1
|
Berthén NC, Cronhjort S, Nordberg M, Lindgren PE, Larsson M, Wilhelmsson P, Sjöwall J. The AxBioTick study - immune gene expression signatures in human skin bitten by Borrelia-infected versus non-infected ticks. BMC Infect Dis 2024; 24:1422. [PMID: 39695466 DOI: 10.1186/s12879-024-10279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Borrelia infection is caused by Borrelia burgdorferi sensu lato and transmitted by Ixodes ricinus ticks, a common tick-borne infection in Northern Europe. The establishment of Borrelia infection depends on transmission of the spirochetes, as well as the immune response generated in the skin after a bite. Here we aim to investigate the local immune response in the skin after a tick bite and assess the possible direct effects of Borrelia, by applying gene expression analysis of the immune response in skin exposed to Borrelia-infected and non-infected ticks, respectively. METHODS Skin biopsies from the study participants were taken 7-10 days after the tick-bite. The ticks and skin biopsies were analysed by real-time PCR for Borrelia spp. and other tick-borne pathogens. Dermal transcriptome profiles derived from RNA sequencing with focus on immune system regulation were created. In addition, we performed enrichment analysis of dermal transcriptome profiles with focus on immune system regulation. RESULTS Skin biopsies exposed to a Borrelia-positive tick induced an overall higher expression of immune-related genes. Cytokines involved in the regulation of T-cell and macrophage activation, pro-inflammatory regulators and Toll-like receptor 2, 3 and 7 involved in pathogen recognition were upregulated in skin exposed to Borrelia, although Borrelia DNA was not detected in the biopsies. CONCLUSION The evidence of upregulation of genes in Borrelia exposed skin suggests an influence on the immune system of ticks and spirochetes. Characterization of Borrelia-associated gene expression signatures in the skin could contribute to future diagnostics and increase our understanding of the development of various manifestations of Borrelia infection.
Collapse
Affiliation(s)
| | - Samuel Cronhjort
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marika Nordberg
- The Borrelia Research Group of the Åland Islands, the Åland Islands, Mariehamn, Finland
- Åland's Health Care, the Åland Islands, Mariehamn, Finland
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Laboratory Medicine, Department of Clinical Microbiology, Region Jönköping County, Jönköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Wilhelmsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Laboratory Medicine, Department of Clinical Microbiology, Region Jönköping County, Jönköping, Sweden
| | - Johanna Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Boulanger N, Insonere JLM, Van Blerk S, Barthel C, Serres C, Rais O, Roulet A, Servant F, Duron O, Lelouvier B. Cross-alteration of murine skin and tick microbiome concomitant with pathogen transmission after Ixodes ricinus bite. MICROBIOME 2023; 11:250. [PMID: 37952001 PMCID: PMC10638774 DOI: 10.1186/s40168-023-01696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Ticks are major vectors of diseases affecting humans such as Lyme disease or domestic animals such as anaplasmosis. Cross-alteration of the vertebrate host skin microbiome and the tick microbiome may be essential during the process of tick feeding and for the mechanism of pathogen transmission. However, it has been poorly investigated. METHODS We used mice bitten by field-collected ticks (nymphs and adult ticks) in different experimental conditions to investigate, by 16S rRNA gene metabarcoding, the impact of blood feeding on both the mouse skin microbiome and the tick microbiome. We also investigated by PCR and 16S rRNA gene metabarcoding, the diversity of microorganisms transmitted to the host during the process of tick bite at the skin interface and the dissemination of the pathogen in host tissues (blood, heart, and spleen). RESULTS Most of the commensal bacteria present in the skin of control mice were replaced during the blood-feeding process by bacteria originating from the ticks. The microbiome of the ticks was also impacted by the blood feeding. Several pathogens including tick-borne pathogens (Borrelia/Borreliella, Anaplasma, Neoehrlichia, Rickettsia) and opportunistic bacteria (Williamsia) were transmitted to the skin microbiome and some of them disseminated to the blood or spleen of the mice. In the different experiments of this study, skin microbiome alteration and Borrelia/Borreliella transmission were different depending on the tick stages (nymphs or adult female ticks). CONCLUSIONS Host skin microbiome at the bite site was deeply impacted by the tick bite, to an extent which suggests a role in the tick feeding, in the pathogen transmission, and a potentially important impact on the skin physiopathology. The diversified taxonomic profiles of the tick microbiome were also modified by the blood feeding. Video Abstract.
Collapse
Affiliation(s)
- Nathalie Boulanger
- UR7290: Virulence bactérienne précoce: groupe Borrelia, FMTS, University of Strasbourg, Strasbourg, France.
| | | | | | - Cathy Barthel
- UR7290: Virulence bactérienne précoce: groupe Borrelia, FMTS, University of Strasbourg, Strasbourg, France
| | - Céline Serres
- Vaiomer, 516 rue Pierre et Marie Curie, 31670, Labège, France
| | - Olivier Rais
- Laboratoire d'écologie et d'épidémiologie parasitaires Institut de Biologie, University of Neuchatel, 2000, Neuchâtel, Switzerland
| | - Alain Roulet
- Vaiomer, 516 rue Pierre et Marie Curie, 31670, Labège, France
| | | | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), 911 Avenue Agropolis, 34394, Montpellier, France
| | | |
Collapse
|
3
|
Baquer F, Jaulhac B, Barthel C, Paz M, Wolfgramm J, Müller A, Boulanger N, Grillon A. Skin microbiota secretomes modulate cutaneous innate immunity against Borrelia burgdorferi s.s. Sci Rep 2023; 13:16393. [PMID: 37773515 PMCID: PMC10541882 DOI: 10.1038/s41598-023-43566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
In Lyme borreliosis, the skin constitutes a major interface for the host, the bacteria and the tick. Skin immunity is provided by specialized immune cells but also by the resident cells: the keratinocytes and the fibroblasts. Discoveries on the role of the microbiome in the modulation of skin inflammation and immunity have reinforced the potential importance of the skin in vector-borne diseases. In this study, we analyzed in vitro the interaction of human primary keratinocytes and fibroblasts with Borrelia burgdorferi sensu stricto N40 in presence or absence of bacterial commensal supernatants. We aimed to highlight the role of resident skin cells and skin microbiome on the inflammation induced by B. burgdorferi s.s.. The secretomes of Staphylococcus epidermidis, Corynebacterium striatum and Cutibacterium acnes showed an overall increase in the expression of IL-8, CXCL1, MCP-1 and SOD-2 by fibroblasts, and of IL-8, CXCL1, MCP-1 and hBD-2 in the undifferentiated keratinocytes. Commensal bacteria showed a repressive effect on the expression of IL-8, CXCL1 and MCP-1 by differentiated keratinocytes. Besides the inflammatory effect observed in the presence of Borrelia on all cell types, the cutaneous microbiome appears to promote a rapid innate response of resident skin cells during the onset of Borrelia infection.
Collapse
Affiliation(s)
- F Baquer
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Laboratory of Bacteriology, Strasbourg University Hospital, 67000, Strasbourg, France.
| | - B Jaulhac
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
- Laboratory of Bacteriology, Strasbourg University Hospital, 67000, Strasbourg, France
- French National Reference Center for Borrelia, Strasbourg University Hospital, 67000, Strasbourg, France
| | - C Barthel
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
| | - M Paz
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
| | - J Wolfgramm
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
| | - A Müller
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
| | - N Boulanger
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
- French National Reference Center for Borrelia, Strasbourg University Hospital, 67000, Strasbourg, France
| | - A Grillon
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
- Laboratory of Bacteriology, Strasbourg University Hospital, 67000, Strasbourg, France
- French National Reference Center for Borrelia, Strasbourg University Hospital, 67000, Strasbourg, France
| |
Collapse
|
4
|
Ajendra J, Allen JE. Neutrophils: Friend or Foe in Filariasis? Parasite Immunol 2022; 44:e12918. [DOI: 10.1111/pim.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital of Bonn Bonn Germany
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science Center University of Manchester Manchester UK
| |
Collapse
|
5
|
The infectivity gene bbk13 is important for multiple phases of the Borrelia burgdorferi enzootic cycle. Infect Immun 2021; 89:e0021621. [PMID: 34181460 PMCID: PMC8445180 DOI: 10.1128/iai.00216-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease is a multistage inflammatory disease caused by the spirochete Borrelia burgdorferi transmitted through the bite of an infected Ixodes scapularis tick. We previously discovered a B. burgdorferi infectivity gene, bbk13, that facilitates mammalian infection by promoting spirochete population expansion in the skin inoculation site. Initial characterization of bbk13 was carried out using an intradermal needle inoculation model of mouse infection, which does not capture the complex interplay of the pathogen-vector-host triad of natural transmission. Here, we aimed to understand the role of bbk13 in the enzootic cycle of B. burgdorferi. B. burgdorferi spirochetes lacking bbk13 were unable to be acquired by naive larvae fed on needle-inoculated mice. Using a capsule feeding approach to restrict tick feeding activity to a defined skin site, we determined that delivery by tick bite alleviated the population expansion defect in the skin observed after needle inoculation of Δbbk13B. burgdorferi. Despite overcoming the early barrier in the skin, Δbbk13B. burgdorferi remained attenuated for distal tissue colonization after tick transmission. Disseminated infection by Δbbk13B. burgdorferi was improved in needle-inoculated immunocompromised mice. Together, we established that bbk13 is crucial to the maintenance of B. burgdorferi in the enzootic cycle and that bbk13 is necessary beyond early infection in the skin, likely contributing to host immune evasion. Moreover, our data highlight the critical interplay between the pathogen, vector, and host as well as the distinct molecular genetic requirements for B. burgdorferi to survive at the pathogen-vector-host interface and achieve productive disseminated infection.
