1
|
Botsios S, Tittman S, Manuelidis L. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms. Virulence 2016; 6:787-801. [PMID: 26556670 DOI: 10.1080/21505594.2015.1098804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections.
Collapse
Affiliation(s)
- Sotirios Botsios
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Sarah Tittman
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Laura Manuelidis
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| |
Collapse
|
2
|
Botsios S, Manuelidis L. CJD and Scrapie Require Agent-Associated Nucleic Acids for Infection. J Cell Biochem 2016; 117:1947-58. [PMID: 26773845 DOI: 10.1002/jcb.25495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/18/2023]
Abstract
Unlike Alzheimer's and most other neurodegenerative diseases, Transmissible Spongiform Encephalopathies (TSEs) are all caused by actively replicating infectious particles of viral size and density. Different strain-specific TSE agents cause CJD, kuru, scrapie and BSE, and all behave as latent viruses that evade adaptive immune responses and can persist for years in lymphoreticular tissues. A foreign viral structure with a nucleic acid genome best explains these TSE strains and their endemic and epidemic spread in susceptible species. Nevertheless, it is widely believed that host prion protein (PrP), without any genetic material, encodes all these strains. We developed rapid infectivity assays that allowed us to reproducibly isolate infectious particles where >85% of the starting titer separated from the majority of host components, including PrP. Remarkably, digestion of all forms of PrP did not reduce brain particle titers. To ask if TSE agents, as other viruses, require nucleic acids, we exposed high titer FU-CJD and 22L scrapie particles to potent nucleases. Both agent-strains were propagated in GT1 neuronal cells to avoid interference by complex degenerative brain changes that can impede nuclease digestions. After exposure to nucleases that are active in sarkosyl, infectivity of both agents was reproducibly reduced by ≥99%. No gold-stained host proteins or any form of PrP were visibly altered by these nucleases. In contrast, co-purifying protected mitochondrial DNA and circular SPHINX DNAs were destroyed. These findings demonstrate that TSE agents require protected genetic material to infect their hosts, and should reopen investigation of essential agent nucleic acids. J. Cell. Biochem. 117: 1947-1958, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sotirios Botsios
- Department of Surgery, Section of Neuropathology, Yale Medical School, New Haven, 06510, Connecticut
| | - Laura Manuelidis
- Department of Surgery, Section of Neuropathology, Yale Medical School, New Haven, 06510, Connecticut
| |
Collapse
|
3
|
Kipkorir T, Tittman S, Botsios S, Manuelidis L. Highly infectious CJD particles lack prion protein but contain many viral-linked peptides by LC-MS/MS. J Cell Biochem 2015; 115:2012-21. [PMID: 24933657 PMCID: PMC7166504 DOI: 10.1002/jcb.24873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 02/05/2023]
Abstract
It is widely believed that host prion protein (PrP), without nucleic acid, converts itself into an infectious form (PrP‐res) that causes transmissible encephalopathies (TSEs), such as human sporadic CJD (sCJD), endemic sheep scrapie, and epidemic BSE. There are many detailed investigations of PrP, but proteomic studies of other proteins in verified infectious TSE particles have not been pursued, even though brain homogenates without PrP retain their complete infectious titer. To define proteins that may be integral to, process, or protect an agent genome, we developed a streamlined, high‐yield purification of infectious FU‐CJD mouse brain particles with minimal PrP. Proteinase K (PK) abolished all residual particle PrP, but did not reduce infectivity, and viral‐size particles lacking PrP were ∼70S (vs. 90–120S without PK). Furthermore, over 1,500 non‐PrP proteins were still present and positively identified in high titer FU‐CJD particles without detectable PrP by mass spectrometry (LC‐MS/MS); 114 of these peptides were linked to viral motifs in the environmental–viral database, and not evident in parallel uninfected controls. Host components were also identified in both PK and non‐PK treated particles from FU‐CJD mouse brain and human sCJD brain. This abundant cellular data had several surprises, including finding Huntingtin in the sCJD but not normal human brain samples. Similarly, the neural Wiskott–Aldrich sequence and multivesicular and endosome components associated with retromer APP (Alzheimer amyloid) processing were only in sCJD. These cellular findings suggest that new therapies directed at retromer–vesicular trafficking in other neurodegenerative diseases may also counteract late‐onset sCJD PrP amyloid pathology. J. Cell. Biochem. 115: 2012–2021, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Terry Kipkorir
- Section of Neuropathology, Department of Surgery, Yale University Medical School, 333 Cedar St, New Haven, Connecticut, 06510
| | | | | | | |
Collapse
|
4
|
Kipkorir T, Colangelo CM, Manuelidis L. Proteomic analysis of host brain components that bind to infectious particles in Creutzfeldt-Jakob disease. Proteomics 2015; 15:2983-98. [PMID: 25930988 DOI: 10.1002/pmic.201500059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/26/2015] [Accepted: 04/29/2015] [Indexed: 11/07/2022]
Abstract
