1
|
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne) 2021; 12:624112. [PMID: 33716977 PMCID: PMC7953066 DOI: 10.3389/fendo.2021.624112] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.
Collapse
Affiliation(s)
- Miguel Hernandez-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjoleine F. Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Eric Kalkhoven,
| |
Collapse
|
2
|
Odate T, Oishi N, Vuong HG, Mochizuki K, Kondo T. Genetic differences in follicular thyroid carcinoma between Asian and Western countries: a systematic review. Gland Surg 2020; 9:1813-1826. [PMID: 33224857 DOI: 10.21037/gs-20-356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy, and follicular thyroid carcinoma (FTC) is the second most common thyroid cancer following papillary thyroid carcinoma (PTC). RAS mutation and PAX8/PPARγ rearrangement are the two representative genetic alterations in FTC, and there are studies from various countries on their regional frequencies. In this study, we systematically reviewed all available literature aiming to create a complete global map showing the frequencies of these common oncogenic drivers in FTC and to highlight the trends in Asian and Western countries. We performed a search in two electronic databases and identified 71 studies that fit our criteria from 1,329 studies found with our database search terms. There were 54 articles with 1,143 FTC patients and 39 articles with 764 FTC patients available for calculating the frequency of RAS mutation and PAX8/PPARγ rearrangement, respectively. NRAS mutation was the most frequent RAS mutation in all regions, followed by HRAS and KRAS mutation. The frequency of RAS mutation in Asian countries was higher than Western countries (34% vs. 27%, P=0.006) when the mutation detection method was not taken into account. In contrast, this difference in RAS mutation incidence between Asian and Western countries (28% vs. 25%, P=0.47) did not show up in our subgroup analysis incorporating only studies using direct sequencing method. The reported difference of RAS mutation frequency in the previous literature might not be due to the true prevalence of RAS mutation. They could be attributed to the difference in the detection method. As to PAX8/PPARγ rearrangement, Western countries overall had a much higher prevalence than Asian countries (23% vs. 4%, P<0.001), but some European countries had a low incidence, implying regional heterogeneity of PAX8/PPARγ rearrangement. A substantial lack of mutation data in FTC was found in several regions of the world such as Central Asia, Middle East, Africa, and Central and South America. Our results provide the most comprehensive global status of representative genetic alterations in FTC and highlight the similarities and differences between Asian and Western countries.
Collapse
Affiliation(s)
- Toru Odate
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Huy Gia Vuong
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Kunio Mochizuki
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
3
|
Mrowka P, Glodkowska-Mrowka E. PPARγ Agonists in Combination Cancer Therapies. Curr Cancer Drug Targets 2019; 20:197-215. [PMID: 31814555 DOI: 10.2174/1568009619666191209102015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor acting as a transcription factor involved in the regulation of energy metabolism, cell cycle, cell differentiation, and apoptosis. These unique properties constitute a strong therapeutic potential that place PPARγ agonists as one of the most interesting and widely studied anticancer molecules. Although PPARγ agonists exert significant, antiproliferative and tumoricidal activity in vitro, their anticancer efficacy in animal models is ambiguous, and their effectiveness in clinical trials in monotherapy is unsatisfactory. However, due to pleiotropic effects of PPARγ activation in normal and tumor cells, PPARγ ligands interact with many antitumor treatment modalities and synergistically potentiate their effectiveness. The most spectacular example is a combination of PPARγ ligands with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In this setting, PPARγ activation sensitizes leukemic stem cells, resistant to any previous form of treatment, to targeted therapy. Thus, this combination is believed to be the first pharmacological therapy able to cure CML patients. Within the last decade, a significant body of data confirming the benefits of the addition of PPARγ ligands to various antitumor therapies, including chemotherapy, hormonotherapy, targeted therapy, and immunotherapy, has been published. Although the majority of these studies have been carried out in vitro or animal tumor models, a few successful attempts to introduce PPARγ ligands into anticancer therapy in humans have been recently made. In this review, we aim to summarize shines and shadows of targeting PPARγ in antitumor therapies.