Collapse
|
6
|
Abstract
With one exception (epidemic relapsing fever), borreliae are obligately maintained in nature by ticks. Although some Borrelia spp. may be vertically transmitted to subsequent generations of ticks, most require amplification by a vertebrate host because inheritance is not stable. Enzootic cycles of borreliae have been found globally; those receiving the most attention from researchers are those whose vectors have some degree of anthropophily and, thus, cause zoonoses such as Lyme disease or relapsing fever. To some extent, our views on the synecology of the borreliae has been dominated by an applied focus, viz., analyses that seek to understand the elements of human risk for borreliosis. But, the elements of borrelial perpetuation do not necessarily bear upon risk, nor do our concepts of risk provide the best structure for analyzing perpetuation. We identify the major global themes for the perpetuation of borreliae, and summarize local variations on those themes, focusing on key literature to outline the factors that serve as the basis for the distribution and abundance of borreliae.
Collapse
Affiliation(s)
- Sam R. Telford
- Dept of Infectious Disease and Global Health, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Heidi K. Goethert
- Dept of Infectious Disease and Global Health, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
7
|
Lefeuvre B, Cantero P, Ehret-Sabatier L, Lenormand C, Barthel C, Po C, Parveen N, Grillon A, Jaulhac B, Boulanger N. Effects of topical corticosteroids and lidocaine on Borrelia burgdorferi sensu lato in mouse skin: potential impact to human clinical trials. Sci Rep 2020; 10:10552. [PMID: 32601348 PMCID: PMC7324597 DOI: 10.1038/s41598-020-67440-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Lyme borreliosis is the most prevalent vector-borne disease in northern hemisphere. Borrelia burgdorferi sensu lato spirochetes are transmitted by Ixodes species ticks. During a blood meal, these spirochetes are inoculated into the skin where they multiply and often spread to various target organs: disseminated skin sites, the central nervous system, the heart and large joints. The usual diagnosis of this disease relies on serological tests. However, in patients presenting persistent clinical manifestations, this indirect diagnosis is not capable of detecting an active infection. If the serological tests are positive, it only proves that exposure of an individual to Lyme spirochetes had occurred. Although culture and quantitative PCR detect active infection, currently used tests are not sensitive enough for wide-ranging applications. Animal models have shown that B. burgdorferi persists in the skin. We present here our targeted proteomics results using infected mouse skin biopsies that facilitate detection of this pathogen. We have employed several novel approaches in this study. First, the effect of lidocaine, a local anesthetic used for human skin biopsy, on B. burgdorferi presence was measured. We further determined the impact of topical corticosteroids to reactivate Borrelia locally in the skin. This local immunosuppressive compound helps follow-up detection of spirochetes by proteomic analysis of Borrelia present in the skin. This approach could be developed as a novel diagnostic test for active Lyme borreliosis in patients presenting disseminated persistent infection. Although our results using topical corticosteroids in mice are highly promising for recovery of spirochetes, further optimization will be needed to translate this strategy for diagnosis of Lyme disease in patients.
Collapse
Affiliation(s)
- Bastien Lefeuvre
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
| | - Paola Cantero
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Cedric Lenormand
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
- Clinique dermatologique, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Cathy Barthel
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
| | - Chrystelle Po
- ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg, 67000, Strasbourg, France
| | - Nikhat Parveen
- Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, ICPH Building, 225 Warren Street, Newark, NJ, 07103, USA
| | - Antoine Grillon
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
| | - Benoit Jaulhac
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France
- French National Reference Center on Lyme borreliosis, Centre Hospitalier Régional Uinversitaire de Strasbourg, 67000, Strasbourg, France
| | - Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Virulence bactérienne précoce-groupe Borrelia, Université de Strasbourg, 67000, Strasbourg, France.
- French National Reference Center on Lyme borreliosis, Centre Hospitalier Régional Uinversitaire de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
8
|
Liang L, Wang J, Schorter L, Nguyen Trong TP, Fell S, Ulrich S, Straubinger RK. Rapid clearance of Borrelia burgdorferi from the blood circulation. Parasit Vectors 2020; 13:191. [PMID: 32312278 PMCID: PMC7171858 DOI: 10.1186/s13071-020-04060-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/01/2020] [Indexed: 12/02/2022] Open
Abstract
Background Borrelia burgdorferi is a tick-borne spirochete that causes Lyme borreliosis (LB). After an initial tick bite, it spreads from the deposition site in the dermis to distant tissues of the host. It is generally believed that this spirochete disseminates via the hematogenous route. Borrelia persica causes relapsing fever and is able to replicate in the blood stream. Currently the exact dissemination pathway of LB pathogens in the host is not known and controversially discussed. Methods In this study, we established a strict intravenous infection murine model using host-adapted spirochetes. Survival capacity and infectivity of host-adapted B. burgdorferi sensu stricto (Bbss) were compared to those of B. persica (Bp) after either intradermal (ID) injection into the dorsal skin of immunocompetent mice or strict intravenous (IV) inoculation via the jugular vein. By in vitro culture and PCR, viable spirochetes and their DNA load in peripheral blood were periodically monitored during a 49/50-day course post-injection, as well as in various tissue samples collected at day 49/50. Specific antibodies in individual plasma/serum samples were detected with serological methods. Results Regardless of ID or IV injection, DNA of Bp was present in blood samples up to day 24 post-challenge, while no Bbss was detectable in the blood circulation during the complete observation period. In contrast to the brain tropism of Bp, Bbss spirochetes were found in ear, skin, joint, bladder, and heart tissue samples of only ID-inoculated mice. All tested tissues collected from IV-challenged mice were negative for traces of Bbss. ELISA testing of serum samples showed that Bp induced gradually increasing antibody levels after ID or IV inoculation, while Bbss did so only after ID injection but not after IV inoculation. Conclusions This study allows us to draw the following conclusions: (i) Bp survives in the blood and disseminates to the host’s brain via the hematogenous route; and (ii) Bbss, in contrast, is cleared rapidly from the blood stream and is a tissue-bound spirochete.![]()
Collapse
Affiliation(s)
- Liucun Liang
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Jinyong Wang
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA.,Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, People's Republic of China
| | - Lucas Schorter
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Thu Phong Nguyen Trong
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Shari Fell
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany.,Chemisches Veterinäruntersuchungsamt Sigmaringen, Fidelis-Graf-Straße 1, 72488, Sigmaringen, Germany
| | - Sebastian Ulrich
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Reinhard K Straubinger
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany.
| |
Collapse
|
9
|
Bernard Q, Grillon A, Lenormand C, Ehret-Sabatier L, Boulanger N. Skin Interface, a Key Player for Borrelia Multiplication and Persistence in Lyme Borreliosis. Trends Parasitol 2020; 36:304-314. [PMID: 32007396 DOI: 10.1016/j.pt.2019.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 01/01/2023]
Abstract
The skin plays a key role in vector-borne diseases because it is the site where the arthropod coinoculates pathogens and its saliva. Lyme borreliosis, particularly well investigated in this context, is a multisystemic infectious disease caused by Borrelia burgdorferi sensu lato and transmitted by the hard tick Ixodes. Numerous in vitro studies were conducted to better understand the role of specific skin cells and tick saliva in host defense, vector feeding, and pathogen transmission. The skin was also evidenced in various animal models as the site of bacterial multiplication and persistence. We present the achievements in this field as well as the gaps that impede comprehensive knowledge of the disease pathophysiology and the development of efficient diagnostic tools and vaccines in humans.
Collapse
Affiliation(s)
- Quentin Bernard
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France
| | - Antoine Grillon
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France
| | - Cédric Lenormand
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France; Clinique Dermatologique, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Nathalie Boulanger
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France; French National Reference Center on Lyme Borreliosis, CHRU, F-67000 Strasbourg, France.
