1
|
Zhang C, Teng W, Wang C, Shan Z. The Gut Microbiota and Its Metabolites and Their Association with the Risk of Autoimmune Thyroid Disease: A Mendelian Randomization Study. Nutrients 2024; 16:3898. [PMID: 39599685 PMCID: PMC11597551 DOI: 10.3390/nu16223898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Observational research shows associations of the gut microbiota and its metabolites with autoimmune thyroid disease (AITD), but the causality is undetermined. Methods: Two-sample Mendelian randomization (MR) was employed to analyze the association of the gut microbiota and its metabolites with AITD. A total of 119 gut microbiotas and nine fecal/circulating metabolites were the exposures. AITD, Graves' disease (GD), and Hashimoto's thyroiditis (HT) were the outcomes. Inverse-variance weighting (IVW) was primarily used to assess causality; Cochran's Q was used to assess heterogeneity. Sensitivity analyses (weighted median, MRPRESSO regression, MRPRESSO intercept, MRPRESSO global, Steiger filtering, leave-one-out) were conducted to assess causal estimate robustness. Multivariable MR (MVMR) was used to estimate the effects of body mass index (BMI) and alcohol consumption frequency on causality. Results: The outcomes were potentially causally associated with 22 gut microbiotas and three metabolites. After multiple-test correction, 3-indoleglyoxylic acid retained significant causality with AITD (IVW: odds ratio [OR] = 1.09, 95% confidence interval [CI] = 1.05-1.14, p = 2.43 × 10-5, FDR = 0.009). The sensitivity analyses were confirmatory (weighted median: OR = 1.06, 95% CI = 1.01-1.12, p = 0.025; MRPRESSO: OR = 1.09, 95% CI = 1.15-1.14, p = 0.001). MVMR revealed no confounding effects on this association (BMI: OR = 1.21, 95% CI =1.08-1.35, p = 0.001; drinks/week: OR = 1.22, 95% CI = 1.04-1.43, p = 0.014). Conclusions: MR revealed no significant causal effects of the gut microbiota on the outcomes. However, MR revealed the causal effects of 3-indoleglyoxylic acid on the risk of AITD.
Collapse
Affiliation(s)
| | | | - Chuyuan Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, China Medical University, Shenyang 110001, China; (C.Z.); (W.T.)
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, China Medical University, Shenyang 110001, China; (C.Z.); (W.T.)
| |
Collapse
|
2
|
Tan Y, Yao H, Lin C, Lai Z, Li H, Zhang J, Fu Y, Wu X, Yang G, Feng L, Jing C. Investigating the Bidirectional Association of Rheumatoid Arthritis and Thyroid Function: A Methodologic Assessment of Mendelian Randomization. Arthritis Care Res (Hoboken) 2024; 76:1162-1172. [PMID: 38556923 DOI: 10.1002/acr.25335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) and thyroid dysfunction are frequently observed in the same patient. However, whether they co-occur or exhibit a causal relationship remains uncertain. We aimed to systematically investigate the causal relationship between RA and thyroid function using a large sample and advanced methods. METHODS Bidirectional two-sample Mendelian randomization (MR) analysis was performed based on RA and six thyroid function trait data sets from the European population. The robustness of the results was demonstrated using multiple MR methods and a series of sensitivity analyses. Multivariable MR using Bayesian model averaging (MR-BMA) was performed to adjust for possible competing risk factors. A sensitivity data set, which included data from patients with seropositive RA and controls, was used to repeat the analyses. Furthermore, enrichment analysis was employed to discover the underlying mechanism between RA and thyroid functions. RESULTS A significantly positive causal effect was identified for RA on autoimmune thyroid disease (AITD) as well as for AITD on RA (P < 0.001). Further sensitivity analyses showed consistent causal estimates from a variety of MR methods. After removing the outliers, MR-BMA results showed that RA and AITD were independent risk factors in their bidirectional causality, even in the presence of other competing risk factors (adjusted P < 0.05). Enrichment analysis showed immune cell activation and immune response play crucial roles in them. CONCLUSION Our results illustrate the significant bidirectional causal effect of RA and AITD, which holds even in multiple competing risk factors. Clinical screening for thyroid dysfunction in patients with RA deserves further attention, and vice versa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Liping Feng
- Duke University School of Medicine, Durham, North Carolina
| | | |
Collapse
|
3
|