Collapse
Affiliation(s)
- Piotr Mrowka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
4
|
Hong CM, Ahn BC. Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer for Reapplication of I-131 Therapy. Front Endocrinol (Lausanne) 2017; 8:260. [PMID: 29085335 PMCID: PMC5649198 DOI: 10.3389/fendo.2017.00260] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/20/2017] [Indexed: 01/29/2023] Open
Abstract
Although most differentiated thyroid cancers show excellent prognosis, treating radioiodine refractory differentiated thyroid cancer (RR-DTC) is challenging. Various therapies, including chemotherapy, radiotherapy, and targeted therapy, have been applied for RR-DTC but show limited effectiveness. Redifferentiation followed by radioiodine therapy is a promising alternative therapy for RR-DTC. Retinoic acids, histone deacetylase inhibitors, and peroxisome proliferator-activated receptor-gamma agonists are classically used as redifferentiation agents, and recent targeted molecules are also used for this purpose. Appropriate selection of redifferentiation agents for each patient, using current knowledge about genetic and biological characteristics of thyroid cancer, might increase the efficacy of redifferentiation treatment. In this review, we will discuss the mechanisms of these redifferentiation agents, results of recent clinical trials, and promising preclinical results.
Collapse
Affiliation(s)
- Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, South Korea
- *Correspondence: Byeong-Cheol Ahn,
| |
Collapse
|
5
|
Chitikova Z, Pusztaszeri M, Makhlouf AM, Berczy M, Delucinge-Vivier C, Triponez F, Meyer P, Philippe J, Dibner C. Identification of new biomarkers for human papillary thyroid carcinoma employing NanoString analysis. Oncotarget 2015; 6:10978-93. [PMID: 25868389 PMCID: PMC4484433 DOI: 10.18632/oncotarget.3452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/25/2015] [Indexed: 01/08/2023] Open
Abstract
We previously reported an upregulation of the clock transcript BMAL1, correlating with TIMP1 expression in fresh-frozen samples from papillary thyroid carcinoma (PTC). Since frozen postoperative biopsy samples are difficult to obtain, we aimed to validate the application of high-precision NanoString analysis for formalin-fixed paraffin-embedded (FFPE) thyroid nodule samples and to screen for potential biomarkers associated with PTC. No significant differences were detected between fresh-frozen and FFPE samples. NanoString analysis of 51 transcripts in 17 PTC and 17 benign nodule samples obtained from different donors and in 24 pairs of benign and PTC nodules, obtained from the same donor (multinodular goiters), confirmed significant alterations in the levels of BMAL1, c-MET, c-KIT, TIMP1, and other transcripts. Moreover, we identified for the first time alterations in CHEK1 and BCL2 levels in PTC. A predictive score was established for each sample, based on the combined expression levels of BMAL1, CHEK1, c-MET, c-KIT and TIMP1. In combination with BRAF mutation analysis, this predictive score closely correlated with the clinicopathological characteristics of the analyzed thyroid nodules. Our study identified new thyroid transcripts with altered levels in PTC using the NanoString approach. A predictive score correlation coefficient might contribute to improve the preoperative diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- Zhanna Chitikova
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Pusztaszeri
- Division of Clinical Pathology, University Hospital of Geneva, Switzerland
| | - Anne-Marie Makhlouf
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margaret Berczy
- Division of Clinical Pathology, University Hospital of Geneva, Switzerland
| | | | - Frederic Triponez
- Department of Thoracic and Endocrine Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Patrick Meyer
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Jacques Philippe
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Abstract
Thyroid carcinoma is the most common endocrine malignancy, and its incidence is continuing to increase. Most thyroid carcinomas contain one of several known driver mutations, such as the Val600Glu substitution in B-Raf, Ras mutations, RET gene fusions, or PAX8-PPARG gene fusions. The PAX8-PPARG gene fusion results in the production of a Pax-8-PPAR-γ fusion protein (PPFP), which is found in approximately one-third of follicular thyroid carcinomas, as well as some follicular-variant papillary thyroid carcinomas. In vitro and in vivo evidence indicates that PPFP is an oncoprotein. Although specific mechanisms of action remain to be defined, PPFP is considered to act as a dominant-negative inhibitor of wild-type PPAR-γ and/or as a unique transcriptional activator of subsets of PPAR-γ-responsive and Pax-8-responsive genes. Detection of the fusion transcript in thyroid nodule biopsy specimens can aid clinical decision-making when cytological findings are indeterminate. The PPAR-γ agonist pioglitazone is highly therapeutic in a transgenic mouse model of PPFP-positive thyroid carcinoma, suggesting that PPAR-γ agonists might be beneficial in patients with PPFP-positive thyroid carcinomas.