| |
Collapse
|
10
|
Genné D, Sarr A, Rais O, Voordouw MJ. Competition Between Strains of Borrelia afzelii in Immature Ixodes ricinus Ticks Is Not Affected by Season. Front Cell Infect Microbiol 2019; 9:431. [PMID: 31921706 PMCID: PMC6930885 DOI: 10.3389/fcimb.2019.00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Vector-borne pathogens often consist of genetically distinct strains that can establish co-infections in the vertebrate host and the arthropod vector. Co-infections (or mixed infections) can result in competitive interactions between strains with important consequences for strain abundance and transmission. Here we used the spirochete bacterium, Borrelia afzelii, as a model system to investigate the interactions between strains inside its tick vector, Ixodes ricinus. Larvae were fed on mice infected with either one or two strains of B. afzelii. Engorged larvae were allowed to molt into nymphs that were subsequently exposed to three seasonal treatments (artificial summer, artificial winter, and natural winter), which differed in temperature and light conditions. We used strain-specific qPCRs to quantify the presence and abundance of each strain in the immature ticks. Co-infection in the mice reduced host-to-tick transmission to larval ticks and this effect was maintained in the resultant nymphs at 1 and 4 months after the larva-to-nymph molt. Competition between strains in co-infected ticks reduced the abundance of both strains. This inter-strain competition occurred in the three life stages that we investigated: engorged larvae, recently molted nymphs, and overwintered nymphs. The abundance of B. afzelii in the nymphs declined by 40.5% over a period of 3 months, but this phenomenon was not influenced by the seasonal treatment. Future studies should investigate whether inter-strain competition in the tick influences the subsequent strain-specific transmission success from the tick to the vertebrate host.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Maternal Antibodies Provide Bank Voles with Strain-Specific Protection against Infection by the Lyme Disease Pathogen. Appl Environ Microbiol 2019; 85:AEM.01887-19. [PMID: 31540991 DOI: 10.1128/aem.01887-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Multistrain microbial pathogens often induce strain-specific antibody responses in their vertebrate hosts. Mothers can transmit antibodies to their offspring, which can provide short-term, strain-specific protection against infection. Few experimental studies have investigated this phenomenon for multiple strains of zoonotic pathogens occurring in wildlife reservoir hosts. The tick-borne bacterium Borrelia afzelii causes Lyme disease in Europe and consists of multiple strains that cycle between the tick vector (Ixodes ricinus) and vertebrate hosts, such as the bank vole (Myodes glareolus). We used a controlled experiment to show that female bank voles infected with B. afzelii via tick bite transmit protective antibodies to their offspring. To test the specificity of protection, the offspring were challenged using a natural tick bite challenge with either the maternal strain to which the mothers had been exposed or a different strain. The maternal antibodies protected the offspring against a homologous infectious challenge but not against a heterologous infectious challenge. The offspring from the uninfected control mothers were equally susceptible to both strains. Borrelia outer surface protein C (OspC) is an antigen that is known to induce strain-specific immunity. Maternal antibodies in the offspring reacted more strongly with homologous than with heterologous recombinant OspC, but other antigens may also mediate strain-specific immunity. Our study shows that maternal antibodies provide strain-specific protection against B. afzelii in an ecologically important rodent reservoir host. The transmission of maternal antibodies may have important consequences for the epidemiology of multistrain pathogens in nature.IMPORTANCE Many microbial pathogen populations consist of multiple strains that induce strain-specific antibody responses in their vertebrate hosts. Females can transmit these antibodies to their offspring, thereby providing them with short-term strain-specific protection against microbial pathogens. We investigated this phenomenon using multiple strains of the tick-borne microbial pathogen Borrelia afzelii and its natural rodent reservoir host, the bank vole, as a model system. We found that female bank voles infected with B. afzelii transmitted to their offspring maternal antibodies that provided highly efficient but strain-specific protection against a natural tick bite challenge. The transgenerational transfer of antibodies could be a mechanism that maintains the high strain diversity of this tick-borne pathogen in nature.
Collapse
|
12
|
Borrelia burgdorferi bbk13 Is Critical for Spirochete Population Expansion in the Skin during Early Infection. Infect Immun 2019; 87:IAI.00887-18. [PMID: 30782856 DOI: 10.1128/iai.00887-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
Lyme disease is caused by the spirochete Borrelia burgdorferi and is transmitted via the bite of an infected tick. B. burgdorferi enters the skin, disseminates via the bloodstream, and infects various distal tissues, leading to inflammatory sequelae, such as Lyme arthritis and Lyme carditis. B. burgdorferi linear plasmid 36 (lp36) is critical for mammalian infectivity; however, the full complement of genes on lp36 that contribute to this process remains unknown. Through a targeted mutagenesis screen of the genes on lp36, we identified a novel infectivity gene of unknown function, bbk13, which encodes an immunogenic, non-surface-exposed membrane protein that is important for efficient mammalian infection. Loss of bbk13 resulted in reduced spirochete loads in distal tissues in a mouse model of infection. Through a detailed analysis of B. burgdorferi infection kinetics, we discovered that bbk13 is important for promoting spirochete proliferation in the skin inoculation site. The attenuated ability of Δbbk13 spirochetes to proliferate in the inoculation site was followed by reduced numbers of B. burgdorferi spirochetes in the bloodstream and, ultimately, consistently reduced spirochete loads in distal tissues. Together, our data indicate that bbk13 contributes to disseminated infection by promoting spirochete proliferation in the early phase of infection in the skin. This work not only increases the understanding of the contribution of the genes on lp36 to B. burgdorferi infection but also begins to define the genetic basis for B. burgdorferi expansion in the skin during localized infection and highlights the influence of the early expansion of spirochetes in the skin on the outcome of infection.
Collapse
|
13
|
Boulanger N. [Immunomodulatory effect of tick saliva in pathogen transmission]. Biol Aujourdhui 2019; 212:107-117. [PMID: 30973140 DOI: 10.1051/jbio/2019001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Ticks are the most important vectors of pathogens in human and veterinary medicine. These strictly haematophagous acarines produce a saliva containing a variety of bioactive molecules affecting host pharmacology and immunity. This process is vital for hard ticks to prevent rejection by the host during the blood meal that lasts several days. All actors involved in the immunity interplay are impacted by this saliva, the innate immunity being represented by resident and migrating immune cells, as well as the T and B lymphocytes of the adaptive immune system. The skin plays a key role in vector-borne diseases. During the long co-evolution with the tick, the infectious agents benefit from this favorable environment to be transmitted efficiently into the skin and to multiply in the vertebrate host. Therefore, the saliva is an important virulence booster, which enhances substantially their pathogenicity.
Collapse
Affiliation(s)
- Nathalie Boulanger
- EA7290, Virulence Bactérienne Précoce, Groupe Borrelia, Facultés de Pharmacie et Médecine, Université de Strasbourg, Institut de bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France - Centre National de Référence Borrelia, Plateau technique de Microbiologie, CHRU Strasbourg, 1 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|
14
|
Sun Y, He L, Yu L, Guo J, Nie Z, Liu Q, Zhao J. Cathepsin L-a novel cysteine protease from Haemaphysalis flava Neumann, 1897. Parasitol Res 2019; 118:1581-1592. [PMID: 30826925 DOI: 10.1007/s00436-019-06271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Ixodid ticks are ectoparasites responsible for the transmission of a large number of bacterial, viral, and protozoan pathogens to animals and humans. As long-term blood-pool feeders, the digestion of host blood is critical to their development as well as to the establishment of the sexual cycle of hemoparasites such as Babesia parasites, the agents of human and animal babesiosis. Previous studies have demonstrated that cysteine proteases are involved in blood digestion, embryogenesis, and pathogen transmission in other species of ticks, but their characteristics and functions are still unidentified in Haemaphysalis flava. Here, we describe the characterization of a cysteine protease HfCL from H. flava. We show that HfCL belongs to the L-like papain family of proteases, exhibits high expression in nymphs and adults, and localizes to both the midgut and salivary glands. Biochemical assays using purified recombinant enzyme reveal that rHfCL can hydrolyze the fluorogenic substrate Z-phe-Arg-MCA with optimal activity detected at pH 6. Furthermore, the short-term growth assay indicates that rHfCL can inhibit the intraerythrocytic development of Babesia microti and Babesia gibsoni in vitro.
Collapse
Affiliation(s)
- Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agricultural, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agricultural, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agricultural, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agricultural, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agricultural, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agricultural, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agricultural, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Dissociating effect of salivary gland extract from Ixodes ricinus on human fibroblasts: Potential impact on Borrelia transmission. Ticks Tick Borne Dis 2018; 10:433-441. [PMID: 30595500 DOI: 10.1016/j.ttbdis.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Understanding the mechanism of pathogen transmission is essential for the development of strategies to reduce arthropod-borne diseases. The pharmaco- and immunomodulatory properties of insect and acarine saliva play an essential role in the efficiency of pathogen transmission. The skin as the site where arthropod saliva and pathogens are inoculated - represents the key interface in vector-borne diseases. We identified tick molecules potentially involved in pathogen transmission, using micro-HPLC and mass spectrometry, followed by in vitro assays on human skin cells. Histone H4 isolated from Ixodes ricinus salivary gland extract was identified as a molecule with a dissociating effect on human primary fibroblasts. This histone might be involved in the formation of the feeding pool formed around the tick mouthparts and responsible of tissue necrosis in the vertebrate host. Thanks to its selective antimicrobial activity, it may also sterilize the feeding pool and facilitate transmission of pathogens such as Borrelia burgdorferi sensu lato.
