1
|
Herrera-Rodríguez D, Jareño-Moreno S, Buch-Cardona C, Mougeot F, Luque-Larena JJ, Vidal D. Water and mosquitoes as key components of the infective cycle of Francisella tularensis in Europe: a review. Crit Rev Microbiol 2024; 50:922-936. [PMID: 38393764 DOI: 10.1080/1040841x.2024.2319040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
Francisella tularensis is the pathogen of tularemia, a zoonotic disease that have a broad range of hosts. Its epidemiology is related to aquatic environments, particularly in the subspecies holarctica. In this review, we explore the role of water and mosquitoes in the epidemiology of Francisella in Europe. F. tularensis epidemiology has been linked to natural waters, where its persistence has been associated with biofilm and amebas. In Sweden and Finland, the European countries where most human cases have been reported, mosquito bites are a main route of transmission. F. tularensis is present in other European countries, but to date positive mosquitoes have not been found. Biofilm and amebas are potential sources of Francisella for mosquito larvae, however, mosquito vector capacity has not been demonstrated experimentally, with the need to be studied using local species to uncover a potential transmission adaptation. Transstadial, for persistence through life stages, and mechanical transmission, suggesting contaminated media as a source for infection, have been studied experimentally for mosquitoes, but their natural occurrence needs to be evaluated. It is important to clear up the role of different local mosquito species in the epidemiology of F. tularensis and their importance in all areas where tularemia is present.
Collapse
Affiliation(s)
- Daniel Herrera-Rodríguez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Castilla la Mancha (UCLM), Ciudad Real, España
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, España
| | - Sara Jareño-Moreno
- Facultad de Veterinaria, Universidad Autónoma de Barcelona (UAB), Barcelona, España
| | - Clara Buch-Cardona
- Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Barcelona, España
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, España
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales, E.T.S. Ingenierías Agrarias, Universidad de Valladolid (UVa), Palencia, España
- Sustainable Forest Management Research Institute (iuFOR), Universidad de Valladolid (UVa), Palencia, España
| | - Dolors Vidal
- Departamento de Microbiología, Facultad de Medicina, Universidad de Castilla la Mancha (UCLM), Ciudad Real, España
| |
Collapse
|
2
|
Tukmechi A, Ownagh A, Enferadi A, Khademi P. First molecular detection of Francisella tularensis in turtle ( Testudo graeca) and ticks ( Hyalomma aegyptium) in Northwest of Iran. Int J Parasitol Parasites Wildl 2024; 23:100892. [PMID: 38192304 PMCID: PMC10772711 DOI: 10.1016/j.ijppaw.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Francisella tularensis, causative agent of tularemia, is a contagious zoonotic ailment. This study was aimed to molecularly detect F. tularensis in tortoise blood (n = 100) and ticks (n = 100) collected in the West Azerbaijan province, Iran suing a 16SrRNA gene of the Francisella genus through employment of the Nested-PCR technique. The identified ticks were s Hyalomma aegyptium by morphological analysis. Seven percent (with a 95% CI: 3.5%-13.75%) of animal blood samples yielded positive results for the presence of the Francisella. Meanwhile, the Francisella was identified in tick samples at a rate of fifteen percent (15%) (with a 95% CI: 9%-23%). The samples containing positive results were specifically classified as F. tularensis subsp. holarctica. The samples were taken from ticks belonging to the H. aegyptium species that were gathered in Oshnavieh, southern part of West Azerbaijan province, Iran. This research was aimed to validate the existence of F. tularensis in ticks found within the West Azerbaijan province. Consequently, it is vital to acknowledge the potential of these ticks to transmit the bacteria to both livestock and humans through tick bites in this specific area.