Sun D, Shi Z, Chen H, Du Q, Zhang Y, Wang R, Kong L, Luo W, Lang Y, Wang X, Zhou H. COVID-19 susceptibility, hospitalization and severity and the risk of brain cortical structure: a Mendelian randomization study. QJM 2024; 117:413-421. [PMID: 38195890 DOI: 10.1093/qjmed/hcad291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Observational studies have reported structural changes in the brains of patients with coronavirus disease 2019 (COVID-19); it remains unclear whether these associations are causal. AIM We evaluated the causal effects of COVID-19 susceptibility, hospitalization and severity on cortical structures. DESIGN Mendelian randomization (MR) study. METHODS Data on the different COVID-19 phenotypes were obtained from the latest large-scale genome-wide association study (R7) of the COVID-19 Host Genetics Initiative. Brain structure data, including cortical thickness (TH) and surface area (SA), were obtained from the ENIGMA Consortium. Additionally, we employed the round 5 dataset released in January 2021 as the validation cohort. The inverse-variance weighted (IVW) method was used as the primary analysis in MR. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. We performed enrichment analysis on the MR analyses that passed the sensitivity analysis filtering. RESULTS After IVW and sensitivity analyses, we observed causal associations between COVID-19 susceptibility and rostral middle frontal SAw (P = 0.0308, β = -39.1236), cuneus THw (P = 0.0170, β = -0.0121), medial orbitofrontal THw (P = 0.0002, β = 0.0225), postcentral THw (P = 0.0217, β = -0.0106), temporal pole THw (P = 0.0077, β = 0.0359), medial orbitofrontal SAnw (P = 0.0106, β = -24.0397), medial orbitofrontal THnw (P = 0.0007, β = 0.0232), paracentral SAnw (P = 0.0483, β = -20.1442), rostral middle frontal SAnw (P = 0.0368, β = -81.9719) and temporal pole THnw (P = 0.0429, β = 0.0353). COVID-19 hospitalization had causal effects on medial orbitofrontal THw (P = 0.0053, β = 0.0063), postcentral THw (P = 0.0143, β = -0.0042), entorhinal THnw (P = 0.0142, β = 0.0142), medial orbitofrontal THnw (P = 0.0147, β = 0.0065) and paracentral SAnw (P = 0.0119, β = -7.9970). COVID-19 severity had causal effects on rostral middle frontal SAw (P = 0.0122, β = -11.8296), medial orbitofrontal THw (P = 0.0155, β = 0.0038), superior parietal THw (P = 0.0291, β = -0.0021), lingual SAnw (P = 0.0202, β = -11.5270), medial orbitofrontal THnw (P = 0.0290, β = 0.0039), paracentral SAnw (P = 0.0180, β = -5.7744) and pars triangularis SAnw (P = 0.0151, β = -5.4520). CONCLUSION Our MR results demonstrate a causal relationship between different COVID-19 phenotypes and cortical structures.
Collapse
Affiliation(s)
- D Sun
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Z Shi
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - H Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Q Du
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Y Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - R Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - L Kong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - W Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Y Lang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - X Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - H Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Du SN, Chen JW, Li W, Wang MC, Mao YS. Development of autoimmune thyroid disease after COVID-19 infection: case report. Front Med (Lausanne) 2024; 11:1303855. [PMID: 38384412 PMCID: PMC10879344 DOI: 10.3389/fmed.2024.1303855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Background SARS-CoV-2 could trigger multiple immune responses, leading to several autoimmune diseases, including thyroid diseases. Many cases of thyroid diseases caused by COVID-19 infection have been reported. Here, we describe the disease development of patients with autoimmune thyroid disease after COVID-19 infection. Methods The clinical characteristics, diagnosis and treatment of five different patients with autoimmune thyroid disease after COVID-19 infection were reported. Results Female patients with primary autoimmune thyroid disease which have been stable for many years were reported. One month after COVID-19 infection, the disease has undergone different evolution. Case 1, a patient with history of long-term stable Hashimoto's thyroiditis, suddenly suffered from Graves disease after COVID-19 infection. Case 2, a patient with history of long-term stable Hashimoto's thyroiditis with thyroid nodules, suddenly suffered from Graves disease after infection. Case 3, a patient with history of long-term stable Graves disease, suddenly suffered from worsening after infection. The above three cases showed thyroid-stimulating antibodies were enhanced. Case 4, a patient with history of previous hypothyroidism had an increase in thyroid-related antibody (TPOAb and TRAb) activity after infection, followed by a marked worsening of hypothyroidism. Case 5, a patient with no history of thyroid disease suddenly developed controllable "thyrotoxicosis" after infection, suggesting the diagnosis of painless thyroiditis. Conclusion The five case reports show a different development of the primary autoimmune thyroid disease after COVID-19 infection. The change in the trend of thyroid disease is closely related to the immune response induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Si-na Du