Collapse
|
16
|
Genné D, Sarr A, Gomez-Chamorro A, Durand J, Cayol C, Rais O, Voordouw MJ. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc Biol Sci 2018; 285:20181804. [PMID: 30381382 PMCID: PMC6235042 DOI: 10.1098/rspb.2018.1804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/08/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple-strain pathogens often establish mixed infections inside the host that result in competition between strains. In vector-borne pathogens, the competitive ability of strains must be measured in both the vertebrate host and the arthropod vector to understand the outcome of competition. Such studies could reveal the existence of trade-offs in competitive ability between different host types. We used the tick-borne bacterium Borrelia afzelii to test for competition between strains in the rodent host and the tick vector, and to test for a trade-off in competitive ability between these two host types. Mice were infected via tick bite with either one or two strains, and these mice were subsequently used to create ticks with single or mixed infections. Competition in the rodent host reduced strain-specific host-to-tick transmission and competition in the tick vector reduced the abundance of both strains. The strain that was competitively superior in host-to-tick transmission was competitively inferior with respect to bacterial abundance in the tick. This study suggests that in multiple-strain vector-borne pathogens there are trade-offs in competitive ability between the vertebrate host and the arthropod vector. Such trade-offs could play an important role in the coexistence of pathogen strains.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Andrea Gomez-Chamorro
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Claire Cayol
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
17
|
Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front Cell Infect Microbiol 2018; 8:98. [PMID: 29670860 PMCID: PMC5893795 DOI: 10.3389/fcimb.2018.00098] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Pierre H. Boyer
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Laurence Vial
- CIRAD BIOS, UMR15 CIRAD/Institut National de la Recherche Agronomique “Contrôle des Maladies Animales Exotiques et Emergentes,” Equipe “Vecteurs,” Campus International de Baillarguet, Montpellier, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
- Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
18
|
Curtis MW, Hahn BL, Zhang K, Li C, Robinson RT, Coburn J. Characterization of Stress and Innate Immunity Resistance of Wild-Type and Δ p66 Borrelia burgdorferi. Infect Immun 2018; 86:e00186-17. [PMID: 29158430 PMCID: PMC5778354 DOI: 10.1128/iai.00186-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
Borrelia burgdorferi is a causative agent of Lyme disease, the most common arthropod-borne disease in the United States. B. burgdorferi evades host immune defenses to establish a persistent, disseminated infection. Previous work showed that P66-deficient B. burgdorferi (Δp66) is cleared quickly after inoculation in mice. We demonstrate that the Δp66 strain is rapidly cleared from the skin inoculation site prior to dissemination. The rapid clearance of Δp66 bacteria is not due to inherent defects in multiple properties that might affect infectivity: bacterial outer membrane integrity, motility, chemotactic response, or nutrient acquisition. This led us to the hypothesis that P66 has a role in mouse cathelicidin-related antimicrobial peptide (mCRAMP; a major skin antimicrobial peptide) and/or neutrophil evasion. Neither wild-type (WT) nor Δp66 B. burgdorferi was susceptible to mCRAMP. To examine the role of neutrophil evasion, we administered neutrophil-depleting antibody anti-Ly6G (1A8) to C3H/HeN mice and subsequently monitored the course of B. burgdorferi infection. Δp66 mutants were unable to establish infection in neutrophil-depleted mice, suggesting that the important role of P66 during early infection is through another mechanism. Neutrophil depletion did not affect WT B. burgdorferi bacterial burdens in the skin (inoculation site), ear, heart, or tibiotarsal joint at early time points postinoculation. This was unexpected given that prior in vitro studies demonstrated neutrophils phagocytose and kill B. burgdorferi These data, together with our previous work, suggest that despite the in vitro ability of host innate defenses to kill B. burgdorferi, individual innate immune mechanisms have limited contributions to controlling early B. burgdorferi infection in the laboratory model used.
Collapse
Affiliation(s)
- Michael W Curtis
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Beth L Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kai Zhang
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Chunhao Li
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York, USA
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Identification of Borrelia protein candidates in mouse skin for potential diagnosis of disseminated Lyme borreliosis. Sci Rep 2017; 7:16719. [PMID: 29196626 PMCID: PMC5711925 DOI: 10.1038/s41598-017-16749-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
In vector-borne diseases, the skin plays an essential role in the transmission of vector-borne pathogens between the vertebrate host and blood-feeding arthropods and in pathogen persistence. Borrelia burgdorferi sensu lato is a tick-borne bacterium that causes Lyme borreliosis (LB) in humans. This pathogen may establish a long-lasting infection in its natural vertebrate host where it can persist in the skin and some other organs. Using a mouse model, we demonstrate that Borrelia targets the skin regardless of the route of inoculation, and can persist there at low densities that are difficult to detect via qPCR, but that were infective for blood-feeding ticks. Application of immunosuppressive dermocorticoids at 40 days post-infection (PI) significantly enhanced the Borrelia population size in the mouse skin. We used non-targeted (Ge-LC-MS/MS) and targeted (SRM-MS) proteomics to detect several Borrelia-specific proteins in the mouse skin at 40 days PI. Detected Borrelia proteins included flagellin, VlsE and GAPDH. An important problem in LB is the lack of diagnosis methods capable of detecting active infection in humans suffering from disseminated LB. The identification of Borrelia proteins in skin biopsies may provide new approaches for assessing active infection in disseminated manifestations.
Collapse
|
20
|
Rezkova M, Kopecky J. Anti-tumour necrosis factor activity in saliva of various tick species and its appearance during the feeding period. Folia Parasitol (Praha) 2017; 64. [PMID: 29063857 DOI: 10.14411/fp.2017.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Tumour necrosis factor (TNF) plays a central role in the inflammatory process. In the skin, it contributes to immune containment of tick-transmitted pathogens like Borrelia burgdorferi. In the saliva of some tick species, active compounds are present that inhibit detection of TNF in specific ELISA. We compared the presence of anti-TNF activity in saliva or salivary gland extract from 11 tick species from the family Ixodidae and demonstrated it in genera Ixodes Latreille, 1795 and Haemaphysalis Koch, 1844. Analysis of anti-TNF activity in Ixodes ricinus (Linnaeus, 1758) saliva during the feeding period showed that it is present in the late, rapid phase of engorgement. Significance of anti-TNF activity for tick feeding and transmission of tick-borne pathogens is discussed.
Collapse
Affiliation(s)
- Marketa Rezkova
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jan Kopecky
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
21
|
Boyer PH, Boulanger N, Nebbak A, Collin E, Jaulhac B, Almeras L. Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus. PLoS One 2017; 12:e0185430. [PMID: 28950023 PMCID: PMC5614582 DOI: 10.1371/journal.pone.0185430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been demonstrated to be useful for tick identification at the species level. More recently, this tool has been successfully applied for the detection of bacterial pathogens directly in tick vectors. The present work has assessed the detection of Borrelia burgdorferi sensu lato in Ixodes ricinus tick vector by MALDI-TOF MS. To this aim, experimental infection model of I. ricinus ticks by B. afzelii was carried out and specimens collected in the field were also included in the study. Borrelia infectious status of I. ricinus ticks was molecularly controlled using half-idiosome to classify specimens. Among the 39 ticks engorged on infected mice, 14 were confirmed to be infected by B. afzelii. For field collection, 14.8% (n = 12/81) I. ricinus ticks were validated molecularly as infected by B. burgdorferi sl. To determine the body part allowing the detection of MS protein profile changes between non-infected and B. afzelii infected specimens, ticks were dissected in three compartments (i.e. 4 legs, capitulum and half-idiosome) prior to MS analysis. Highly reproducible MS spectra were obtained for I. ricinus ticks according to the compartment tested and their infectious status. However, no MS profile change was found when paired body part comparison between non-infected and B. afzelii infected specimens was made. Statistical analyses did not succeed to discover, per body part, specific MS peaks distinguishing Borrelia-infected from non-infected ticks whatever their origins, laboratory reared or field collected. Despite the unsuccessful of MALDI-TOF MS to classify tick specimens according to their B. afzelii infectious status, this proteomic tool remains a promising method for rapid, economic and accurate identification of tick species. Moreover, the singularity of MS spectra between legs and half-idiosome of I. ricinus could be used to reinforce this proteomic identification by submission of both these compartments to MS.
Collapse
Affiliation(s)
- Pierre H. Boyer
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| | - Amira Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection 19–21 Boulevard Jean Moulin, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Elodie Collin
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
| | - Benoit Jaulhac
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection 19–21 Boulevard Jean Moulin, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
22
|
The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant. Sci Rep 2017; 7:10740. [PMID: 28878331 PMCID: PMC5587732 DOI: 10.1038/s41598-017-11354-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Salp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T cells. Treatment with Salp15 results in the inhibition of early signaling events and the production of the autocrine growth factor, interleukin-2. The fate of the CD4 T cells activated in the presence of Salp15 or its long-term effects are, however, unknown. We now show that Salp15 binding to CD4 is persistent and induces a long-lasting immunomodulatory effect. The activity of Salp15 results in sustained diminished cross-antigenic antibody production even after interruption of the treatment with the protein. Transcriptionally, the salivary protein provokes an acute effect that includes known activation markers, such as Il2 or Cd44, and that fades over time. The long-term effects exerted by Salp15 do not involve the induction of either anergy traits nor increased populations of regulatory T cells. Similarly, the treatment with Salp15 does not result in B cell anergy or the generation of myeloid suppressor cells. However, Salp15 induces the increased expression of the ectoenzyme, CD73, in regulatory T cells and increased production of adenosine. Our study provides a profound characterization of the immunomodulatory activity of Salp15 and suggests that its long-term effects are due to the specific regulation of CD73.
Collapse
|
23
|
Hofmann H, Fingerle V, Hunfeld KP, Huppertz HI, Krause A, Rauer S, Ruf B. Cutaneous Lyme borreliosis: Guideline of the German Dermatology Society. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2017; 15:Doc14. [PMID: 28943834 PMCID: PMC5588623 DOI: 10.3205/000255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 02/07/2023]
Abstract
This guideline of the German Dermatology Society primarily focuses on the diagnosis and treatment of cutaneous manifestations of Lyme borreliosis. It has received consensus from 22 German medical societies and 2 German patient organisations. It is the first part of an AWMF (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.) interdisciplinary guideline: “Lyme Borreliosis – Diagnosis and Treatment, development stage S3”. The guideline is directed at physicians in private practices and clinics who treat Lyme borreliosis. Objectives of this guideline are recommendations for confirming a clinical diagnosis, recommendations for a stage-related laboratory diagnosis (serological detection of IgM and IgG Borrelia antibodies using the 2-tiered ELISA/immunoblot process, sensible use of molecular diagnostic and culture procedures) and recommendations for the treatment of the localised, early-stage infection (erythema migrans, erythema chronicum migrans, and borrelial lymphocytoma), the disseminated early-stage infection (multiple erythemata migrantia, flu-like symptoms) and treatment of the late-stage infection (acrodermatitis chronica atrophicans with and without neurological manifestations). In addition, an information sheet for patients containing recommendations for the prevention of Lyme borreliosis is attached to the guideline.
