1
|
Menajovsky MF, Espunyes J, Ulloa G, Montero S, Lescano AG, Santolalla ML, Cabezón O, Mayor P. A Survey of Hepatitis B Virus and Hepatitis E Virus at the Human-Wildlife Interface in the Peruvian Amazon. Microorganisms 2024; 12:1868. [PMID: 39338542 PMCID: PMC11434561 DOI: 10.3390/microorganisms12091868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) and Hepatitis E virus (HEV) are zoonotic pathogens posing significant health concerns in rural Amazonia, a region marked by high endemicity, poverty, and limited healthcare access. However, the epidemiology of HBV and HEV in this ecosystem remains underexplored. This study examines the circulation of HBV and HEV at the human-wildlife interface and identifies risk factors within an isolated Amazonian indigenous community reliant on hunting for subsistence. Antibodies against HBV core antigens (HBcAbs) were found in three wildlife species: Cuniculus paca (0.8%), Tayassu pecari (1.6%), and Mazama americana (4.1%), marking the first record of HBV antibodies in free-ranging wildlife in the Amazon. However, further research is necessary to identify circulating strains and their relation to human HBV. HBcAbs were also detected in 9.1% of human samples, confirming exposure to HBV in the region. HEV IgG antibodies were present in 17.1% of humans and were associated with higher age. All wildlife and domestic animal samples tested negative for HEV, but transmission through consumption of wild animals and contaminated water needs further investigation. The identified risk factors highlight the urgent need for measures to promote safer food handling, improved sanitation, hygiene, and practices related to contact with wild animals.
Collapse
Affiliation(s)
- María Fernanda Menajovsky
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Johan Espunyes
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autonoma de Barcelona (UAB), Catalonia, 08193 Bellaterra, Spain; (J.E.); (O.C.)
- Institute of Agrifood Research and Technology (IRTA), Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autonoma de Barcelona (UAB), Catalonia, 08193 Cerdanyola del Valles, Spain
| | - Gabriela Ulloa
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Belém 66077-830, Brazil;
| | - Stephanie Montero
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima 15015, Peru; (S.M.); (A.G.L.); (M.L.S.)
- School of Medicine, Universidad Peruana de Ciencias Aplicadas (UPC), Lima 15067, Peru
| | - Andres G. Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima 15015, Peru; (S.M.); (A.G.L.); (M.L.S.)
- Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia, Lima 15024, Peru
| | - Meddly L. Santolalla
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima 15015, Peru; (S.M.); (A.G.L.); (M.L.S.)
| | - Oscar Cabezón
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autonoma de Barcelona (UAB), Catalonia, 08193 Bellaterra, Spain; (J.E.); (O.C.)
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Pedro Mayor
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- ComFauna, Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica, Iquitos 16006, Peru
- Museo de Culturas Indígenas Amazónicas, Iquitos 16006, Peru
| |
Collapse
|
2
|
Zhang ZR, Yang ZG, Xu YM, Wang ZY, Wen J, Chen BH, Wang P, Wei W, Li Z, Dong WQ. Bioinformatics analysis of differentially expressed proteins in alcoholic fatty liver disease treated with recombinant human cytoglobin. Mol Med Rep 2021; 23:289. [PMID: 33649799 PMCID: PMC7930997 DOI: 10.3892/mmr.2021.11929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Cytoglobin (Cygb) is a globin molecule that is ubiquitously expressed in all tissues and has a protective role under oxidative stress. It has also been demonstrated to be effective in the treatment of alcoholic fatty liver disease (AFLD). In order to study the molecular mechanisms underlying its beneficial effects for the treatment of alcoholic liver, two‑dimensional electrophoresis and mass spectrometric analysis were performed on serum and liver tissues from an in vivo rat model of AFLD. A total of 26 differentially expressed proteins were identified in the serum and 20 differentially expressed proteins were identified in liver specimens. Using online bioinformatics tools, it was indicated that these differentially expressed proteins were primarily associated with pathways including binding and uptake of ligands by scavenger receptors, response to corticosteroid, plasma lipoprotein remodeling, regulation of complement cascade, hydrogen peroxide catabolic process, as well as response to nutrient and monosaccharide. The present results suggested that recombinant human Cygb exerts its role in the treatment of AFLD primarily through affecting nutrient metabolism, monocarboxylic acid biosynthesis, regulation of glutathione expression, plasma lipoprotein remodeling and removal of metabolic waste from the blood.
Collapse
Affiliation(s)
- Zi-Rong Zhang
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zheng-Gen Yang
- Guangzhou Koncen BioScience Co., Ltd., Guangzhou, Guangdong 510530, P.R. China
| | - Yan-Mei Xu
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhe-Yan Wang
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian Wen
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bo-Hong Chen
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ping Wang
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Wei
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhen Li
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wen-Qi Dong
- Department of Biopharmacy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|