Collapse
Affiliation(s)
- Amir Tukmechi
- Department of Microbiology, Urmia University, Urmia, Iran
| | | | - Ahmad Enferadi
- Department of Microbiology, Urmia University, Urmia, Iran
| | - Peyman Khademi
- Department of Microbiology, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Mohammed RR, Enferadi A, Sidiq KR, Sarani S, Khademi P, Jaydari A, Ahmed AK. Molecular Detection of Francisella tularensis Isolated from Ticks of Livestock in Kurdistan Region, Iraq. Vector Borne Zoonotic Dis 2023; 23:514-519. [PMID: 37582218 DOI: 10.1089/vbz.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Background: Francisella tularensis is a Gram-negative bacterium that causes tularemia in both human and animals. Tularemia is a potential serious zoonotic disease that is transmitted by different routes, including tick bites. Materials and Methods: This study deals with investigating the prevalence of F. tularensis in the ticks of local animal farms in Kurdistan region since the farmers are normally in close contact with livestock. We used molecular methods for this purpose. A total of 412 tick and 126 blood samples were gathered from goat, sheep, and cow flocks. The existence of F. tularensis 16Sr RNA gene was examined in the samples using nested-PCR technique. Results: In the animal blood specimens, no F. tularensis was found. The incidence of F. tularensis was 1.7% (7 out of 412) in the tick samples, representing a very lower possibility of tuleremia infection. Moreover, the two subspecies of F. tularensis novicida and holarctica were identified based on the sequencing of pdpD and RD genes, respectively. The F. tularensis subsp. novicida was isolated from four species of ticks, Hyalomma anatolicum, Rhipicephalus annulatus, Rhipicephalus sanguineus, and Ornithodoros spp., whereas the F. tularensis subsp. holarctica was isolated from Haemaphysalis parva and Hyalomma dromedarii species of ticks. Conclusion: Although its prevalence is very low, the isolation of F. tularensis subsp. holarctica from the ticks of farm animals suggests possible transmission of Tularemia through tick bite in Kurdistan region of Iraq. Ref: IR-UU-AEC-3/22.
Collapse
Affiliation(s)
- Rebin Rafaat Mohammed
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan, Iran
| | - Ahmad Enferadi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan, Iran
| | - Karzan R Sidiq
- Charmo Centre for Research, Training and Consultancy, Charmo University, Chamchamal, Iraq
| | - Saeedeh Sarani
- Department of Pathobiology, Faculty of Veterinary Medicine, Zabol University, Sistan and Balochistan, Iran
| | - Peyman Khademi
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorram Abad, Iran
| | - Amin Jaydari
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorram Abad, Iran
| | - Avin Kawa Ahmed
- Sulaimani Veterinary Directorate, Chamchamal Veterinary Hospital, Sulaimani, Iraq
| |
Collapse
|
4
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
5
|
Esmaeili S, Latifian M, Mahmoudi A, Ghasemi A, Mohammadi A, Mordadi A, Ziapour SP, Naddaf SR, Mostafavi E. Molecular investigation of Coxiella burnetii and Francisella tularensis infection in ticks in northern, western, and northwestern Iran. PLoS One 2023; 18:e0289567. [PMID: 37590254 PMCID: PMC10434890 DOI: 10.1371/journal.pone.0289567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Tularemia and Q fever are endemic diseases in Iran; however, little information is available on the prevalence of the causative agents, Coxiella burnetii and Francisella tularensis, in Iranian ticks. This study investigated C. burnetii and F. tularensis among hard ticks in this country. We collected ticks from livestock and other mammals in Guilan, Mazandaran, Golestan (northern Iran), Kurdistan (western Iran), and West Azerbaijan (northwestern Iran) provinces. Genomic DNA from collected ticks was extracted and screened for C. burnetii and F. tularensis using Real-time PCR. A total of 4,197 ticks (belonging to 12 different species) were collected, and Ixodes ricinus (46.4%), Rhipicephalus turanicus (25%), and Rhipicephalus sanguineus sensu lato (19.1%) were the most collected species. Of 708 pooled tick samples, 11.3% and 7.20% were positive for C. burnetii and F. tularensis, respectively. The genus of Rhipicephalus had the highest (18.3%) C. burnetii infection among the collected tick pools (P<0.001). Furthermore, the most positive pools for F. tularensis belonged to Haemaphysalis spp. (44.4%). Kurdistan had the most significant percentage of C. burnetii-infected ticks (92.5%), and there was a meaningful relationship between the provinces and the infection (P< 0.001). The ticks from Golestan exhibited the highest F. tularensis infection rate (10. 9%), and the infection showed no significant relationship with the provinces (P = 0.19). Ticks collected from grasslands had a higher Coxiella burnetii infection rate than those collected from animals (39.4% vs. 7.9%; p<0.01). However, ticks collected from animal surfaces had a slightly higher rate of Francisella tularensis infection than those collected from grasslands (7.6% vs. 3.9%; p = 0.24). Here, we demonstrated the presence of both pathogens in the north (Guilan, Mazandaran, and Golestan provinces), the west (Kurdistan province), and the northwest (West Azerbaijan province) of Iran. The public health system should pay particular attention to tick bites in veterinary medicine and humans.