Collapse
Affiliation(s)
- Heidelore Hofmann
- Klinik für Dermatologie und Allergologie der TU München, München, Germany
| | - Volker Fingerle
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) Oberschleißheim, Germany
| | - Klaus-Peter Hunfeld
- Zentralinstitut für Labormedizin, Mikrobiologie & Krankenhaushygiene, Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | | | - Bernhard Ruf
- Klinik für Infektiologie Klinik St Georg, Leipzig, Germany
| | | |
Collapse
|
24
|
Belli A, Sarr A, Rais O, Rego ROM, Voordouw MJ. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts. Sci Rep 2017; 7:5006. [PMID: 28694446 PMCID: PMC5503982 DOI: 10.1038/s41598-017-05231-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Vector-borne pathogens establish systemic infections in host tissues to maximize transmission to arthropod vectors. Co-feeding transmission occurs when the pathogen is transferred between infected and naive vectors that feed in close spatiotemporal proximity on a host that has not yet developed a systemic infection. Borrelia afzelii is a tick-borne spirochete bacterium that causes Lyme borreliosis (LB) and is capable of co-feeding transmission. Whether ticks that acquire LB pathogens via co-feeding are actually infectious to vertebrate hosts has never been tested. We created nymphs that had been experimentally infected as larvae with B. afzelii via co-feeding or systemic transmission, and compared their performance over one complete LB life cycle. Co-feeding nymphs had a spirochete load that was 26 times lower than systemic nymphs but both nymphs were highly infectious to mice (i.e., probability of nymph-to-host transmission of B. afzelii was ~100%). The mode of transmission had no effect on the other infection phenotypes of the LB life cycle. Ticks that acquire B. afzelii via co-feeding transmission are highly infectious to rodents, and the resulting rodent infection is highly infectious to larval ticks. This is the first study to show that B. afzelii can use co-feeding transmission to complete its life cycle.
Collapse
Affiliation(s)
- Alessandro Belli
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ryan O M Rego
- Institute of Parasitology, ASCR, Biology Centre, Ceske Budejovice, Czech Republic
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
25
|
Bernard Q, Wang Z, Di Nardo A, Boulanger N. Interaction of primary mast cells with Borrelia burgdorferi (sensu stricto): role in transmission and dissemination in C57BL/6 mice. Parasit Vectors 2017; 10:313. [PMID: 28655322 PMCID: PMC5488306 DOI: 10.1186/s13071-017-2243-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Background Borrelia burgdorferi (sensulato), the causative agent of Lyme borreliosis is a bacterium transmitted by hard ticks, Ixodes spp. Bacteria are injected into the host skin during the tick blood meal with tick saliva. There, Borrelia and saliva interact together with skin cells such as keratinocytes, fibroblasts, mast cells and other specific immune cells before disseminating to target organs. Methods To study the role of mast cells in the transmission of Lyme borreliosis, we isolated mouse primary mast cells from bone marrow and incubated them in the presence of Borrelia burgdorferi (sensu stricto) and tick salivary gland extract. We further analyzed their potential role in vivo, in a mouse model of deficient in mast cells (Kitwsh−/− mice). Results To our knowledge, we report here for the first time the bacteria ability to induce the inflammatory response of mouse primary mast cells. We show that OspC, a major surface lipoprotein involved in the early transmission of Borrelia, induces the degranulation of primary mast cells but has a limited effect on the overall inflammatory response of these cells. In contrast, whole bacteria have an opposite effect. We also show that mast cell activation is significantly inhibited by tick salivary gland extract. Finally, we demonstrate that mast cells are likely not the only host cells involved in the early transmission and dissemination of Borrelia since the use of mast cell deficient Kitwsh−/− mice shows a limited impact on these two processes in the context of this mouse genetic background. Conclusions The absence of mast cells did not change the replication rate of Borrelia in the skin. However, in the absence of mast cells, Borrelia dissemination to the joints was faster. Mast cells do not control skin bacterial proliferation during primary infection and the establishment of the primary infection, as shown in the C57BL/6 mouse model studied. Nevertheless, the Borrelia induced cytotokine modulation on mast cells might be involved in long term and/or repeated infections and protect from Lyme borreliosis due to the development of a hypersensitivity to tick saliva. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2243-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quentin Bernard
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Present address: Department of Veterinary Medicine, University of Maryland, College Park, USA
| | - Zhenping Wang
- Department of Dermatology, University of California, San Diego, USA
| | - Anna Di Nardo
- Department of Dermatology, University of California, San Diego, USA
| | - Nathalie Boulanger
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France. .,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France.
| |
Collapse
|
26
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
27
|
Rynkiewicz EC, Brown J, Tufts DM, Huang CI, Kampen H, Bent SJ, Fish D, Diuk-Wasser MA. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasit Vectors 2017; 10:64. [PMID: 28166814 PMCID: PMC5292797 DOI: 10.1186/s13071-016-1964-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Wild hosts are commonly co-infected with complex, genetically diverse, pathogen communities. Competition is expected between genetically or ecologically similar pathogen strains which may influence patterns of coexistence. However, there is little data on how specific strains of these diverse pathogen species interact within the host and how this impacts pathogen persistence in nature. Ticks are the most common disease vector in temperate regions with Borrelia burgdorferi, the causative agent of Lyme disease, being the most common vector-borne pathogen in North America. Borrelia burgdorferi is a pathogen of high public health concern and there is significant variation in infection phenotype between strains, which influences predictions of pathogen dynamics and spread. Methods In a laboratory experiment, we investigated whether two closely-related strains of B. burgdorferi (sensu stricto) showed similar transmission phenotypes, how the transmission of these strains changed when a host was infected with one strain, re-infected with the same strain, or co-infected with two strains. Ixodes scapularis, the black-legged tick, nymphs were used to sequentially infect laboratory-bred Peromyscus leucopus, white-footed mice, with one strain only, homologous infection with the same stain, or heterologous infection with both strains. We used the results of this laboratory experiment to simulate long-term persistence and maintenance of each strain in a simple simulation model. Results Strain LG734 was more competitive than BL206, showing no difference in transmission between the heterologous infection groups and single-infection controls, while strain BL206 transmission was significantly reduced when strain LG734 infected first. The results of the model show that this asymmetry in competition could lead to extinction of strain BL206 unless there was a tick-to-host transmission advantage to this less competitive strain. Conclusions This asymmetric competitive interaction suggests that strain identity and the biotic context of co-infection is important to predict strain dynamics and persistence. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1964-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Julia Brown
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Danielle M Tufts
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Ching-I Huang
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Germany
| | - Stephen J Bent
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Durland Fish
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Maria A Diuk-Wasser
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA.
| |
Collapse
|
28
|
Novak EA, Sekar P, Xu H, Moon KH, Manne A, Wooten RM, Motaleb MA. The Borrelia burgdorferi CheY3 response regulator is essential for chemotaxis and completion of its natural infection cycle. Cell Microbiol 2016; 18:1782-1799. [PMID: 27206578 PMCID: PMC5116424 DOI: 10.1111/cmi.12617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/14/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022]
Abstract
Borrelia burgdorferi possesses a sophisticated and complex chemotaxis system, but how the organism utilizes this system in its natural enzootic life cycle is poorly understood. Of the three CheY chemotaxis response regulators in B. burgdorferi, we found that only deletion of cheY3 resulted in an altered motility and significantly reduced chemotaxis phenotype. Although ΔcheY3 maintained normal densities in unfed ticks, their numbers were significantly reduced in fed ticks compared with the parental or cheY3-complemented spirochetes. Importantly, mice fed upon by the ΔcheY3-infected ticks did not develop a persistent infection. Intravital confocal microscopy analyses discovered that the ΔcheY3 spirochetes were motile within skin, but appeared unable to reverse direction and perform the characteristic backward-forward motility displayed by the parental strain. Subsequently, the ΔcheY3 became 'trapped' in the skin matrix within days of inoculation, were cleared from the skin needle-inoculation site within 96 h post-injection and did not disseminate to distant tissues. Interestingly, although ΔcheY3 cells were cleared within 96 h post-injection, this attenuated infection elicited significant levels of B. burgdorferi-specific IgM and IgG. Taken together, these data demonstrate that cheY3-mediated chemotaxis is crucial for motility, dissemination and viability of the spirochete both within and between mice and ticks.