- Department of Endocrinology, Cixi People Hospital Medical Health Group (Cixi People Hospital), Cixi, China
| | - Jian-wei Chen
- Department of Endocrinology, Cixi People Hospital Medical Health Group (Cixi People Hospital), Cixi, China
| | - Wei Li
- Department of Endocrinology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Meng-chuan Wang
- Department of Endocrinology, Cixi People Hospital Medical Health Group (Cixi People Hospital), Cixi, China
| | - Yu-shan Mao
- Department of Endocrinology, The first Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Yi K, Tian M, Li X. The Influence of Autoimmune Thyroid Diseases on Viral Pneumonia Development, Including COVID-19: A Two-Sample Mendelian Randomization Study. Pathogens 2024; 13:101. [PMID: 38392839 PMCID: PMC10893279 DOI: 10.3390/pathogens13020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The association between thyroid function and viral pneumonia has undergone extensive examination, yet the presence of a causal link remains uncertain. The objective of this paper was to employ Two-Sample Mendelian Randomization (MR) analysis to investigate the connections between three thyroid diseases and thyroid hormone indicators with viral pneumonia and COVID-19. We obtained summary statistics datasets from seven genome-wide association studies (GWASs). The primary method used for estimating relationships was inverse-variance weighting (IVW). In addition, we employed weighted median, weighted mode, MR-Egger, and MR-PRESSO as supplementary analytical tools. Sensitivity analyses encompassed Cochran's Q test, MR-Egger intercept test, and MR-PRESSO. Our study revealed significant causal relationships between having a genetic predisposition to autoimmune thyroid disease (AITD) and an increased susceptibility to viral pneumonia (odds ratio [OR]: 1.096; 95% confidence interval [CI]: 1.022-1.176). Moreover, it demonstrated a heightened susceptibility and severity of COVID-19 (OR for COVID-19 susceptibility, COVID-19 hospitalization, and COVID-19 critical illness, with 95% CIs of 1.016, 1.001-1.032; 1.058, 1.003-1.116; 1.045, 1.010-1.081). However, no statistically significant associations were found between TSH, FT4, subclinical hypo- or hyperthyroidism, and the risk of viral pneumonia incidence, or the susceptibility and severity of COVID-19 (all p > 0.05). This study establishes a cause-and-effect relationship between AITD and the development of viral pneumonia, as well as the susceptibility and severity of COVID-19.
Collapse
Affiliation(s)
- Kexin Yi
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Mingjie Tian
- Shanghai Deji Hospital, Qingdao University, Shanghai 200331, China;
| | - Xue Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
6
|
Shenoy PU, Udupa H, KS J, Babu S, K N, Jain N, Das R, Upadhyai P. The impact of COVID-19 on pulmonary, neurological, and cardiac outcomes: evidence from a Mendelian randomization study. Front Public Health 2023; 11:1303183. [PMID: 38155884 PMCID: PMC10752946 DOI: 10.3389/fpubh.2023.1303183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Background Long COVID is a clinical entity characterized by persistent health problems or development of new diseases, without an alternative diagnosis, following SARS-CoV-2 infection that affects a significant proportion of individuals globally. It can manifest with a wide range of symptoms due to dysfunction of multiple organ systems including but not limited to cardiovascular, hematologic, neurological, gastrointestinal, and renal organs, revealed by observational studies. However, a causal association between the genetic predisposition to COVID-19 and many post-infective abnormalities in long COVID remain unclear. Methods Here we employed Mendelian randomization (MR), a robust genetic epidemiological approach, to investigate the potential causal associations between genetic predisposition to COVID-19 and long COVID symptoms, namely pulmonary (pneumonia and airway infections including bronchitis, emphysema, asthma, and rhinitis), neurological (headache, depression, and Parkinson's disease), cardiac (heart failure and chest pain) diseases, and chronic fatigue. Using two-sample MR, we leveraged genetic data from a large COVID-19 genome-wide association study and various disorder-specific datasets. Results This analysis revealed that a genetic predisposition to COVID-19 was significantly causally linked to an increased risk of developing pneumonia, airway infections, headache, and heart failure. It also showed a strong positive correlation with chronic fatigue, a frequently observed symptom in long COVID patients. However, our findings on Parkinson's disease, depression, and chest pain were inconclusive. Conclusion Overall, these findings provide valuable insights into the genetic underpinnings of long COVID and its diverse range of symptoms. Understanding these causal associations may aid in better management and treatment of long COVID patients, thereby alleviating the substantial burden it poses on global health and socioeconomic systems.