Collapse
Affiliation(s)
- Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Latifian
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Ahmad Ghasemi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Microbiology, Research Center of Reference Health Laboratories, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Mohammadi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Entomology and Vector Control, School of Public Health and National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mordadi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Seyyed Payman Ziapour
- Department of Parasitology, Zoonoses, Research Center, Pasteur Institute of Iran, Amol, Mazandaran, Iran
| | | | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Rahravani M, Moravedji M, Mostafavi E, Baseri N, Seyfi H, Mohammadi M, Ziaei AH, Mozoun MM, Latifian M, Esmaeili S. Molecular detection of Francisella tularensis in small ruminants and their ticks in western Iran. Comp Immunol Microbiol Infect Dis 2022; 83:101779. [DOI: 10.1016/j.cimid.2022.101779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
|
7
|
Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors 2022; 15:88. [PMID: 35292106 PMCID: PMC8922938 DOI: 10.1186/s13071-022-05204-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
8
|
Four Tick-Borne Microorganisms and Their Prevalence in Hyalomma Ticks Collected from Livestock in United Arab Emirates. Pathogens 2021; 10:pathogens10081005. [PMID: 34451469 PMCID: PMC8398371 DOI: 10.3390/pathogens10081005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
Ticks and associated tick-borne diseases in livestock remain a major threat to the health of animals and people worldwide. However, in the United Arab Emirates (UAE), very few studies have been conducted on tick-borne microorganisms thus far. The purpose of this cross-sectional DNA-based study was to assess the presence and prevalence of tick-borne Francisella sp., Rickettsia sp., and piroplasmids in ticks infesting livestock, and to estimate their infection rates. A total of 562 tick samples were collected from camels, cows, sheep, and goats in the Emirates of Abu Dhabi, Dubai, and Sharjah from 24 locations. DNA was extracted from ticks and PCR was conducted. We found that Hyalomma dromedarii ticks collected from camels had Francisella sp. (5.81%) and SFG Rickettsia (1.36%), which was 99% similar to Candidatus Rickettsia andeanae and uncultured Rickettsia sp. In addition, Hyalomma anatolicum ticks collected from cows were found to be positive for Theileria annulata (4.55%), whereas H. anatolicum collected from goats were positive for Theileria ovis (10%). The widespread abundance of Francisella of unknown pathogenicity and the presence of Rickettsia are a matter of concern. The discovery of T. ovis from relatively few samples from goats indicates the overall need for more surveillance. Increasing sampling efforts over a wider geographical range within the UAE could reveal the true extent of tick-borne diseases in livestock. Moreover, achieving successful tick-borne disease control requires more research and targeted studies evaluating the pathogenicity and infection rates of many microbial species.