Collapse
Affiliation(s)
- Elizabeth A. Novak
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Padmapriya Sekar
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ki Hwan Moon
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Akarsh Manne
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Md. A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
29
|
Ghosh M, Sangwan N, Sangwan AK. Partial characterization of a novel anti-inflammatory protein from salivary gland extract of Hyalomma anatolicum anatolicum 77Acari: Ixodidae) ticks. Vet World 2016; 8:772-6. [PMID: 27065646 PMCID: PMC4825281 DOI: 10.14202/vetworld.2015.772-776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/16/2015] [Accepted: 05/23/2015] [Indexed: 11/16/2022] Open
Abstract
Aim: Hyalomma anatolicum anatolicum ticks transmit Theileria annulata, causative agent of tropical theileriosis to cattle and buffaloes causing a major economic loss in terms of production and mortality in tropical countries. Ticks have evolved several immune evading strategies to circumvent hosts’ rejection and achieve engorgement. Successful feeding of ticks relies on a pharmacy of chemicals located in their complex salivary glands and secreted saliva. These chemicals in saliva could inhibit host inflammatory responses through modulating cytokine secretion and detoxifying reactive oxygen species. Therefore, the present study was aimed to characterize anti-inflammatory peptides from salivary gland extract (SGE) of H. a. anatolicum ticks with a view that this information could be utilized in raising vaccines, designing synthetic peptides or peptidomimetics which can further be developed as novel therapeutics. Materials and Methods: Salivary glands were dissected out from partially fed adult female H. a. anatolicum ticks and homogenized under the ice to prepare SGE. Gel filtration chromatography was performed using Sephadex G-50 column to fractionate the crude extract. Protein was estimated in each fraction and analyzed for identification of anti-inflammatory activity. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) was run for further characterization of protein in desired fractions. Results: A novel 28 kDa protein was identified in H. a. anatolicum SGE with pronounced anti-inflammatory activity. Conclusion: Purification and partial characterization of H. a. anatolicum SGE by size-exclusion chromatography and SDS-PAGE depicted a 28 kDa protein with prominent anti-inflammatory activity.
Collapse
Affiliation(s)
- Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nirmal Sangwan
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Arun K Sangwan
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
30
|
Harder J. Tick saliva: paving the way for the stowawayBorrelia. Exp Dermatol 2015; 25:20-1. [DOI: 10.1111/exd.12882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Jürgen Harder
- Department of Dermatology; University Hospital of Schleswig-Holstein; Kiel Germany
| |
Collapse
|
31
|
Jacquet M, Durand J, Rais O, Voordouw MJ. Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen,Borrelia afzelii. Environ Microbiol 2015; 18:833-45. [DOI: 10.1111/1462-2920.13065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/20/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Jonas Durand
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| |
Collapse
|
32
|
Human Coinfection with Borrelia burgdorferi and Babesia microti in the United States. J Parasitol Res 2015; 2015:587131. [PMID: 26697208 PMCID: PMC4677215 DOI: 10.1155/2015/587131] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, and Babesia microti, a causative agent of babesiosis, are increasingly implicated in the growing tick-borne disease burden in the northeastern United States. These pathogens are transmitted via the bite of an infected tick vector, Ixodes scapularis, which is capable of harboring and inoculating a host with multiple pathogens simultaneously. Clinical presentation of the diseases is heterogeneous and ranges from mild flu-like symptoms to near-fatal cardiac arrhythmias. While the reason for the variability is not known, the possibility exists that concomitant infection with both B. burgdorferi and B. microti may synergistically increase disease severity. In an effort to clarify the current state of understanding regarding coinfection with B. burgdorferi and B. microti, in this review, we discuss the geographical distribution and pathogenesis of Lyme disease and babesiosis in the United States, the immunological response of humans to B. burgdorferi or B. microti infection, the existing knowledge regarding coinfection disease pathology, and critical factors that have led to ambiguity in the literature regarding coinfection, in order to eliminate confusion in future experimental design and investigation.
Collapse
|
33
|
Wei L, Huang C, Yang H, Li M, Yang J, Qiao X, Mu L, Xiong F, Wu J, Xu W. A potent anti-inflammatory peptide from the salivary glands of horsefly. Parasit Vectors 2015; 8:556. [PMID: 26496724 PMCID: PMC4619319 DOI: 10.1186/s13071-015-1149-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/07/2015] [Indexed: 01/11/2023] Open
Abstract
Background A diverse group of physiologically active peptides/proteins are present in the salivary glands of horsefly Tabanus yao (Diptera, Tabanidae) that facilitate acquisition of blood meal. However, their roles in the regulation of local inflammation remains poorly understood. Methods Induction expression profiles of immune-related molecules in the salivary glands of T. yao was analyzed by quantitative PCR (qPCR) after bacterial feeding. A significantly up-regulated molecule (cecropin-TY1) was selected for anti-inflammatory assay in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. The transcription levels of inducible NO synthase (iNOS) and pro-inflammatory cytokines were quantified by qPCR. Nitric oxide (NO) production was determined by Griess reagent. Pro-inflammatory cytokine production was determined by an enzyme-linked immunosorbent assay (ELISA). The inflammatory signals were assayed by Western blotting analysis. The secondary structure of cecropin-TY1 was measured by Circular dichroism (CD) spectroscopy. Interaction of cecropin-TY1 with LPS was evaluated by the dissociation of fluorescein isothiocyanate (FITC)-conjugated LPS aggregates and neutralization of LPS determined by a quantitative Chromogenic End-point Tachypleus amebocyte lysate (TAL) assay kit. Homology modeled structure analysis and mutation of key residues/structures were performed to understand its structure-activity relationship. Results Cecropin-TY1 was demonstrated to possess high anti-inflammatory activity and low cytotoxicity toward mouse macrophages. In LPS-stimulated mouse peritoneal macrophage, addition of cecropin-TY1 significantly inhibited the production of nitric oxide (NO) and pro-inflammatory cytokines. Further study revealed that cecropin-TY1 inhibited inflammatory cytokine production by blocking activation of mitogen-activated protein kinases (MAPKs) and transcriptional nuclear factor-κB (NF-κB) signals. Cecropin-TY1 even interacted with LPS and neutralized LPS. The secondary structure analysis revealed that cecropin-TY1 adopted unordered structures in hydrophobic environment but converted to α-helical confirmation in membrane mimetic environments. Homology modeled structure analysis demonstrated that cecropin-TY1 adopted two α-helices (Leu3-Thr24, Ile27-Leu38) linked by a hinge (Leu25-Pro26) and the structure surface was partly positively charged. Structure-activity relationship analysis indicated that several key residues/structures are crucial for its anti-inflammatory activity including α-helices, aromatic residue Trp2, positively charged residues Lys and Arg, hinge residue Pro26 and N-terminal amidation. Conclusions We found a novel anti-inflammatory function of horsefly-derived cecropin-TY1 peptide, laying groundwork for better understanding the ectoparasite-host interaction of horsefly with host and highlighting its potency in anti-inflammatory therapy for sepsis and endotoxin shock caused by Gram-negative bacterial infections. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1149-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.
| | - Chunjing Huang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan Province, China.
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.
| | - Juanjuan Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Xue Qiao
- Institute of Marine Biological Technology, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan Province, China.
| | - Fei Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan Province, China.
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
34
|
Bernard Q, Gallo RL, Jaulhac B, Nakatsuji T, Luft B, Yang X, Boulanger N. Ixodes tick saliva suppresses the keratinocyte cytokine response to TLR2/TLR3 ligands during early exposure to Lyme borreliosis. Exp Dermatol 2015; 25:26-31. [PMID: 26307945 DOI: 10.1111/exd.12853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Ixodes hard tick induces skin injury by its sophisticated biting process. Its saliva plays a key role to enable an efficient blood meal that lasts for several days. We hypothesized that this feeding process may also be exploited by pathogens to facilitate their transmission, especially in the context of arthropod-borne diseases. To test this, we used Lyme borreliosis as a model. This bacterial infection is caused by Borrelia burgdorferi sensu lato transmitted by Ixodes. We co-incubated Borrelia with human keratinocytes in the presence of poly (I: C), a dsRNA TLR3 agonist generated by skin injury. This induced a strong cytokine response from human primary keratinocytes that was much greater than that induced by Borrelia alone. OspC, a TLR2/1 agonist and a major surface lipoprotein of Borrelia also amplified the process. Interestingly, tick saliva inhibited cytokine responses by keratinocytes to these TLR agonists. We propose that Borrelia uses the immunoprivileged site produced by tick saliva to facilitate its transmission.
Collapse
Affiliation(s)
- Quentin Bernard
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Benoît Jaulhac
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Benjamin Luft
- Department of Medicine, State University of New York, Stony Brook, NY, USA
| | - Xiahoua Yang
- Department of Medicine, State University of New York, Stony Brook, NY, USA
| | - Nathalie Boulanger
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
35
|
Kern A, Schnell G, Bernard Q, Bœuf A, Jaulhac B, Collin E, Barthel C, Ehret-Sabatier L, Boulanger N. Heterogeneity of Borrelia burgdorferi Sensu Stricto Population and Its Involvement in Borrelia Pathogenicity: Study on Murine Model with Specific Emphasis on the Skin Interface. PLoS One 2015. [PMID: 26197047 PMCID: PMC4510351 DOI: 10.1371/journal.pone.0133195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lyme disease is a multisystemic disorder caused by B. burgdorferi sl. The molecular basis for specific organ involvement is poorly understood. The skin plays a central role in the development of Lyme disease as the entry site of B. burgdorferi in which specific clones are selected before dissemination. We compared the skin inflammatory response (antimicrobial peptides, cytokines and chemokines) elicited by spirochete populations recovered from patients presenting different clinical manifestations. Remarkably, these spirochete populations induced different inflammatory profiles in the skin of C3H/HeN mice. As spirochete population transmitted into the host skin is heterogeneous, we isolated one bacterial clone from a population recovered from a patient with neuroborreliosis and compared its virulence to the parental population. This clone elicited a strong cutaneous inflammatory response characterized by MCP-1, IL-6 and antimicrobial peptides induction. Mass spectrometry of this clone revealed 110 overexpressed proteins when compared with the parental population. We further focused on the expression of nine bacterial surface proteins. bb0347 coding for a protein that interacts with host fibronectin, allowing bacterial adhesion to vascular endothelium and extracellular matrix, was found to be induced in host skin with another gene bb0213 coding for a hypothetical protein. These findings demonstrate the heterogeneity of the B. burgdorferi ss population and the complexity of the interaction involved early in the skin.