Collapse
Affiliation(s)
- Pooja U. Shenoy
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Hrushikesh Udupa
- Department of Community Medicine, Yenepoya Medical College and Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | - Jyothika KS
- Department of Statistics, Yenepoya (Deemed to be University), Mangalore, India
| | - Sangeetha Babu
- Department of Statistics, Yenepoya (Deemed to be University), Mangalore, India
| | - Nikshita K
- Department of Statistics, Yenepoya (Deemed to be University), Mangalore, India
| | - Neha Jain
- Department of Statistics, Yenepoya (Deemed to be University), Mangalore, India
| | - Ranajit Das
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Tang CM, Li GHY, Cheung CL. COVID-19 and cognitive performance: a Mendelian randomization study. Front Public Health 2023; 11:1185957. [PMID: 37674675 PMCID: PMC10477606 DOI: 10.3389/fpubh.2023.1185957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Background A substantial proportion of individuals with COVID-19 experienced cognitive impairment after resolution of SARS-CoV-2 infection. We aimed to evaluate whether genetic liability to SARS-CoV-2 infection per se, or more severe COVID-19, is causally linked to cognitive deficit. Methods We firstly performed univariable Mendelian randomization (MR) analysis to examine whether genetic liability to SARS-CoV-2 infection, hospitalized and severe COVID-19 is causally associated with cognitive performance. To dissect the causal pathway, multivariable MR (MVMR) analysis was conducted by adjusting for five inflammatory markers [C-reactive protein, interleukin (IL)-1β, IL-6, IL-8, and tumour necrosis factor α, as proxies of systemic inflammation]. Results In univariable MR analysis, host genetic liability to SARS-CoV-2 infection was associated with lower cognitive performance [inverse variance weighted (IVW) analysis, estimate: -0.023; 95% Confidence Interval (CI): -0.038 to -0.009]. Such causal association was attenuated in MVMR analysis when we adjusted for the five correlated inflammatory markers in one analysis (IVW analysis, estimate: -0.022; 95% CI: -0.049 to 0.004). There was insufficient evidence of association for genetic liability to hospitalized and severe COVID-19 with cognitive performance. Conclusion The causal effect of host genetic liability to SARS-CoV-2 infection on reduced cognitive performance may be mediated by systemic inflammation. Future studies examining whether anti-inflammatory agents could alleviate cognitive impairment in SARS-CoV-2-infected individuals are warranted.
Collapse
Affiliation(s)
- Ching-Man Tang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Gloria Hoi-Yee Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
8
|
Li Z, Dang W, Hao T, Zhang H, Yao Z, Zhou W, Deng L, Yu H, Wen Y, Liu L. Shared genetics and causal relationships between major depressive disorder and COVID-19 related traits: a large-scale genome-wide cross-trait meta-analysis. Front Psychiatry 2023; 14:1144697. [PMID: 37426090 PMCID: PMC10328439 DOI: 10.3389/fpsyt.2023.1144697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The comorbidity between major depressive disorder (MDD) and coronavirus disease of 2019 (COVID-19) related traits have long been identified in clinical settings, but their shared genetic foundation and causal relationships are unknown. Here, we investigated the genetic mechanisms behind COVID-19 related traits and MDD using the cross-trait meta-analysis, and evaluated the underlying causal relationships between MDD and 3 different COVID-19 outcomes (severe COVID-19, hospitalized COVID-19, and COVID-19 infection). Methods In this study, we conducted a comprehensive analysis using the most up-to-date and publicly available GWAS summary statistics to explore shared genetic etiology and the causality between MDD and COVID-19 outcomes. We first used genome-wide cross-trait meta-analysis to identify the pleiotropic genomic SNPs and the genes shared by MDD and COVID-19 outcomes, and then explore the potential bidirectional causal relationships between MDD and COVID-19 outcomes by implementing a bidirectional MR study design. We further conducted functional annotations analyses to obtain biological insight for shared genes from the results of cross-trait meta-analysis. Results We have identified 71 SNPs located on 25 different genes are shared between MDD and COVID-19 outcomes. We have also found that genetic liability to MDD is a causal factor for COVID-19 outcomes. In particular, we found that MDD has causal effect on severe COVID-19 (OR = 1.832, 95% CI = 1.037-3.236) and hospitalized COVID-19 (OR = 1.412, 95% CI = 1.021-1.953). Functional analysis suggested that the shared genes are enriched in Cushing syndrome, neuroactive ligand-receptor interaction. Discussion Our findings provide convincing evidence on shared genetic etiology and causal relationships between MDD and COVID-19 outcomes, which is crucial to prevention, and therapeutic treatment of MDD and COVID-19.