Collapse
|
9
|
Glinšek Biškup U, Kogoj R, Korva M, Knap N, Cerar T, Knapič T, Petrovec M, Avšič-Županc T. Characterization of Tularemia Cases in Slovenia with Multiple-Locus Variable-Number Tandem Repeat Analysis. Vector Borne Zoonotic Dis 2021; 21:351-357. [PMID: 33601964 PMCID: PMC8086403 DOI: 10.1089/vbz.2020.2711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Francisella tularensis is the etiologic agent of tularemia, a bacterial zoonotic disease. The genome of F. tularensis shows a recent evolutionary change, especially in reservoirs. Variable number of tandem repeats (VNTR) is described as a high-speed molecular clock and can thus be used as a high-resolution typing system. The main objective of our study was to investigate the molecular diversity of F. tularensis strains and reveal possible sources of infection. Using real-time PCR targeting the ISFtu2 region, we successfully amplified targeted DNA in 13/31 Slovenian patients with a clinical diagnosis of tularemia, and with PCR targeting the fopA gene, we obtained 11/13 PCR products. Sequencing revealed that all samples were identified as F. tularensis subsp. holarctica. We successfully obtained one F. tularensis isolate from a lymph node aspirate by culture on chocolate agar. Our isolate was clustered into major clade B12 (subclade B43). We optimized VNTR typing to be used directly on clinical samples. Multiple-locus VNTR analysis (MLVA) revealed five unique MLVA types; 45.5% samples had the same MLVA type, another 27.3% shared a different MLVA type, and each of the remaining had a unique MLVA type. Most samples differed at only two VNTR markers (Ft-M03 and Ft-M06). Additionally, we investigated samples from small mammals (n = 532) and Ixodes ricinus ticks (n = 232) captured in the same geographical area in which patients with tularemia were found. No F. tularensis DNA was detected in samples of small mammals or I. ricinus ticks. The diversity of MLVA types in Slovenia was high, despite the small region, but most of the samples from the same region shared the same MLVA type. Our results suggest that MLVA is a useful tool for quick molecular characterization of F. tularensis directly from patient samples, especially when investigating geographically localized outbreaks.
Collapse
Affiliation(s)
- Urška Glinšek Biškup
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Cerar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Knapič
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Demir S, Erkunt Alak S, Köseoğlu AE, Ün C, Nalçacı M, Can H. Molecular investigation of Rickettsia spp. and Francisella tularensis in ticks from three provinces of Turkey. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:239-253. [PMID: 32394036 DOI: 10.1007/s10493-020-00498-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Ticks are obligate hematophagous ectoparasites as well as mechanical and biological vectors of a wide variety of microbial pathogens. To date, 19 tick-borne diseases have been reported from Turkey. In this study, ticks collected from Aydın, İzmir and Şanlıurfa provinces of Turkey were identified using morphological and molecular methods. After the presence of bacterial DNA was checked, Rickettsia spp. and Francisella tularensis were investigated in bacterial DNA-positive tick specimens by PCR. Furthermore, amplicons belonging to tick specimens and positive bacterial samples were sequenced and processed for BLAST, alignment and phylogenetic analysis. As a result, seven tick species were identified: Rhipicephalus sanguineus, Rh. bursa, Rh. turanicus, Hyalomma marginatum, Hy. aegyptium, Hy. anatolicum and Haemaphysalis erinacei. Fifty-five tick specimens tested positive for bacterial DNA and among them, rickettsial DNA was found in five ticks (infection rate = 9.1%) belonging to Hy. marginatum, Hy. aegyptium, Rh. bursa and Rh. turanicus. Of the five Rickettsia-positive ticks, three contained Rickettsia aeschlimannii, one Ri. massiliae and one an unidentified Rickettsia sp. No Francisella tularensis DNA was detected. Sequence analysis of the ompB gene indicated two novel single nucleotide polymorphisms (SNP) in two different Ri. aeschlimannii strains and two novel SNPs as well as a novel insertion (GACGGT) were found in Rickettsia sp. This study indicated the presence of polymorphic Rickettsia species in ticks from Turkey.
Collapse
Affiliation(s)
- Samiye Demir
- Zoology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Sedef Erkunt Alak
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Ahmet Efe Köseoğlu
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Cemal Ün
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Muhammed Nalçacı
- Zoology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Hüseyin Can
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey.
