1
|
Huang S, He Q, Zhou L. T cell responses in respiratory viral infections and chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:1522-1534. [PMID: 33655898 PMCID: PMC8280062 DOI: 10.1097/cm9.0000000000001388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT Respiratory viruses are major human pathogens that cause approximately 200 million pneumonia cases annually and induce various comorbidities with chronic obstructive pulmonary disease (COPD), resulting in significant health concerns and economic burdens. Clinical manifestations in respiratory viral infections and inflammations vary from asymptomatic, mild, to severe, depending on host immune cell responses to pathogens and interactions with airway epithelia. We critically review the activation, effector, and regulation of T cells in respiratory virus infections and chronic inflammations associated with COPD. Crosstalk among T cells, innate immune cells, and airway epithelial cells is discussed as essential parts of pathogenesis and protection in viral infections and COPD. We emphasize the specificity of peptide antigens and the functional heterogeneity of conventional CD4+ and CD8+ T cells to shed some light on potential cellular and molecular candidates for the future development of therapeutics and intervention against respiratory viral infections and inflammations.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Immunology Graduate Program, Cincinnati Children's Hospital, Cincinnati, OH 45249, USA
| | - Quan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
2
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
3
|
Zhang P, Gu H, Bian C, Liu N, Li Z, Duan Y, Zhang S, Wang X, Yang P. Characterization of recombinant influenza A virus as a vector expressing respiratory syncytial virus fusion protein epitopes. J Gen Virol 2014; 95:1886-1891. [PMID: 24914066 DOI: 10.1099/vir.0.064105-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and the elderly, and no vaccine against this virus has yet been licensed. Here, we report a recombinant PR8 influenza virus with the RSV fusion (F) protein epitopes of the subgroup A gene inserted into the influenza virus non-structural (NS) gene (rFlu/RSV/F) that was generated as an RSV vaccine candidate. The rescued viruses were assessed by microscopy and Western blotting. The proper expression of NS1, the NS gene product, and the nuclear export protein (NEP) of rFlu/RSV/F was also investigated using an immunofluorescent assay. The rescued virus replicated well in the MDCK kidney cell line, A549 lung adenocarcinoma cell line and CNE-2Z nasopharyngeal carcinoma cell line. BALB/c mice immunized intranasally with rFlu/RSV/F had specific haemagglutination inhibition antibody responses against the PR8 influenza virus and RSV neutralization test proteins. Furthermore, intranasal immunization with rFlu/RSV/F elicited T helper type 1-dominant cytokine profiles against the RSV strain A2 virus. Taken together, our findings suggested that rFlu/RSV/F was immunogenic in vivo and warrants further development as a promising candidate vaccine.
Collapse
Affiliation(s)
| | - Hongjing Gu
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | | | - Na Liu
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Zhiwei Li
- 302 Military Hospital, Beijing 100039, PR China
| | - Yueqiang Duan
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | | | - Xiliang Wang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Penghui Yang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- 302 Military Hospital, Beijing 100039, PR China
| |
Collapse
|
4
|
Influenza virus vaccine expressing fusion and attachment protein epitopes of respiratory syncytial virus induces protective antibodies in BALB/c mice. Antiviral Res 2014; 104:110-7. [DOI: 10.1016/j.antiviral.2014.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/21/2022]
|
5
|
Passmore C, Makidon PE, O'Konek JJ, Zahn JA, Pannu J, Hamouda T, Bitko V, Myc A, Lukacs NW, Fattom A, Baker JR. Intranasal immunization with W 80 5EC adjuvanted recombinant RSV rF-ptn enhances clearance of respiratory syncytial virus in a mouse model. Hum Vaccin Immunother 2013; 10:615-22. [PMID: 24326268 PMCID: PMC4130273 DOI: 10.4161/hv.27383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a ubiquitous virus that infects almost all people by age two and is a major source of respiratory illness in infants, the elderly and others with compromised immune systems. Currently there is no available vaccine. Prior efforts using formalin-inactivated RSV (FI-RSV) were associated with enhanced respiratory disease upon viral exposure following clinical vaccine trials. Several researchers and pharmaceutical companies have utilized vector-associated live attenuated RSV vaccines in pre-clinical and clinical studies. Another attractive approach, however, is a subunit vaccine which would be easier to produce and quality control. Our group has previously demonstrated in a murine model of infection that intranasal immunization with nanoemulsion-inactivated and adjuvanted RSV induces humoral and cellular immune responses, resulting in protection against RSV infection. The present studies characterize the immune responses elicited by intranasal RSV F protein adjuvanted with nanoemulsion. Intranasal application of nanoemulsion adjuvanted F protein induced a rapid and robust systemic and mucosal antibody response, as well as protection against subsequent RSV challenge. Importantly, RSV challenge in immunized animals did not elicit airway hyper-reactivity, a Th2-skewed immune response or immunopathology associated with hypersensitivity reactions with formalin-inactivated vaccine. These results suggest that RSV F protein adjuvanted with nanoemulsion may be a good mucosal vaccine candidate. Formulating RSV F protein in nanoemulsion creates a well-defined and well-controlled vaccine that can be delivered intranasally to induce T cell mediated immunity without inducing enhanced disease associated with the mouse model of FI-RSV vaccination and infection.
