We tested the experimental setup using an agar gel modelin vitro, and thenin vivoin Wistar rats.Main results.Spatial variation of temperature during the Peltier controlled cooling was evaluated through calibrated, on-chip platinum temperature sensors. We found that frequency of epileptic discharges was not substantially reduced by cooling the cortical surface to 30 °C, but was suppressed efficiently at temperature values around 20 °C. The multimodal array revealed that seizure-like ictal events far from the focus and not exposed to high drop in temperature can be also inhibited at an extent like the directly cooled area.Significance.Our results imply that not only the absolute drop in temperature determines the efficacy of seizure suppression, and distant cortical areas not directly cooled can be influenced.
Collapse
Affiliation(s)
- B Csernyus
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Á Szabó
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Roska Tamás Interdisciplinary Doctoral School, Pázmány Péter Catholic University, Budapest, Hungary
| | - R Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - A Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - C Lázár
- Microsystems Laboratory, Institute of Technical Physics and Material Sciences, Center for Energy Research, Budapest, Hungary
| | - A Pongrácz
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
3
|
Recent antiepileptic and neuroprotective applications of brain cooling. Seizure 2020; 82:80-90. [PMID: 33011591 DOI: 10.1016/j.seizure.2020.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Hypothermia is a widely used clinical practice for neuroprotection and is a well-established method to mitigate the adverse effects of some clinical conditions such as reperfusion injury after cardiac arrest and hypoxic ischemic encephalopathy in newborns. The discovery, that lowering the core temperature has a therapeutic potential dates back to the early 20th century, but the underlying mechanisms are actively researched, even today. Especially, in the area of neural disorders such as epilepsy and traumatic brain injury, cooling has promising prospects. It is well documented in animal models, that the application of focal brain cooling can effectively terminate epileptic discharges. There is, however, limited data regarding human clinical trials. In this review article, we will discuss the main aspects of therapeutic hypothermia focusing on its use in treating epilepsy. The various experimental approaches and device concepts for focal brain cooling are presented and their potential for controlling and suppressing seizure activity are compared.
Collapse
|
4
|
Chin SM, Wion D. Early Prophylactic Hypothermia for Patients With Severe Traumatic Injury: Premature to Close the Case. Front Neurol 2019; 10:344. [PMID: 31024437 PMCID: PMC6465559 DOI: 10.3389/fneur.2019.00344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Shan Min Chin
- INSERM UMR1205, Faculté Médecine Pharmacie, Université Grenoble Alpes, La Tronche, France
| | - Didier Wion
- INSERM UMR1205, Faculté Médecine Pharmacie, Université Grenoble Alpes, La Tronche, France
| |
Collapse
|
5
|
Dietrich WD, Bramlett HM. Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ 2017; 3:186-198. [PMID: 30276324 PMCID: PMC6057704 DOI: 10.4103/bc.bc_28_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide medical problem, and currently, there are few therapeutic interventions that can protect the brain and improve functional outcomes in patients. Over the last several decades, experimental studies have investigated the pathophysiology of TBI and tested various pharmacological treatment interventions targeting specific mechanisms of secondary damage. Although many preclinical treatment studies have been encouraging, there remains a lack of successful translation to the clinic and no therapeutic treatments have shown benefit in phase 3 multicenter trials. Therapeutic hypothermia and targeted temperature management protocols over the last several decades have demonstrated successful reduction of secondary injury mechanisms and, in some selective cases, improved outcomes in specific TBI patient populations. However, the benefits of therapeutic hypothermia have not been demonstrated in multicenter randomized trials to significantly improve neurological outcomes. Although the exact reasons underlying the inability to translate therapeutic hypothermia into a larger clinical population are unknown, this failure may reflect the suboptimal use of this potentially powerful therapeutic in potentially treatable severe trauma patients. It is known that multiple factors including patient recruitment, clinical treatment variables, and cooling methodologies are all important in yielding beneficial effects. High-quality multicenter randomized controlled trials that incorporate these factors are required to maximize the benefits of this experimental therapy. This article therefore summarizes several factors that are important in enhancing the beneficial effects of therapeutic hypothermia in TBI. The current failures of hypothermic TBI clinical trials in terms of clinical protocol design, patient section, and other considerations are discussed and future directions are emphasized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Therapeutic dormancy to delay postsurgical glioma recurrence: the past, present and promise of focal hypothermia. J Neurooncol 2017; 133:447-454. [DOI: 10.1007/s11060-017-2471-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/07/2017] [Indexed: 01/06/2023]
|
7
|
Dlugos D, Worrell G, Davis K, Stacey W, Szaflarski J, Kanner A, Sunderam S, Rogawski M, Jackson-Ayotunde P, Loddenkemper T, Diehl B, Fureman B, Dingledine R. 2014 Epilepsy Benchmarks Area III: Improve Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects. Epilepsy Curr 2016; 16:192-7. [PMID: 27330452 PMCID: PMC4913858 DOI: 10.5698/1535-7511-16.3.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Dennis Dlugos