| |
Collapse
|
11
|
Gunes T, Ataş M. The Prevalence of Tick-Borne Pathogens in Ticks Collected from the Northernmost Province (Sinop) of Turkey. Vector Borne Zoonotic Dis 2019; 20:171-176. [PMID: 31841657 DOI: 10.1089/vbz.2019.2513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ixodes ricinus is a potential vector for some of the tick-borne microorganisms that can cause significant diseases in animals and humans. This study aims to determine the prevalence of Anaplasma, Rickettsia, Bartonella, and Francisella species in host-seeking ticks collected from the forest areas in the Sinop region located in the northernmost part of Turkey. Between May and July 2017, a total of 135 tick pools formed from 2571 of the 2734 ticks collected out of the vegetation. Samples of each pool were homogenized and analyzed by PCR. Infection prevalence was statistically analyzed in view of the maximum likelihood estimation (MLE) with a 95% confidence interval (CI). DNA of the infectious agents was determined only in the adult and nymph pools of I. ricinus. MLE values of Anaplasma spp. and Bartonella spp. in 58 pools formed from 517 of I. ricinus adults were 1.20% (95% CI: 0.50-2.49) and 0.80% (95% CI: 0.26-1.91), respectively. In 42 pools generated from 1222 of I. ricinus nymph, MLE values of infection prevalence for Anaplasma spp. and Bartonella spp. were calculated to be 0.17% (95% CI: 0.03-0.54) and 0.34% (95% CI: 0.11-0.82) in respective order. MLE values for Rickettsia spp. were 7.55% (95% CI: 5.21-10.69) and 0.52% (95% CI: 0.22-1.083) for the adult and nymph I. ricinus, respectively. The DNA of Francisella tularensis was not detected in any tick pool. The outcomes of this research are the first molecular evidence of Bartonella spp. and Bartonella henselae in questing I. ricinus in Turkey. The results also suggested that I. ricinus plays considerable roles in enzootic transmission cycles of Anaplasma phagocytophilum, B. henselae, and Rickettsia monacensis in the northernmost region of Turkey.
Collapse
Affiliation(s)
- Turabi Gunes
- Vocational School of Health (S.H.M.Y.O), Cumhuriyet University, Sivas, Turkey
| | - Mehmet Ataş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Cumhuriyet Universitesi, Sivas, Turkey
| |
Collapse
|
12
|
Karasartova D, Gureser AS, Gokce T, Celebi B, Yapar D, Keskin A, Celik S, Ece Y, Erenler AK, Usluca S, Mumcuoglu KY, Taylan-Ozkan A. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey. PLoS Negl Trop Dis 2018; 12:e0006395. [PMID: 29649265 PMCID: PMC5916866 DOI: 10.1371/journal.pntd.0006395] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/24/2018] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
Background Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey. Methodology/Principal findings From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%), R. slovaca (4.5%), R. raoultii (2.2%), R. hoogstraalii (1.9%), R. sibirica subsp. mongolitimonae (1.2%), R. monacensis (0.31%), and Rickettsia spp. (1.2%). In addition, the following pathogens were identified: Borrelia afzelii (0.31%), Anaplasma spp. (0.31%), Ehrlichia spp. (0.93%), Babesia microti (0.93%), Babesia ovis (0.31%), Babesia occultans (3.4%), Theileria spp. (1.6%), Hepatozoon felis (0.31%), Hepatozoon canis (0.31%), and Hemolivia mauritanica (2.1%). All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp. Conclusions/Significance Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with a tick infestation should be followed for a variety of pathogens with medical importance. Ticks are important vectors for different kind of pathogens, both of medical and veterinary importance, while tick-borne diseases (TBDs) are increasing all over the world. In Turkey, many important human and zoonotic TBDs such as, Lyme borreliosis, rickettsiosis, anaplasmosis, ehrlichiosis, tularemia, bartonellosis, babesiosis, theileriosis, and hepatozoonosis have been reported. Nonetheless, there is lack of research-based information concerning the epidemiology, ecology, and vector diversity of these tick-borne pathogens. In this study, we aimed to investigate broad-range bacterial and protozoan vector-borne pathogens by PCR/RT-PCR and sequencing, those ticks infesting humans in the Corum province. Spotted fever group rickettsiae and lymphangitis-associated rickettsiae, Borrelia afzelii, Anaplasma spp., Ehrlichia spp. were detected. Babesia microti was detected in Hyalomma marginatum infesting humans. Interestingly zoonotic pathogens like Babesia ovis, Babesia occultans, Theileria spp, Hepatozoon felis, Hepatozoon canis, and Hemolivia mauritanica were also detected, showing the role of ticks for diseases also of veterinary importance. This study provides important data for understanding the epidemiology of tick-borne pathogens and it is hoped that these results will challenge clinicians and veterinarians to unify their efforts in the management of TBDs.