Collapse
Affiliation(s)
- Priyadarshini Raman
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5560 MSRB-2, SPC 5678, 1150 West Medical Drive, Ann Arbor, MI 48109, USA
| | - Ronald J Koenig
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5560 MSRB-2, SPC 5678, 1150 West Medical Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
PPARγ Promotes Growth and Invasion of Thyroid Cancer Cells. PPAR Res 2011; 2011:171765. [PMID: 22194735 PMCID: PMC3236353 DOI: 10.1155/2011/171765] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022] Open
Abstract
Undifferentiated (anaplastic) thyroid cancer (ATC) is one of the most aggressive human malignancies and no effective therapy is currently available. We show here that PPARγ levels are elevated in cells derived from ATC. Depletion of PPARγ in HTh74 ATC cells resulted in decreased cell growth, cell cycle arrest and a reduction in pRb and cyclin A and B1 levels. We further showed that both flank and orthotopic thyroid tumors derived from PPARγ-depleted cells grew more slowly than PPARγ-expressing cells. When PPARγ was overexpressed in more differentiated thyroid cancer BCPAP cells which lack PPARγ, there was increased growth and raised pRb and cyclin A and B1 levels. Finally, PPARγ depletion in ATC cells decreased their invasive capacity whereas overexpression in PTC cells increased invasiveness. These data suggest that PPARγ may play a detrimental role in thyroid cancer and that targeting it therapeutically may lead to improved treatment of advanced thyroid cancer.
Collapse
|
8
|
Krause K, Prawitt S, Eszlinger M, Ihling C, Sinz A, Schierle K, Gimm O, Dralle H, Steinert F, Sheu SY, Schmid KW, Fuhrer D. Dissecting molecular events in thyroid neoplasia provides evidence for distinct evolution of follicular thyroid adenoma and carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3066-74. [PMID: 21983636 DOI: 10.1016/j.ajpath.2011.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 12/24/2022]
Abstract
Benign hypofunctional cold thyroid nodules (CTNs) are a frequent scintiscan finding and need to be distinguished from thyroid carcinomas. The origin of CTNs with follicular morphologic features is unresolved. The DNA damage response might act as a physiologic barrier, inhibiting the progression of preneoplastic lesions to neoplasia. We investigated the following in hypofunctional follicular adenoma (FA) and follicular thyroid cancer (FTC): i) the mutation rate of frequently activated oncogenes, ii) the activation of DNA damage response checkpoints, and iii) the differential proteomic pattern between FA and FTC. Both FTC and FA, which did not harbor RAS, phosphoinositide-3-kinase, or PAX/peroxisome proliferator activated receptor-γ mutations, express various proteins in common and others that are more distinctly expressed in FTC rather than in FA or normal thyroid tissue. This finding is in line with the finding of constitutive DNA damage checkpoint activation (p-Chk2, γ-H2AX) and evidence for replicative stress causing genomic instability (increased cyclin E, retinoblastoma, or E2F1 mRNA expression) in FTC but not FA. We discuss the findings of the increased expression of translationally controlled tumor protein, phosphatase 2A inhibitor, and DJ-1 in FTC compared with FA identified by proteomics and their potential implication in follicular thyroid carcinogenesis. Our present findings argue for the definition of FA as a truly benign entity and against progressive development of FA to FTC.