Collapse
Affiliation(s)
- Crystal Passmore
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA
| | - Paul E Makidon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA; The Unit for Laboratory Animal Medicine; Medical School; University of Michigan; Ann Arbor, MI USA
| | - Jessica J O'Konek
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA
| | - Joseph A Zahn
- University of Michigan Medical School; Ann Arbor, MI USA
| | | | | | | | - Andrzej Myc
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA; Department of Immunology of Infectious Diseases; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wroclaw, Poland
| | - Nicolas W Lukacs
- Department of Pathology; University of Michigan; Ann Arbor, MI USA
| | | | - James R Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA
| |
Collapse
|
6
|
Fairley SJ, Singh SR, Yilma AN, Waffo AB, Subbarayan P, Dixit S, Taha MA, Cambridge CD, Dennis VA. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomedicine 2013; 8:2085-99. [PMID: 23785233 PMCID: PMC3682632 DOI: 10.2147/ijn.s44155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide)
potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant
major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a
promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by
encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its
immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice,
which are desirable prerequisites for a C. trachomatis candidate nanovaccine.
Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta
potential (−14.30 mV), apparent spherical smooth morphology, and continuous slow release
pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and
chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from
BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell
subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40
(Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum
immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from
PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized
with rMOMP in Freund’s adjuvant had only a four-fold higher Th1 than Th2 antibody titer,
suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data
underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The
capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly
desirable candidate nanovaccine against C. trachomatis.
Collapse
Affiliation(s)
- Stacie J Fairley
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Krause A, Xu Y, Ross S, Wu W, Joh J, Worgall S. Absence of vaccine-enhanced RSV disease and changes in pulmonary dendritic cells with adenovirus-based RSV vaccine. Virol J 2011; 8:375. [PMID: 21801372 PMCID: PMC3166937 DOI: 10.1186/1743-422x-8-375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/29/2011] [Indexed: 01/22/2023] Open
Abstract
The development of a vaccine against respiratory syncytial virus (RSV) has been hampered by the risk for vaccine-enhanced RSV pulmonary disease induced by immunization with formalin-inactivated RSV (FIRSV). This study focuses on the evaluation of vaccine-enhanced pulmonary disease following immunization with AdF.RGD, an integrin-targeted adenovirus vector that expresses the RSV F protein and includes an RGD (Arg-Gly-Asp) motif. Immunization of BALB/c mice with AdF.RGD, resulted in anti-RSV protective immunity and induced increased RSV-specific IFN-γ T cell responses compared to FIRSV. RSV infection 5 wk after immunization with FIRSV induced pulmonary inflammatory responses in the lung, that was not observed with AdF.RGD. Additionally, In the FIRSV-immunized mice following infection with RSV, pulmonary DC increased and Tregs decreased. This suggests that distinct responses of pulmonary DC and Tregs are a features of vaccine-enhanced RSV disease and that immunization with an RGD-modified Ad vaccine does not trigger vaccine-enhanced disease.