Collapse
Affiliation(s)
- Ziqi Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weijia Dang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tianqi Hao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hualin Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziwei Yao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenchao Zhou
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liufei Deng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yalu Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Tasnim S, Wilson SG, Walsh JP, Nyholt DR. Cross-Trait Genetic Analyses Indicate Pleiotropy and Complex Causal Relationships between Headache and Thyroid Function Traits. Genes (Basel) 2022; 14:16. [PMID: 36672757 PMCID: PMC9858525 DOI: 10.3390/genes14010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have reported a comorbid relationship between headache and thyroid traits; however, little is known about the shared genetics and causality that contributes to this association. We investigated the genetic overlap and associations between headache and thyroid function traits using genome-wide association study (GWAS) data. We found a significant genetic correlation (rg) with headache and hypothyroidism (rg = 0.09, p = 2.00 × 10−4), free thyroxine (fT4) (rg = 0.08, p = 5.50 × 10−3), and hyperthyroidism (rg = −0.14, p = 1.80 × 10−3), a near significant genetic correlation with secondary hypothyroidism (rg = 0.20, p = 5.24 × 10−2), but not with thyroid stimulating hormone (TSH). Pairwise-GWAS analysis revealed six, 14, four and five shared (pleiotropic) loci with headache and hypothyroidism, hyperthyroidism, secondary hypothyroidism, and fT4, respectively. Cross-trait GWAS meta-analysis identified novel genome-wide significant loci for headache: five with hypothyroidism, three with secondary hypothyroidism, 12 with TSH, and nine with fT4. Of the genes at these loci, six (FAF1, TMX2-CTNND1, AARSD1, PLCD3, ZNF652, and C20orf203; headache-TSH) and six (HMGB1P45, RPL30P1, ZNF462, TMX2-CTNND1, ITPK1, SECISBP2L; headache-fT4) were significant in our gene-based analysis (pFisher’s combined p-value < 2.09 × 10−6). Our causal analysis suggested a positive causal relationship between headache and secondary hypothyroidism (p = 3.64 × 10−4). The results also suggest a positive causal relationship between hypothyroidism and headache (p = 2.45 × 10−3) and a negative causal relationship between hyperthyroidism and headache (p = 1.16 × 10−13). These findings suggest a strong evidence base for a genetic correlation and complex causal relationships between headache and thyroid traits.
Collapse
Affiliation(s)
- Sana Tasnim
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Scott G. Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
| | - Dale R. Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
10
|
Al-Salameh A, Scherman N, Adda I, André J, Zerbib Y, Maizel J, Lalau JD, Brochot E, Andrejak C, Desailloud R. Thyrotropin Levels in Patients with Coronavirus Disease 2019: Assessment during Hospitalization and in the Medium Term after Discharge. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122014. [PMID: 36556379 PMCID: PMC9781661 DOI: 10.3390/life12122014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The objectives of this study were (1) to compare TSH levels between inpatients with critical versus non-critical coronavirus disease 19 (COVID-19), and (2) to describe the status of TSH levels three months after hospitalization. METHODS We collected data on adult patients hospitalized with COVID-19 at Amiens University Hospital. We compared TSH levels between inpatients with critical (intensive care unit admission and/or death) versus non-critical COVID-19. Thereafter, survivors were invited to return for a three-month post-discharge visit where thyroid function tests were performed, regardless of the availability of TSH measurement during hospitalization. RESULTS Among 448 inpatients with COVID-19, TSH assay data during hospitalization were available for 139 patients without prior thyroid disease. Patients with critical and non-critical forms of COVID-19 did not differ significantly with regard to the median (interquartile range) TSH level (0.96 (0.68-1.71) vs. 1.27 mIU/L (0.75-1.79), p = 0.40). Abnormal TSH level was encountered in 17 patients (12.2%); most of them had subclinical thyroid disease. TSH assay data at the three-month post-discharge visit were available for 151 patients without prior thyroid disease. Only seven of them (4.6%) had abnormal TSH levels. Median TSH level at the post-discharge visit was significantly higher than median TSH level during hospitalization. CONCLUSIONS Our findings suggest that COVID-19 is associated with a transient suppression of TSH in a minority of patients regardless of the clinical form. The higher TSH levels three months after COVID-19 might suggest recovery from non-thyroidal illness syndrome.