- Professor of Neurology and Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Greg Worrell
- Associate Professor of Neurology, Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Kathryn Davis
- Assistant Professor, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - William Stacey
- Assistant Professor of Neurology, Department of Neurology, Department of Biomedical Engineering, University of Michigan
| | - Jerzy Szaflarski
- Professor, Department of Neurology, University of Alabama at Birmingham Department of Neurology and UAB Epilepsy Center, Birmingham, AL
| | - Andres Kanner
- Profressor of Clinical Neurology, Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL
| | - Sridhar Sunderam
- Assistant Professor, Department of Biomedical Engineering, University of Kentucky, Lexington, KY
| | - Mike Rogawski
- Professor, Center for Neurotherapeutics Discovery and Development and Department of Neurology, UC Davis School of Medicine, Sacramento, CA
| | - Patrice Jackson-Ayotunde
- Associate Professor, Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD
| | - Tobias Loddenkemper
- Associate Professor, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA
| | - Beate Diehl
- Clinical Neurophysiologist and Neurologist, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - Brandy Fureman
- Program Director, Channels Synapses and Circuits Cluster, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ray Dingledine
- Professor and Chair, Department of Pharmacology, Emory University, Atlanta, GA
| | - for the Epilepsy Benchmark Stewards
- Professor of Neurology and Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Associate Professor of Neurology, Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN
- Assistant Professor, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Assistant Professor of Neurology, Department of Neurology, Department of Biomedical Engineering, University of Michigan
- Professor, Department of Neurology, University of Alabama at Birmingham Department of Neurology and UAB Epilepsy Center, Birmingham, AL
- Profressor of Clinical Neurology, Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL
- Assistant Professor, Department of Biomedical Engineering, University of Kentucky, Lexington, KY
- Professor, Center for Neurotherapeutics Discovery and Development and Department of Neurology, UC Davis School of Medicine, Sacramento, CA
- Associate Professor, Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD
- Associate Professor, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA
- Clinical Neurophysiologist and Neurologist, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Program Director, Channels Synapses and Circuits Cluster, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Professor and Chair, Department of Pharmacology, Emory University, Atlanta, GA
| |
Collapse
|
8
|
Long MA, Katlowitz KA, Svirsky MA, Clary RC, Byun TM, Majaj N, Oya H, Howard MA, Greenlee JDW. Functional Segregation of Cortical Regions Underlying Speech Timing and Articulation. Neuron 2016; 89:1187-1193. [PMID: 26924439 PMCID: PMC4833207 DOI: 10.1016/j.neuron.2016.01.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/20/2015] [Accepted: 01/08/2016] [Indexed: 02/03/2023]
Abstract
Spoken language is a central part of our everyday lives, but the precise roles that individual cortical regions play in the production of speech are often poorly understood. To address this issue, we focally lowered the temperature of distinct cortical regions in awake neurosurgical patients, and we relate this perturbation to changes in produced speech sequences. Using this method, we confirm that speech is highly lateralized, with the vast majority of behavioral effects seen on the left hemisphere. We then use this approach to demonstrate a clear functional dissociation between nearby cortical speech sites. Focal cooling of pars triangularis/pars opercularis (Broca's region) and the ventral portion of the precentral gyrus (speech motor cortex) resulted in the manipulation of speech timing and articulation, respectively. Our results support a class of models that have proposed distinct processing centers underlying motor sequencing and execution for speech.
Collapse
Affiliation(s)
- Michael A Long
- NYU Neuroscience Institute, Department of Otolaryngology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016 USA; Center for Neural Science, New York University, New York, NY 10003 USA.
| | - Kalman A Katlowitz
- NYU Neuroscience Institute, Department of Otolaryngology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016 USA; Center for Neural Science, New York University, New York, NY 10003 USA
| | - Mario A Svirsky
- NYU Neuroscience Institute, Department of Otolaryngology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016 USA; Center for Neural Science, New York University, New York, NY 10003 USA
| | - Rachel C Clary
- NYU Neuroscience Institute, Department of Otolaryngology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016 USA; Center for Neural Science, New York University, New York, NY 10003 USA
| | - Tara McAllister Byun
- Department of Communicative Sciences and Disorders, New York University, New York, NY 10012 USA
| | - Najib Majaj
- Center for Neural Science, New York University, New York, NY 10003 USA
| | - Hiroyuki Oya
- Department of Neurosurgery, Human Brain Research Lab, University of Iowa, Iowa City, IA 52242 USA
| | - Matthew A Howard
- Department of Neurosurgery, Human Brain Research Lab, University of Iowa, Iowa City, IA 52242 USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, Human Brain Research Lab, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|