Collapse
Affiliation(s)
| | | | - Tuncay Gokce
- Department of Biology, Faculty of Arts and Science, Hitit University, Corum, Turkey
| | - Bekir Celebi
- National High Risk Pathogens Reference Laboratory, Public Health Institution of Turkey, Ankara, Turkey
| | - Derya Yapar
- Department of Infectious Diseases and Clinical Microbiology, Hitit University, Corum, Turkey
| | - Adem Keskin
- Department of Biology, Faculty of Science and Arts, Gaziosmanpasa University, Tokat, Turkey
| | - Selim Celik
- Emergency Medicine, Hitit University Corum Training and Research Hospital, Corum, Turkey
| | - Yasemin Ece
- Emergency Medicine, Hitit University Corum Training and Research Hospital, Corum, Turkey
| | - Ali Kemal Erenler
- Department of Emergency Medicine, Faculty of Medicine; Hitit University, Corum, Turkey
| | - Selma Usluca
- National Parasitology Reference Laboratory, Public Health Institution of Turkey, Ankara, Turkey
| | - Kosta Y. Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology, Hitit University, Corum, Turkey
- Department of Medical and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Northern Cyprus
- * E-mail:
| |
Collapse
|
13
|
Andersson MO, Tolf C, Tamba P, Stefanache M, Radbea G, Frangoulidis D, Tomaso H, Waldenström J, Dobler G, Chitimia-Dobler L. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania. Parasit Vectors 2018; 11:144. [PMID: 29554947 PMCID: PMC5859542 DOI: 10.1186/s13071-018-2756-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/26/2018] [Indexed: 01/08/2023] Open
Abstract
Background Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. Results We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen “Candidatus Neoehrlichia mikurensis”. An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. Conclusions We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. “Candidatus Neoehrlichia mikurensis” was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania. Electronic supplementary material The online version of this article (10.1186/s13071-018-2756-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin O Andersson
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, -391 82, Kalmar, SE, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, -391 82, Kalmar, SE, Sweden
| | - Paula Tamba
- Institute for Diagnosis and Animal Health, Bucharest, Romania
| | | | - Gabriel Radbea
- Sal-Vet Private Veterinary Clinics, Timis County, Timisoara, Romania
| | | | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Strasse 96a, 07743, Jena, Germany
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, -391 82, Kalmar, SE, Sweden
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937, Munich, Germany. .,German Center of Infection Research (DZIF) Partner Munich, Neuherbergstrasse 11, D-80937, Munich, Germany.
| | - Lidia Chitimia-Dobler
- Institute for Diagnosis and Animal Health, Bucharest, Romania.,Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937, Munich, Germany.,German Center of Infection Research (DZIF) Partner Munich, Neuherbergstrasse 11, D-80937, Munich, Germany
| |
Collapse
|
14
|
Kenney A, Cusick A, Payne J, Gaughenbaugh A, Renshaw A, Wright J, Seeber R, Barnes R, Florjanczyk A, Horzempa J. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis. PLoS One 2017; 12:e0175157. [PMID: 28486521 PMCID: PMC5423603 DOI: 10.1371/journal.pone.0175157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.
Collapse
Affiliation(s)
- Adam Kenney
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Austin Cusick
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Jessica Payne
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Anna Gaughenbaugh
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Andrea Renshaw
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Jenna Wright
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Roger Seeber
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Rebecca Barnes
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Aleksandr Florjanczyk
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| |
Collapse
|
15
|
Ghoneim NH, Abdel-Moein KA, Zaher HM. Molecular Detection of Francisella spp. Among Ticks Attached to Camels in Egypt. Vector Borne Zoonotic Dis 2017; 17:384-387. [PMID: 28402703 DOI: 10.1089/vbz.2016.2100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to investigate the possible role of camels and attached ticks in the epidemiology of Francisella spp. including Francisella tularensis. For this purpose, a total of 319 ticks (248 Hyalomma dromedarii and 71 Amblyomma spp.) as well as 100 blood and 50 fecal samples collected from camels were screened for the presence of Francisella spp. by PCR through amplification of Francisella 16S rRNA gene. Positive samples were then tested for F. tularensis by PCR. In addition, serum samples from 75 camel abattoir workers were examined for the presence of IgG antibodies against F. tularensis using enzyme-linked immunosorbent assay (ELISA). Of the examined ticks, 15 were positive for Francisella spp. with prevalence of 4.7%, all positive results were recorded in Hyalomma dromedarii (6%). Neither blood nor fecal samples from camels yielded Francisella spp. even camels which carried Francisella spp. positive ticks. Moreover, F. tularensis could not be detected among Francisella-positive ticks. Phylogenetic analysis of some Francisella 16S rRNA gene sequences obtained in this study points out that these sequences are closely related to Francisella-like endosymbionts. In contrast, seroprevalence of F. tularensis antibodies among examined abattoir workers was 9.3% with significantly high prevalence among workers frequently exposed to tick bites (20.7%) rather than occasionally exposed workers (2.2%). In conclusion, however, F. tularensis could not be detected in this study; the high seroprevalence among camel abattoir workers especially those frequently exposed to tick bites underlines the possible role of ticks attached to camels in transmission of tularemia to humans.