Collapse
Affiliation(s)
- Kerstin Krause
- Clinic for Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Paeng JC, Kang KW, Park DJ, Oh SW, Chung JK. Alternative medical treatment for radioiodine-refractory thyroid cancers. Nucl Med Mol Imaging 2011; 45:241-7. [PMID: 24900013 DOI: 10.1007/s13139-011-0107-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/26/2022] Open
Abstract
Thyroid cancer is one of the most rapidly increasing cancers in many countries. Although most thyroid cancers are differentiated cancers and easily treated with radioiodine (RI), a portion of differentiated and undifferentiated cancers is refractory not only to RI therapy, but also to radiotherapy and chemotherapy. Thus, various alternative therapies have been tested in RI-refractory thyroid cancers. These alternative therapies include two major categories: redifferentiation therapy and recent molecular target therapy. Several clinical trials have investigated these therapies. They demonstrated potential effects of the therapies, although the results have been somewhat limited so far. Thus, the future strategy for undifferentiated thyroid cancers will involve individualized, lesion-specific, and combined therapy. In this review, the basic mechanism of each redifferentiation and molecular target therapy is discussed, and results of recent clinical trials using these therapeutic agents are summarized.
Collapse
Affiliation(s)
- Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro 101, Jongno-gu Seoul, 110-744 Korea ; Thyroid Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro 101, Jongno-gu Seoul, 110-744 Korea ; Thyroid Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Do Joon Park
- Thyroid Center, Seoul National University Cancer Hospital, Seoul, Korea ; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - So Won Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro 101, Jongno-gu Seoul, 110-744 Korea ; Department of Nuclear Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro 101, Jongno-gu Seoul, 110-744 Korea ; Thyroid Center, Seoul National University Cancer Hospital, Seoul, Korea
| |
Collapse
|
10
|
Kebebew E, Lindsay S, Clark OH, Woeber KA, Hawkins R, Greenspan FS. Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid 2009; 19:953-6. [PMID: 19678746 DOI: 10.1089/thy.2008.0371] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Rosiglitazone is a peroxisome proliferator-activated receptor (PPAR) gamma agonist that has shown promise as both an antiproliferative and redifferentiating agent for the treatment of thyroid cancer in preclinical studies. We investigated the efficacy and side effects of rosiglitazone therapy in patients with differentiated thyroid cancer of follicular cell origin that fails to take up radioiodine or is unresectable. METHODS Twenty patients with differentiated thyroid cancer were enrolled in an open-label, phase II trial of oral rosiglitazone treatment (4 mg daily for 1 week, then 8 mg daily for 7 weeks). RESULTS Five of 20 patients had a positive radioiodine scan after rosiglitazone treatment. Four patients had radioiodine uptake in the neck and one patient had uptake in the pelvis. Unstimulated thyroglobulin levels after rosiglitazone treatment increased in five patients, remained stable in 12 patients, and decreased in three patients. Seven patients had progressive disease on follow-up cross-sectional imaging; six patients in the size and number of lung metastasis and two patients in the size of the neck tumors. Overall, five patients had a partial response (decreased thyroglobulin or positive radioiodine uptake), three patients had stable disease (no change in thyroglobulin and radioiodine uptake status), and 12 patients had disease progression (increased thyroglobulin). By RECIST criteria, no patient had a complete or partial response to rosiglitazone treatment at 3 months follow-up. The mean follow-up time after protocol treatment was 12 months (median 12 months). CONCLUSIONS Our findings suggest that rosiglitazone therapy may induce radioiodine uptake and reduce serum thyroglobulin levels in some patients with differentiated thyroid cancer but this did not result in clinically significant response on long-term follow-up. Moreover, no patients had response to rosiglitazone therapy by anatomic imaging studies.
Collapse
Affiliation(s)
- Electron Kebebew
- Department of Surgery, University of California-San Francisco (UCSF), San Francisco, California 94143, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Clinical Use of PPARgamma Ligands in Cancer. PPAR Res 2008; 2008:159415. [PMID: 19125177 PMCID: PMC2605846 DOI: 10.1155/2008/159415] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Revised: 08/11/2008] [Accepted: 09/29/2008] [Indexed: 01/04/2023] Open
Abstract
The role of PPARγ in adipocyte differentiation has fueled intense interest in the function of this steroid nuclear receptor for regulation of malignant cell growth and differentiation. Given the antiproliferative and differentiating effects of PPARγ ligands on liposarcoma cells, investigation of PPARγ expression and ligand activation in other solid tumors such as breast, colon, and prostate cancers ensued. The anticancer effects of PPARγ ligands in cell culture and rodent models of a multitude of tumor types suggest broad applicability of these agents to cancer therapy. This review focuses on the clinical use of PPARγ ligands, specifically the thiazolidinediones, for the treatment and prevention of cancer.