Collapse
Affiliation(s)
- Abdallah Al-Salameh
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, F-80054 Amiens, France
- PériTox UMR-I 01, University of Picardie Jules Verne, Chemin du Thil, F-80025 Amiens, France
- Correspondence: ; Tel.: +33-322-455-889; Fax: +33-322-455-334
| | - Noémie Scherman
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, F-80054 Amiens, France
| | - Imane Adda
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, F-80054 Amiens, France
- Medical Intensive Care Unit, Amiens University Hospital, F-80054 Amiens, France
| | - Juliette André
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, F-80054 Amiens, France
| | - Yoann Zerbib
- Medical Intensive Care Unit, Amiens University Hospital, F-80054 Amiens, France
| | - Julien Maizel
- Medical Intensive Care Unit, Amiens University Hospital, F-80054 Amiens, France
| | - Jean-Daniel Lalau
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, F-80054 Amiens, France
- PériTox UMR-I 01, University of Picardie Jules Verne, Chemin du Thil, F-80025 Amiens, France
| | - Etienne Brochot
- Laboratory of Virology, Amiens University Hospital, F-80054 Amiens, France
| | - Claire Andrejak
- Department of Pulmonary Diseases, Amiens University Hospital, F-80054 Amiens, France
| | - Rachel Desailloud
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, F-80054 Amiens, France
- PériTox UMR-I 01, University of Picardie Jules Verne, Chemin du Thil, F-80025 Amiens, France
| |
Collapse
|
11
|
Zhang Z, Fang T, Lv Y. Causal associations between thyroid dysfunction and COVID-19 susceptibility and severity: A bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2022; 13:961717. [PMID: 36147565 PMCID: PMC9485491 DOI: 10.3389/fendo.2022.961717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Observational studies have reported an association between coronavirus disease 2019 (COVID-19) risk and thyroid dysfunction, but without a clear causal relationship. We attempted to evaluate the association between thyroid function and COVID-19 risk using a bidirectional two-sample Mendelian randomization (MR) analysis. METHODS Summary statistics on the characteristics of thyroid dysfunction (hypothyroidism and hyperthyroidism) were obtained from the ThyroidOmics Consortium. Genome-wide association study statistics for COVID-19 susceptibility and its severity were obtained from the COVID-19 Host Genetics Initiative, and severity phenotypes included hospitalization and very severe disease in COVID-19 participants. The inverse variance-weighted (IVW) method was used as the primary analysis method, supplemented by the weighted-median (WM), MR-Egger, and MR-PRESSO methods. Results were adjusted for Bonferroni correction thresholds. RESULTS The forward MR estimates show no effect of thyroid dysfunction on COVID-19 susceptibility and severity. The reverse MR found that COVID-19 susceptibility was the suggestive risk factor for hypothyroidism (IVW: OR = 1.577, 95% CI = 1.065-2.333, P = 0.022; WM: OR = 1.527, 95% CI = 1.042-2.240, P = 0.029), and there was lightly association between COVID-19 hospitalized and hypothyroidism (IVW: OR = 1.151, 95% CI = 1.004-1.319, P = 0.042; WM: OR = 1.197, 95% CI = 1.023-1.401, P = 0.023). There was no evidence supporting the association between any phenotype of COVID-19 and hyperthyroidism. CONCLUSION Our results identified that COVID-19 might be the potential risk factor for hypothyroidism. Therefore, patients infected with SARS-CoV-2 should strengthen the monitoring of thyroid function.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
| | - Tian Fang
- Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yonggang Lv
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
- *Correspondence: Yonggang Lv,
| |
Collapse
|