Collapse
Affiliation(s)
- Aurélie Kern
- EA7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de médecine et de pharmacie, Université de Strasbourg, Strasbourg, France
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Gilles Schnell
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, CNRS, UMR7178, Strasbourg, France
| | - Quentin Bernard
- EA7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de médecine et de pharmacie, Université de Strasbourg, Strasbourg, France
| | - Amandine Bœuf
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, CNRS, UMR7178, Strasbourg, France
| | - Benoît Jaulhac
- EA7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de médecine et de pharmacie, Université de Strasbourg, Strasbourg, France
| | - Elody Collin
- EA7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de médecine et de pharmacie, Université de Strasbourg, Strasbourg, France
| | - Cathy Barthel
- EA7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de médecine et de pharmacie, Université de Strasbourg, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, CNRS, UMR7178, Strasbourg, France
| | - Nathalie Boulanger
- EA7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de médecine et de pharmacie, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
36
|
Lieskovská J, Páleníková J, Langhansová H, Campos Chagas A, Calvo E, Kotsyfakis M, Kopecký J. Tick sialostatins L and L2 differentially influence dendritic cell responses to Borrelia spirochetes. Parasit Vectors 2015; 8:275. [PMID: 25975355 PMCID: PMC4436792 DOI: 10.1186/s13071-015-0887-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/06/2015] [Indexed: 12/02/2022] Open
Abstract
Background Transmission of pathogens by ticks is greatly supported by tick saliva released during feeding. Dendritic cells (DC) act as immunological sentinels and interconnect the innate and adaptive immune system. They control polarization of the immune response towards Th1 or Th2 phenotype. We investigated whether salivary cystatins from the hard tick Ixodes scapularis, sialostatin L (Sialo L) and sialostatin L2 (Sialo L2), influence mouse dendritic cells exposed to Borrelia burgdorferi and relevant Toll-like receptor ligands. Methods DCs derived from bone-marrow by GM-CSF or Flt-3 ligand, were activated with Borrelia spirochetes or TLR ligands in the presence of 3 μM Sialo L and 3 μM Sialo L2. Produced chemokines and IFN-β were measured by ELISA test. The activation of signalling pathways was tested by western blotting using specific antibodies. The maturation of DC was determined by measuring the surface expression of CD86 by flow cytometry. Results We determined the effect of cystatins on the production of chemokines in Borrelia-infected bone-marrow derived DC. The production of MIP-1α was severely suppressed by both cystatins, while IP-10 was selectively inhibited only by Sialo L2. As TLR-2 is a major receptor activated by Borrelia spirochetes, we tested whether cystatins influence signalling pathways activated by TLR-2 ligand, lipoteichoic acid (LTA). Sialo L2 and weakly Sialo L attenuated the extracellular matrix-regulated kinase (Erk1/2) pathway. The activation of phosphatidylinositol-3 kinase (PI3K)/Akt pathway and nuclear factor-κB (NF-κB) was decreased only by Sialo L2. In response to Borrelia burgdorferi, the activation of Erk1/2 was impaired by Sialo L2. Production of IFN-β was analysed in plasmacytoid DC exposed to Borrelia, TLR-7, and TLR-9 ligands. Sialo L, in contrast to Sialo L2, decreased the production of IFN-β in pDC and also impaired the maturation of these cells. Conclusions This study shows that DC responses to Borrelia spirochetes are affected by tick cystatins. Sialo L influences the maturation of DC thus having impact on adaptive immune response. Sialo L2 affects the production of chemokines potentially engaged in the development of inflammatory response. The impact of cystatins on Borrelia growth in vivo is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0887-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaroslava Lieskovská
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Jana Páleníková
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Jan Kopecký
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| |
Collapse
|
37
|
Saito TB, Walker DH. A Tick Vector Transmission Model of Monocytotropic Ehrlichiosis. J Infect Dis 2015; 212:968-77. [PMID: 25737562 DOI: 10.1093/infdis/jiv134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/13/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ehrlichioses are emerging, tick-borne diseases distributed worldwide. Previously established animal models use needle inoculation as a mode of infection; however, there is limited representation of natural transmission in artificially inoculated models compared with transmission by the tick vector. The objective of this study was to develop a tick vector transmission animal model of ehrlichial infection using a human pathogen, Ehrlichia muris-like agent (EMLA). METHODS Ixodes scapularis larvae were fed on EMLA-infected mice, and after molting, infected nymphs were used to infest naive animals. RESULTS Ehrlichiae were acquired by 90%-100% of feeding larvae. The majority of animals fed upon by infected nymphs developed sublethal infection with 27% lethality. Bacteria disseminated to all tissues tested with greatest bacterial loads in lungs, but also spleen, lymph nodes, liver, kidneys, brain, and bone marrow. Numerous foci of cellular infiltration, mitoses, and hepatocellular death were observed in liver. Mice infected by tick transmission developed higher antiehrlichial antibody levels than needle-inoculated animals. Tick-feeding-site reactions were observed, but there was no observed difference between animals infested with infected or uninfected ticks. CONCLUSIONS For the first time we were able to develop a tick transmission model with an Ehrlichia that is pathogenic for humans.
Collapse
Affiliation(s)
- Tais Berelli Saito
- Department of Pathology, University of Texas Medical Branch at Galveston
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch at Galveston
| |
Collapse
|
38
|
Schnell G, Boeuf A, Westermann B, Jaulhac B, Lipsker D, Carapito C, Boulanger N, Ehret-Sabatier L. Discovery and targeted proteomics on cutaneous biopsies infected by borrelia to investigate lyme disease. Mol Cell Proteomics 2015; 14:1254-64. [PMID: 25713121 DOI: 10.1074/mcp.m114.046540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 12/11/2022] Open
Abstract
Lyme disease is the most important vector-borne disease in the Northern hemisphere and represents a major public health challenge with insufficient means of reliable diagnosis. Skin is rarely investigated in proteomics but constitutes in the case of Lyme disease the key interface where the pathogens can enter, persist, and multiply. Therefore, we investigated proteomics on skin samples to detect Borrelia proteins directly in cutaneous biopsies in a robust and specific way. We first set up a discovery gel prefractionation-LC-MS/MS approach on a murine model infected by Borrelia burgdorferi sensu stricto that allowed the identification of 25 Borrelia proteins among more than 1300 mouse proteins. Then we developed a targeted gel prefractionation-LC-selected reaction monitoring (SRM) assay to detect 9/33 Borrelia proteins/peptides in mouse skin tissue samples using heavy labeled synthetic peptides. We successfully transferred this assay from the mouse model to human skin biopsies (naturally infected by Borrelia), and we were able to detect two Borrelia proteins: OspC and flagellin. Considering the extreme variability of OspC, we developed an extended SRM assay to target a large set of variants. This assay afforded the detection of nine peptides belonging to either OspC or flagellin in human skin biopsies. We further shortened the sample preparation and showed that Borrelia is detectable in mouse and human skin biopsies by directly using a liquid digestion followed by LC-SRM analysis without any prefractionation. This study thus shows that a targeted SRM approach is a promising tool for the early direct diagnosis of Lyme disease with high sensitivity (<10 fmol of OspC/mg of human skin biopsy).
Collapse
Affiliation(s)
- Gilles Schnell
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS-Université de Strasbourg, 67087 Strasbourg, France
| | - Amandine Boeuf
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS-Université de Strasbourg, 67087 Strasbourg, France
| | - Benoît Westermann
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS-Université de Strasbourg, 67087 Strasbourg, France
| | - Benoît Jaulhac
- ‖EA7290, Virulence bactérienne précoce, groupe Borréliose de Lyme, Facultés de Médecine et de Pharmacie, Université de Strasbourg, 67091 Strasbourg, France, and
| | - Dan Lipsker
- **Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpitaux Universitaires, 67091 Strasbourg, France
| | - Christine Carapito
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS-Université de Strasbourg, 67087 Strasbourg, France
| | - Nathalie Boulanger
- ‖EA7290, Virulence bactérienne précoce, groupe Borréliose de Lyme, Facultés de Médecine et de Pharmacie, Université de Strasbourg, 67091 Strasbourg, France, and
| | - Laurence Ehret-Sabatier
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS-Université de Strasbourg, 67087 Strasbourg, France,
| |
Collapse
|
39
|
Schnell G, Boeuf A, Jaulhac B, Boulanger N, Collin E, Barthel C, De Martino S, Ehret-Sabatier L. Proteomic analysis of three Borrelia burgdorferi sensu lato native species and disseminating clones: relevance for Lyme vaccine design. Proteomics 2015; 15:1280-90. [PMID: 25475896 DOI: 10.1002/pmic.201400177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/06/2014] [Accepted: 11/28/2014] [Indexed: 11/10/2022]
Abstract
Lyme borreliosis is the most important vector-borne disease in the Northern hemisphere. It is caused by Borrelia burgdorferi sensu lato bacteria transmitted to humans by the bite of hard ticks, Ixodes spp. Although antibiotic treatments are efficient in the early stage of the infection, a significant number of patients develop disseminated manifestations (articular, neurological, and cutaneous) due to unnoticed or absence of erythema migrans, or to inappropriate treatment. Vaccine could be an efficient approach to decrease Lyme disease incidence. We have developed a proteomic approach based on a one dimensional gel electrophoresis followed by LC-MS/MS strategy to identify new vaccine candidates. We analyzed a disseminating clone and the associated wild-type strain for each major pathogenic Borrelia species: B. burgdorferi sensu stricto, B. garinii, and B. afzelii. We identified specific proteins and common proteins to the disseminating clones of the three main species. In parallel, we used a spectral counting strategy to identify upregulated proteins common to the clones. Finally, 40 proteins were found that could potentially be involved in bacterial virulence and of interest in the development of a new vaccine. We selected the three proteins specifically detected in the disseminating clones of the three Borrelia species and checked by RT-PCR whether they are expressed in mouse skin upon B. burgdorferi ss inoculation. Interestingly, BB0566 appears as a potential vaccine candidate. All MS data have been deposited in the ProteomeXchange with identifier PXD000876 (http://proteomecentral.proteomexchange.org/dataset/PXD000876).