Collapse
|
12
|
Kebebew E, Peng M, Reiff E, Treseler P, Woeber KA, Clark OH, Greenspan FS, Lindsay S, Duh QY, Morita E. A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer. Surgery 2007; 140:960-6; discussion 966-7. [PMID: 17188145 DOI: 10.1016/j.surg.2006.07.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/04/2006] [Accepted: 07/04/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that has been shown to induce differentiation, cell cycle arrest, and apoptosis in a variety of human cancers including thyroid cancer. METHODS Ten patients with differentiated thyroid cancer were enrolled in an open-label, phase II trial of oral rosiglitazone treatment (4 mg daily for 1 week, then 8 mg daily for 7 weeks). The levels of PPARgamma receptor mRNA and protein expression were determined in the patient's neoplasm. RESULTS Of 10 patients, 4 had positive radioiodine scans after rosiglitazone therapy with uptake in the neck in 3 patients and in the pelvis in 1 patient. After treatment, the serum thyroglobulin level decreased in 2 patients, increased in 5 patients, and was stable in 3 patients. No patient developed clinically important toxicity associated with rosiglitazone treatment. We found no relationship in the level of PPARgamma mRNA and protein expression in patients who had radioiodine uptake compared with those who did not. CONCLUSIONS Our findings suggest that rosiglitazone treatment may induce radioiodine uptake in some patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer. We found no relationship between the expression level of the PPARgamma mRNA and protein in the neoplasm and radioiodine uptake status after rosiglitazone therapy, questioning the potential pathway of effect.
Collapse
Affiliation(s)
- Electron Kebebew
- Department of Surgery, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Drieschner N, Belge G, Rippe V, Meiboom M, Loeschke S, Bullerdiek J. Evidence for a 3p25 breakpoint hot spot region in thyroid tumors of follicular origin. Thyroid 2006; 16:1091-6. [PMID: 17123335 DOI: 10.1089/thy.2006.16.1091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epithelial tumors of the thyroid are cytogenetically well-investigated tumors. So far, the main cytogenetic subgroups, characterized by trisomy 7 and by rearrangements of either 19q13 or 2p21, respectively, have been described. Recently, we have been able to describe the involvement of a novel gene called THADA in benign thyroid lesions with 2p21 rearrangements. Other fusion genes found in thyroid lesions are RET/PTC and PAX8/PPAR(gamma). The latter occurs in follicular thyroid carcinomas with a t(2;3)(q13;p25). Here we present molecular-cytogenetic and cytogenetic investigations on a follicular thyroid adenoma with a t(2;20;3)(p21;q11.2; p25). In this case, an intronic sequence of PPAR(gamma) is fused to exon 28 of THADA. We used BAC clones containing the genomic sequence of PPARgamma for fluorescence in situ hybridization to confirm the localization of the breakpoint within intron 2 of PPAR(gamma) . Our findings suggest that the close surrounding of PPAR(gamma) is a breakpoint hot spot region, leading to recurrent alterations of this gene in thyroid tumors of follicular origin including carcinomas as well as adenomas with or without involvement of PAX8.