Collapse
Affiliation(s)
- Anja Krause
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
8
|
Subbarayan P, Qin H, Pillai S, Lee JJ, Pfendt AP, Willing G, Miller ME, Dennis VA, Singh SR. Expression and characterization of a multivalent human respiratory syncytial virus protein. Mol Biol 2010. [DOI: 10.1134/s0026893310030106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Anderson R, Huang Y, Langley JM. Prospects for defined epitope vaccines for respiratory syncytial virus. Future Microbiol 2010; 5:585-602. [DOI: 10.2217/fmb.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The history of vaccines for respiratory syncytial virus (RSV) illustrates the complex immunity and immunopathology to this ubiquitous virus, starting from the failed formalin-inactivated vaccine trials performed in the 1960s. An attractive alternative to traditional live or killed virus vaccines is a defined vaccine composed of discrete antigenic epitopes for which immunological activities have been characterized as comprehensively as possible. Here we present cumulative data on murine and human CD4, CD8 and neutralization epitopes identified in RSV proteins along with information regarding their associated immune responses and host-dependent variability. Identification and characterization of RSV epitopes is a rapidly expanding topic of research with potential contributions to the tailored design of improved safe and effective vaccines.
Collapse
Affiliation(s)
- Robert Anderson
- Department of Microbiology & Immunology, Pediatrics and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Yan Huang
- Department of Microbiology & Immunology and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Joanne M Langley
- Department of Pediatrics, Community Health & Epidemiology and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| |
Collapse
|
10
|
Abstract
Respiratory syncytial virus (RSV) is a clinically significant cause of respiratory tract disease, especially among high-risk infants and immunocompromised and elderly adults. Despite the burden of disease, there is no licensed prophylactic RSV vaccine. The initial efforts to develop an RSV vaccine involved formalin-inactivated virus preparations that unexpectedly caused vaccine-enhanced disease in clinical trials in RSV-naive children. Over the last 40 years, cautious and deliberate progress has been made toward RSV vaccine development using various experimental approaches, including live attenuated strains and vector-based and viral protein subunit/DNA-based candidates. The scientific rationale, preclinical testing, and clinical development of each of these approaches are reviewed.
Collapse
Affiliation(s)
- Yoshihiko Murata
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Wu H, Dennis VA, Pillai SR, Singh SR. RSV fusion (F) protein DNA vaccine provides partial protection against viral infection. Virus Res 2009; 145:39-47. [PMID: 19540885 DOI: 10.1016/j.virusres.2009.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 01/06/2023]
Abstract
The present study was conducted to investigate the feasibility and efficacy of a RSV F DNA vaccine incorporated with a mucosal adjuvant. Two DNA vaccine vectors (DRF-412 and DRF-412-P) were developed containing residues 412-524 of the RSV F gene. These antigenic regions were cloned into the phCMV1 DNA vaccine vector. One of the DNA vaccine vectors, DRF-412, contained the ctxA(2)B region of the cholera toxin gene as a mucosal adjuvant. The in vitro expressions of these DNA vectors were confirmed in Cos-7 cells by indirect immunofluorescence and Western blot analyses. In vivo expression of the cloned gene was further confirmed in mouse muscle tissue by immunohistological analysis. The active transcription of the RSV F gene in mouse muscle cells was confirmed by RT-PCR. The purified DRF-412 and DRF-412-P DNA vectors were used to immunize mice by intramuscular injections. Our results indicated that DRF-412 and DRF-412-P vaccine vectors were as effective as live RSV in inducing neutralization antibody, systemic Ab (IgG, IgG1, IgG2a, and IgG2b) responses, and mucosal antibody responses (Ig A). The Th1 (TNF-alpha, IL-12p70, IFN-gamma, IL-2) and Th2 (IL-10, IL-6) cytokine profiles were analyzed after stimulation of spleen cells from mice immunized with purified RF-412 protein. We observed that mice inoculated with vector DRF-412 induced a higher mixed Th1/Th2 cytokine immune response than DRF-412-P. Reverse transcriptase and quantitative real-time PCR (qRT-PCR) revealed that mice immunized with the DRF-412 vector contained less viral RNA in lung tissue and the lung immunohistology study confirmed that mice immunized with DRF-412 had better protection than those immunized with the DRF-412-P vector. These results indicate that the RSV DRF-412 vaccine vector, which contains the cholera toxin subunit ctxA2B as a mucosal adjuvant may provide a better DNA vaccination strategy against RSV.
Collapse
Affiliation(s)
- Hongzhuan Wu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36101, USA
| | | | | | | |
Collapse
|