Collapse
Affiliation(s)
- Gilles Schnell
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bernard Q, Jaulhac B, Boulanger N. Smuggling across the Border: How Arthropod-Borne Pathogens Evade and Exploit the Host Defense System of the Skin. J Invest Dermatol 2014; 134:1211-1219. [DOI: 10.1038/jid.2014.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/04/2013] [Accepted: 12/28/2013] [Indexed: 12/20/2022]
|
41
|
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 2013; 4:337. [PMID: 24312085 PMCID: PMC3833115 DOI: 10.3389/fmicb.2013.00337] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/25/2013] [Indexed: 11/21/2022] Open
Abstract
Ticks are unique among hematophagous arthropods by continuous attachment to host skin and blood feeding for days; complexity and diversity of biologically active molecules differentially expressed in saliva of tick species; their ability to modulate the host defenses of pain and itch, hemostasis, inflammation, innate and adaptive immunity, and wound healing; and, the diverse array of infectious agents they transmit. All of these interactions occur at the cutaneous interface in a complex sequence of carefully choreographed host defense responses and tick countermeasures resulting in an environment that facilitates successful blood feeding and establishment of tick-borne infectious agents within the host. Here, we examine diverse patterns of tick attachment to host skin, blood feeding mechanisms, salivary gland transcriptomes, bioactive molecules in tick saliva, timing of pathogen transmission, and host responses to tick bite. Ticks engage and modulate cutaneous and systemic immune defenses involving keratinocytes, natural killer cells, dendritic cells, T cell subpopulations (Th1, Th2, Th17, Treg), B cells, neutrophils, mast cells, basophils, endothelial cells, cytokines, chemokines, complement, and extracellular matrix. A framework is proposed that integrates tick induced changes of skin immune effectors with their ability to respond to tick-borne pathogens. Implications of these changes are addressed. What are the consequences of tick modulation of host cutaneous defenses? Does diversity of salivary gland transcriptomes determine differential modulation of host inflammation and immune defenses and therefore, in part, the clades of pathogens effectively transmitted by different tick species? Do ticks create an immunologically modified cutaneous environment that enhances specific pathogen establishment? Can tick saliva molecules be used to develop vaccines that block pathogen transmission?
Collapse
Affiliation(s)
- Stephen Wikel
- Department of Medical Sciences, Frank H. Netter MD School of Medicine, Quinnipiac University Hamden, CT, USA
| |
Collapse
|
42
|
Fitness cost of Litomosoides sigmodontis filarial infection in mite vectors; implications of infected haematophagous arthropod excretory products in host-vector interactions. BIOMED RESEARCH INTERNATIONAL 2013; 2013:584105. [PMID: 24089685 PMCID: PMC3781844 DOI: 10.1155/2013/584105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022]
Abstract
Filariae are a leading cause of infections which are responsible for serious dermatological, ocular, and vascular lesions. Infective third stage larvae (L3) are transmitted through the bite of a haematophagous vector. Litomosoides sigmodontis is a well-established model of filariasis in the mouse, with the vector being the mite Ornithonyssus bacoti. The aim of the study was to analyse the filarial infection in mites to determine the consequences of filarial infection in the blood-feeding and the reproduction of mites as well as in the regulation of vector-induced inflammation in the mouse skin. Firstly, L3 are unevenly distributed throughout the host population and the majority of the population harbours a moderate infection (1 to 6 L3). Filarial infection does not significantly affect the probing delay for blood feeding. The number of released protonymphs is lower in infected mites but is not correlated with the L3 burden. Finally, induced excreted proteins from infected mites but not from uninfected mites stimulate TNF- α and the neutrophil-chemoattractant KC production by antigen-presenting cells (APCs). Altogether, these results describe the modification of the mite behavior under filarial infection and suggest that the immunomodulatory capacity of the mite may be modified by the presence of the parasite, hindering its defensive ability towards the vertebrate host.
Collapse
|
43
|
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 2013; 3:43. [PMID: 23971008 PMCID: PMC3747359 DOI: 10.3389/fcimb.2013.00043] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023] Open
Abstract
Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences Bratislava, Slovakia.
| | | |
Collapse
|
44
|
Kung F, Anguita J, Pal U. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 2013; 8:41-56. [PMID: 23252492 DOI: 10.2217/fmb.12.121] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, a pathogen transmitted by Ixodes ticks, is responsible for a prevalent illness known as Lyme disease, and a vaccine for human use is unavailable. Recently, genome sequences of several B. burgdorferi strains and Ixodes scapularis ticks have been determined. In addition, remarkable progress has been made in developing molecular genetic tools to study the pathogen and vector, including their intricate relationship. These developments are helping unravel the mechanisms by which Lyme disease pathogens survive in a complex enzootic infection cycle. Notable discoveries have already contributed to understanding the spirochete gene regulation accounting for the temporal and spatial expression of B. burgdorferi genes during distinct phases of the lifecycle. A number of pathogen and vector gene products have also been identified that contribute to microbial virulence and/or persistence. These research directions will enrich our knowledge of vector-borne infections and contribute towards the development of preventative strategies against Lyme disease.
Collapse
Affiliation(s)
- Faith Kung
- Department of Veterinary Medicine & Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
45
|
LIESKOVSKA J, KOPECKY J. Effect of tick saliva on signalling pathways activated by TLR-2 ligand and Borrelia afzelii in dendritic cells. Parasite Immunol 2012; 34:421-9. [DOI: 10.1111/j.1365-3024.2012.01375.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Microarray analyses of inflammation response of human dermal fibroblasts to different strains of Borrelia burgdorferi sensu stricto. PLoS One 2012; 7:e40046. [PMID: 22768217 PMCID: PMC3386942 DOI: 10.1371/journal.pone.0040046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/31/2012] [Indexed: 11/19/2022] Open
Abstract
In Lyme borreliosis, the skin is the key site of bacterial inoculation by the infected tick, and of cutaneous manifestations, erythema migrans and acrodermatitis chronica atrophicans. We explored the role of fibroblasts, the resident cells of the dermis, in the development of the disease. Using microarray experiments, we compared the inflammation of fibroblasts induced by three strains of Borrelia burgdorferi sensu stricto isolated from different environments and stages of Lyme disease: N40 (tick), Pbre (erythema migrans) and 1408 (acrodermatitis chronica atrophicans). The three strains exhibited a similar profile of inflammation with strong induction of chemokines (CXCL1 and IL-8) and IL-6 cytokine mainly involved in the chemoattraction of immune cells. Molecules such as TNF-alpha and NF-κB factors, metalloproteinases (MMP-1, -3 and -12) and superoxide dismutase (SOD2), also described in inflammatory and cellular events, were up-regulated. In addition, we showed that tick salivary gland extracts induce a cytotoxic effect on fibroblasts and that OspC, essential in the transmission of Borrelia to the vertebrate host, was not responsible for the secretion of inflammatory molecules by fibroblasts. Tick saliva components could facilitate the early transmission of the disease to the site of injury creating a feeding pit. Later in the development of the disease, Borrelia would intensively multiply in the skin and further disseminate to distant organs.
Collapse
|
47
|
Abstract
Lyme borreliosis can affect almost all human organs. Erythema migrans is the first and most frequent manifestation in 80-90% of patients in the early stage of localized skin infection. Besides the typical clinical appearance, many atypical variants can be observed. The solitary borrelial lymphocytoma is much less common and occurs mostly in children. Due to improvement in the early recognition of Lyme borreliosis, the diagnosis is made in the disseminated and late stage in only 10-20% of patients. Multiple erythemata migrantia indicating the hematogenous dissemination of B. burgdorferi remain frequently unrecognized. Late stages of infection feature chronic plasma-cell rich cutaneous inflammation and acrodermatitis chronica atrophicans in its edematous to atrophic forms. Cultivation or DNA detection of B. burgdorferi in skin biopsies are options to prove unusual skin manifestations. Serological detection of Borrelia-specific IgG- and IgM antibodies should be performed according to the two step protocol with ELISA and immunoassay according to the criteria of the MIQ 12. Serological tests have limited utility for follow-up. Antibiotic therapy is very effective if performed according to evidence-based protocols, such as the AWMF guidelines.
Collapse
|