Collapse
Affiliation(s)
- N Drieschner
- Center for Human Genetics, University of Bremen, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Linsalata M, Giannini R, Notarnicola M, Cavallini A. Peroxisome proliferator-activated receptor gamma and spermidine/spermine N1-acetyltransferase gene expressions are significantly correlated in human colorectal cancer. BMC Cancer 2006; 6:191. [PMID: 16854216 PMCID: PMC1543652 DOI: 10.1186/1471-2407-6-191] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 07/19/2006] [Indexed: 11/10/2022] Open
Abstract
Background The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates adipogenic differentiation and glucose homeostasis. Spermidine/spermine N1-acetyltransferase (SSAT) and ornithine decarboxylase (ODC) are key enzymes involved in the metabolism of polyamines, compounds that play an important role in cell proliferation. While the PPARγ role in tumour growth has not been clearly defined, the involvement of the altered polyamine metabolism in colorectal carcinogenesis has been established. In this direction, we have evaluated the PPARγ expression and its relationship with polyamine metabolism in tissue samples from 40 patients operated because of colorectal carcinoma. Since it is known that the functional role of K-ras mutation in colorectal tumorigenesis is associated with cell growth and differentiation, polyamine metabolism and the PPARγ expression were also investigated in terms of K-ras mutation. Methods PPARγ, ODC and SSAT mRNA levels were evaluated by reverse transcriptase and real-time PCR. Polyamines were quantified by high performance liquid chromatography (HPLC). ODC and SSAT activity were measured by a radiometric technique. Results PPARγ expression, as well as SSAT and ODC mRNA levels were significantly higher in cancer as compared to normal mucosa. Tumour samples also showed significantly higher polyamine levels and ODC and SSAT activities in comparison to normal samples. A significant and positive correlation between PPARγ and the SSAT gene expression was observed in both normal and neoplastic tissue (r = 0.73, p < 0.0001; r = 0.65, p < 0.0001, respectively). Moreover, gene expression, polyamine levels and enzymatic activities were increased in colorectal carcinoma samples expressing K-ras mutation as compared to non mutated K-ras samples. Conclusion In conclusion, our data demonstrated a close relationship between PPARγ and SSAT in human colorectal cancer and this could represent an attempt to decrease polyamine levels and to reduce cell growth and tumour development. Therefore, pharmacological activation of PPARγ and/or induction of SSAT may represent a therapeutic or preventive strategy for treating colorectal cancer.
Collapse
Affiliation(s)
- Michele Linsalata
- Laboratory of Biochemistry, National Institute for Digestive Diseases, I.R.C.C.S. "Saverio de Bellis" via Della Resistenza, 70013-Castellana Grotte (BA), Italy
| | - Romina Giannini
- Laboratory of Biochemistry, National Institute for Digestive Diseases, I.R.C.C.S. "Saverio de Bellis" via Della Resistenza, 70013-Castellana Grotte (BA), Italy
| | - Maria Notarnicola
- Laboratory of Biochemistry, National Institute for Digestive Diseases, I.R.C.C.S. "Saverio de Bellis" via Della Resistenza, 70013-Castellana Grotte (BA), Italy
| | - Aldo Cavallini
- Laboratory of Biochemistry, National Institute for Digestive Diseases, I.R.C.C.S. "Saverio de Bellis" via Della Resistenza, 70013-Castellana Grotte (BA), Italy
| |
Collapse
|
15
|
Kusinski M, Wdzieczak-Bakala J, Liu JM, Bignon J, Kuzdak K. AcSDKP: a new potential marker of malignancy of the thyroid gland. Langenbecks Arch Surg 2006; 391:9-12. [PMID: 16418871 DOI: 10.1007/s00423-005-0014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 11/18/2005] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS The tetrapeptide Acetyl-Ser-Asp-Lys-Pro (AcSDKP) a physiologic inhibitor of stem-cell proliferation is also known for it's strong angiogenic activity. It has been shown that blood levels of this peptide are increased in some hematological malignancies. However, no data on the concentration of AcSDKP present in solid tumor tissue are available. The aim of our study was to measure tissue concentration of AcSDKP in benign and malignant lesions of the thyroid gland. PATIENTS AND METHODS We assessed AcSDKP level in thyroid tissue specimens using enzyme immunoassay kit. The specimens were taken intraoperatively from 20 patients (17 women and 3 men aged 21-68 years): 10 patients with benign nodular goiter and 10 patients with papillary carcinoma of the thyroid gland. RESULTS The obtained results show that tissue concentration of AcSDKP in malignant thyroid tumors is five times higher when compared to benign lessions. CONCLUSION We conclude that AcSDKP may play a role in the development of the thyroid gland lesions. However, the further investigations concerning the tetrapeptide concentration in other thyroid malignancies, toxic nodular, and Grave's goiter are required to conclude on the eventual use of AcSDKP as a marker of malignancy.
Collapse
Affiliation(s)
- Michal Kusinski
- General and Endocrine Surgery Department, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | |
Collapse
|