Collapse
Affiliation(s)
- Nahed H Ghoneim
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University , Cairo, Egypt
| | - Khaled A Abdel-Moein
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University , Cairo, Egypt
| | - Hala M Zaher
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University , Cairo, Egypt
| |
Collapse
|
16
|
Kasap M, Karadenizli A, Akpınar G, Uzuner H, Ayimugu A, Karaosmanoğlu K, Er DK. Comparative Analysis of Proteome Patterns of Francisella tularensis Isolates from Patients and the Environment. Curr Microbiol 2016; 74:230-238. [PMID: 27990601 DOI: 10.1007/s00284-016-1178-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
Francisella tularensis is the causative agent of tularemia. Although major contributors and the main mechanism of the virulence are well known, some of the molecular details are still missing. Proteomics studies regarding F. tularensis have provided snapshot pictures of the organism grown under different culture conditions to understand the mechanism of virulence. In general, such studies were carried out with standard strains e.g., LVS and did not involve comparisons of F. tularensis isolates from either clinical or environmental sources. In this study, we performed two-dimensional gel electrophoresis (2DE)-based proteomic analysis and compared the protein profiles of the F. tularensis subsp. holarctica strains isolated from the clinical and the environmental samples. Regulations were detected in 14 spots when twofold regulation criteria were applied. The regulated protein spots were subjected to MALDI-TOF/TOF analysis and identified. Classification of the identified proteins based on metabolic functions revealed that the translation machinery was the most varying metabolic processes among the isolates. Using normalized protein spot intensities, PCA analysis was also performed. The results indicated that the strain isolated from water source was different then the strains isolated from the patients. Most interestingly, the isolates were strikingly distinguishable from the standard NCTC 10857 strain.
Collapse
Affiliation(s)
- Murat Kasap
- Medical Biology Department/DEKART Proteomics Laboratory, Kocaeli University Medical Faculty, Umuttepe, Kocaeli, 41380, Turkey
| | - Aynur Karadenizli
- Department of Medical Microbiology, Kocaeli University Medical Faculty, Umuttepe, Kocaeli, 41380, Turkey.