Transmissible encephalopathies (TSEs), such as Creutzfeldt-Jakob disease (CJD) and scrapie, are caused by infectious agents that provoke strain-specific patterns of disease. Misfolded host prion protein (PrP-res amyloid) is believed to be the causal infectious agent. However, particles that are stripped of PrP retain both high infectivity and viral proteins not detectable in uninfected mouse controls. We here detail host proteins bound with FU-CJD agent infectious brain particles by proteomic analysis. More than 98 proteins were differentially regulated, and 56 FU-CJD exclusive proteins were revealed after PrP, GFAP, C1q, ApoE, and other late pathologic response proteins were removed. Stripped FU-CJD particles revealed HSC70 (144× the uninfected control), cyclophilin B, an FU-CJD exclusive protein required by many viruses, and early endosome-membrane pathways known to facilitate viral processing, replication, and spread. Synaptosomal elements including synapsin-2 (at 33×) and AP180 (a major FU-CJD exclusive protein) paralleled the known ultrastructural location of 25 nm virus-like TSE particles and infectivity in synapses. Proteins without apparent viral or neurodegenerative links (copine-3), and others involved in viral-induced protein misfolding and aggregation, were also identified. Human sCJD brain particles contained 146 exclusive proteins, and heat shock, synaptic, and viral pathways were again prominent, in addition to Alzheimer, Parkinson, and Huntington aggregation proteins. Host proteins that bind TSE infectious particles can prevent host immune recognition and contribute to prolonged cross-species transmissions (the species barrier). Our infectious particle strategy, which reduces background sequences by >99%, emphasizes host targets for new therapeutic initiatives. Such therapies can simultaneously subvert common pathways of neurodegeneration.
Collapse
|
5
|
Miyazawa K, Emmerling K, Manuelidis L. High CJD infectivity remains after prion protein is destroyed. J Cell Biochem 2012; 112:3630-7. [PMID: 21793041 DOI: 10.1002/jcb.23286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hypothesis that host prion protein (PrP) converts into an infectious prion form rests on the observation that infectivity progressively decreases in direct proportion to the decrease of PrP with proteinase K (PK) treatment. PrP that resists limited PK digestion (PrP-res, PrP(sc)) has been assumed to be the infectious form, with speculative types of misfolding encoding the many unique transmissible spongiform encephalopathy (TSE) agent strains. Recently, a PK sensitive form of PrP has been proposed as the prion. Thus we re-evaluated total PrP (sensitive and resistant) and used a cell-based assay for titration of infectious particles. A keratinase (NAP) known to effectively digest PrP was compared to PK. Total PrP in FU-CJD infected brain was reduced to ≤0.3% in a 2 h PK digest, yet there was no reduction in titer. Remaining non-PrP proteins were easily visualized with colloidal gold in this highly infectious homogenate. In contrast to PK, NAP digestion left 0.8% residual PrP after 2 h, yet decreased titer by >2.5 log; few residual protein bands remained. FU-CJD infected cells with 10× the infectivity of brain by both animal and cell culture assays were also evaluated. NAP again significantly reduced cell infectivity (>3.5 log). Extreme PK digestions were needed to reduce cell PrP to <0.2%, yet a very high titer of 8 logs survived. Our FU-CJD brain results are in good accord with the only other report on maximal PrP destruction and titer. It is likely that one or more residual non-PrP proteins may protect agent nucleic acids in infectious particles.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Department of Surgery, Yale Medical School, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
6
|
Robinson SJ, Samuel MD, O'Rourke KI, Johnson CJ. The role of genetics in chronic wasting disease of North American cervids. Prion 2012; 6:153-62. [PMID: 22460693 DOI: 10.4161/pri.19640] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic wasting disease (CWD) is a major concern for the management of North American cervid populations. This fatal prion disease has led to declines in populations which have high CWD prevalence and areas with both high and low infection rates have experienced economic losses in wildlife recreation and fears of potential spill-over into livestock or humans. Research from human and veterinary medicine has established that the prion protein gene (Prnp) encodes the protein responsible for transmissible spongiform encephalopathies (TSEs). Polymorphisms in the Prnp gene can lead to different prion forms that moderate individual susceptibility to and progression of TSE infection. Prnp genes have been sequenced in a number of cervid species including those currently infected by CWD (elk, mule deer, white-tailed deer, moose) and those for which susceptibility is not yet determined (caribou, fallow deer, sika deer). Over thousands of sequences examined, the Prnp gene is remarkably conserved within the family Cervidae; only 16 amino acid polymorphisms have been reported within the 256 amino acid open reading frame in the third exon of the Prnp gene. Some of these polymorphisms have been associated with lower rates of CWD infection and slower progression of clinical CWD. Here we review the body of research on Prnp genetics of North American cervids. Specifically, we focus on known polymorphisms in the Prnp gene, observed genotypic differences in CWD infection rates and clinical progression, mechanisms for genetic TSE resistance related to both the cervid host and the prion agent and potential for natural selection for CWD-resistance. We also identify gaps in our knowledge that require future research.
Collapse
Affiliation(s)
- Stacie J Robinson
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA.
| | | | | | | |
Collapse
|
7
|
A simple, versatile and sensitive cell-based assay for prions from various species. PLoS One 2011; 6:e20563. [PMID: 21655184 PMCID: PMC3105100 DOI: 10.1371/journal.pone.0020563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/03/2011] [Indexed: 12/03/2022] Open
Abstract
Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies.
Collapse
|
8
|
Miyazawa K, Emmerling K, Manuelidis L. Replication and spread of CJD, kuru and scrapie agents in vivo and in cell culture. Virulence 2011; 2:188-99. [PMID: 21527829 DOI: 10.4161/viru.2.3.15880] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transmissible Spongiform Encephalopathy (TSE) agents are defined by their virulence for particular species, their spread in the population, their incubation time to cause disease, and their neuropathological sequelae. Murine adapted human agents, including sporadic CJD (sCJD), New Guinea kuru, and Japanese CJD agents, display particularly distinct incubation times and maximal infectious brain titers. They also induce agent-specific patterns of neurodegeneration. When these TSE agents are transmitted to cultured hypothalamic GT1 cells they maintain their unique identities. Nevertheless, the human kuru (kCJD) and Japanese FU-CJD agents, as well as the sheep 22L and 263K scrapie agents display doubling times that are 8x to 33x faster in cells than in brain, indicating release from complex innate immune responses. These data are most consistent with a foreign viral structure, rather than an infectious form of host prion protein (PrP-res). Profound agent-specific inhibitory effects are also apparent in GT1 cells, and maximal titer plateau in kCJD and FU-CJD differed by 1,000-fold in a cell-based assay. Remarkably, the lower titer kCJD agent rapidly induced de novo PrP-res in GT1 cells, whereas the high titer FU-CJD agent replicated silently for multiple passages. Although PrP-res is often considered to be toxic, PrP-res instead may be part of a primal defense and/or clearance mechanism against TSE environmental agents. Limited spread of particular TSE agents through nanotubes and cell-to-cell contacts probably underlies the long peripheral phase of human CJD.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Yale Medical School, Section of Neuropathology, New Haven, CT, USA
| | | | | |
Collapse
|
9
|
Miyazawa K, Emmerling K, Manuelidis L. Proliferative arrest of neural cells induces prion protein synthesis, nanotube formation, and cell-to-cell contacts. J Cell Biochem 2011; 111:239-47. [PMID: 20518071 DOI: 10.1002/jcb.22723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Host prion protein (PrP) is most abundant in neurons where its functions are unclear. PrP mRNA transcripts accumulate at key developmental times linked to cell division arrest and terminal differentiation. We sought to find if proliferative arrest was sufficient to cause an increase in PrP in developing neurons. Rat neuronal precursor cells transduced with the temperature sensitive SV-40 T antigen just before terminal differentiation (permissive at 33 degrees C but not at 37.5 degrees C) were analyzed. By 2 days, T antigen was decreased in all cells at 37.5 degrees C, with few DNA synthesizing (BrdU+) cells. Proliferative arrest induced by 37.5 degrees C yielded a fourfold PrP increase. When combined with reduced serum, a sevenfold increase was found. Within 2 days additional neuritic processes with abundant plasma membrane PrP connected many cells. PrP also concentrated between apposed stationary cells, and on extending growth cones and their filopodia. Stationary cells were maintained for 30 days in their original plate, and they reverted to a proliferating low PrP state at 33 degrees C. Ultrastructural studies confirmed increased nanotubes and adherent junctions between high PrP cells. Additionally, some cells shared cytoplasm and these apparently open regions are likely conduits for the exchange of organelles and viruses that have been observed in living cells. Thus PrP is associated with dynamic recognition and contact functions, and may be involved in the transient formation of neural syncytia at key times in embryogenesis. This system can be used to identify drugs that inhibit the transport and spread of infectious CJD particles through the nervous system.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Yale Medical School, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