| | - Gürler Akpınar
- Medical Biology Department/DEKART Proteomics Laboratory, Kocaeli University Medical Faculty, Umuttepe, Kocaeli, 41380, Turkey
| | - Hüseyin Uzuner
- Department of Medical Microbiology, Kocaeli University Medical Faculty, Umuttepe, Kocaeli, 41380, Turkey
| | - Abula Ayimugu
- Department of Biomedical Engineering, Kocaeli University Technology Faculty, Kocaeli, Turkey
| | - Kübra Karaosmanoğlu
- Department of Biomedical Engineering, Kocaeli University Technology Faculty, Kocaeli, Turkey
| | - Doğanhan Kadir Er
- Department of Medical Microbiology, Kocaeli University Medical Faculty, Umuttepe, Kocaeli, 41380, Turkey
| |
Collapse
|
17
|
Inci A, Yildirim A, Duzlu O, Doganay M, Aksoy S. Tick-Borne Diseases in Turkey: A Review Based on One Health Perspective. PLoS Negl Trop Dis 2016; 10:e0005021. [PMID: 27977689 PMCID: PMC5158090 DOI: 10.1371/journal.pntd.0005021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The importance of tick-borne diseases is increasing all over the world, including Turkey. Global warming, environmental and ecological changes and the existence of suitable habitats increase the impact of ticks and result in frequent emergence or re-emergence of tick-borne diseases (TBDs) with zoonotic characteristics. In Turkey, almost 19 TBDs have been reported in animals and men, involving four protozoa (babesiosis, theileriosis, cytauxzoonosis, hepatozoonosis), one filarial nematode (acanthocheilonemasis), ten bacterial agents (anaplasmosis, ehrlichiosis, aegyptianellosis, tick-borne typhus, Candidatus Rickettsia vini, Lyme borreliosis, tick-borne relapsing fever [TBRF], tularaemia, bartonellosis, and hemoplasmosis), and four viral infections (tick-borne encephalitis [TBE], Crimean-Congo Haemorrhagic Fever [CCHF], louping-ill [LI], and lumpy skin disease [LSD]). The growing number of TBD cases, in particular the fatal viral epidemics in humans, have led to increased public awareness and concern against TBDs in recent years. The World Health Organization (WHO) has developed a new political concept, called the "One Health" initiative, which is especially relevant for developing strategies against tick infestations and TBD control in humans and animals. It would be beneficial for Turkey to adopt this new strategy and establish specific research and control programs in coordination with international organizations like WHO, the World Organization for Animal Health (OIE), the Food and Agriculture Organization (FAO), the Centers for Disease Control and Prevention (CDC), and the European Center for Disease Prevention and Control (ECDC) to combat TBDs based on the "One Health Initiative" concept. In this article, we review the occurrence of primary TBDs in man and animals in Turkey in light of the "One Health" perspective.
Collapse
Affiliation(s)
- Abdullah Inci
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Centre, University of Erciyes, Kayseri, Turkey
| | - Alparslan Yildirim
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Centre, University of Erciyes, Kayseri, Turkey
| | - Onder Duzlu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Centre, University of Erciyes, Kayseri, Turkey
| | - Mehmet Doganay
- Vectors and Vector-Borne Diseases Implementation and Research Centre, University of Erciyes, Kayseri, Turkey
- Department of Infection Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
18
|
Lockwood S, Brayton KA, Broschat SL. Comparative genomics reveals multiple pathways to mutualism for tick-borne pathogens. BMC Genomics 2016; 17:481. [PMID: 27368698 PMCID: PMC4930560 DOI: 10.1186/s12864-016-2744-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background Multiple important human and livestock pathogens employ ticks as their primary host vectors. It is not currently known whether this means of infecting a host arose once or many times during evolution. Results In order to address this question, we conducted a comparative genomics analysis on a set of bacterial pathogens from seven genera – Borrelia, Rickettsia, Anaplasma, Ehrlichia, Francisella, Coxiella, and Bartonella, including species from three different host vectors – ticks, lice, and fleas. The final set of 102 genomes used in the study encoded a total of 120,046 protein sequences. We found that no genes or metabolic pathways were present in all tick-borne bacteria. However, we found some genes and pathways were present in subsets of tick-transmitted organisms while absent from bacteria transmitted by lice or fleas. Conclusion Our analysis suggests that the ability of pathogens to be transmitted by ticks arose multiple times over the course of evolution. To our knowledge, this is the most comprehensive study of tick transmissibility to date. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2744-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Svetlana Lockwood
- School of Electrical Engineering and Computer Science, Washington State University, P.O. Box 642752, Pullman, USA
| | - Kelly A Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, P.O. Box 647040, Pullman, 99164-7040, USA.,Paul G. Allen School for Global Animal Health, Washington State University, PO Box 647090, Pullman, 99164-7090, USA
| | - Shira L Broschat
- School of Electrical Engineering and Computer Science, Washington State University, P.O. Box 642752, Pullman, USA. .,Department of Veterinary Microbiology and Pathology, Washington State University, P.O. Box 647040, Pullman, 99164-7040, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, PO Box 647090, Pullman, 99164-7090, USA.
| |
Collapse
|