10
|
Manuelidis L. Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. J Neurovirol 2010; 17:131-45. [PMID: 21165784 DOI: 10.1007/s13365-010-0007-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 11/29/2022]
Abstract
In transmissible encephalopathies (TSEs), it is commonly believed that the host prion protein transforms itself into an infectious form that encodes the many distinct TSE agent strains without any nucleic acid. Using a Ф29 polymerase and chromatography strategy, highly infectious culture and brain preparations of three different geographic TSE agents all contained novel circular DNAs. Two circular "Sphinx" sequences, of 1.8 and 2.4 kb, copurified with infectious particles in sucrose gradients and, as many protected viruses, resisted nuclease digestion. Each contained a replicase ORF related to microviridae that infect commensal Acinetobacter. Infectious gradient fractions also contained nuclease-resistant 16 kb mitochondrial DNAs and analysis of >4,000 nt demonstrated a 100% identity with their species-specific sequences. This confirmed the fidelity of the newly identified sequences detailed here. Conserved replicase regions within the two Sphinx DNAs were ultimately detected by PCR in cytoplasmic preparations from normal cells and brain but were 2,500-fold less than in parallel-infected samples. No trace of the two Sphinx replicases was found in enzymes, detergents, or other preparative materials using exhaustive PCR cycles. The Sphinx sequences uncovered here could have a role in TSE infections despite their apparently symbiotic, low-level persistence in normal cells and tissues. These, as well as other cryptic circular DNAs, may cause or contribute to neurodegeneration and infection-associated tumor transformation. The current results also raise the intriguing possibility that mammals may incorporate more of the prokaryotic world in their cytoplasm than previously recognized.
Collapse
Affiliation(s)
- Laura Manuelidis
- Yale University Medical School, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Balkema-Buschmann A, Eiden M, Hoffmann C, Kaatz M, Ziegler U, Keller M, Groschup MH. BSE infectivity in the absence of detectable PrP(Sc) accumulation in the tongue and nasal mucosa of terminally diseased cattle. J Gen Virol 2010; 92:467-76. [PMID: 20943888 DOI: 10.1099/vir.0.025387-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of bovine spongiform encephalopathy (BSE) infections in cattle has been studied in recent years by using highly sensitive transgenic-mouse bioassays. It has been shown that in this species, the BSE agent amplifies almost exclusively in the central and peripheral nervous system. Even in animals that were killed in the clinical end stage of the disease, the lymphoreticular system was shown to be free of the infectious agent. No other animal species investigated to date exhibits such a restricted BSE-infectivity distribution pattern. However, there is growing evidence for a radial spread of infection from the central nervous system (CNS) into the periphery during the late stages of the disease. In this study, we challenged transgenic mice overexpressing the bovine prion protein with homogenates prepared from a wide variety of tissue samples collected from BSE-infected cattle. As prion infections involve the conversion of the cellular prion protein into its abnormally folded isoform (PrP(Sc)), we applied various detection methods, such as the purification of scrapie-associated fibrils, immunohistochemistry, and the protein misfolding cyclic amplification technique. Despite negative results using these highly sensitive biochemical methods, we were, for the first time, able to detect BSE infectivity in the tongue and in the nasal mucosa of terminally diseased BSE field cases as well as experimentally challenged cattle by transgenic-mouse bioassay. This shows that BSE infectivity can be present in the peripheral tissues of terminally diseased cattle, including tissues used for human consumption.
Collapse
Affiliation(s)
- Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, Laude H, Béringue V. The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 2010; 6:e1000859. [PMID: 20419156 PMCID: PMC2855332 DOI: 10.1371/journal.ppat.1000859] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 03/16/2010] [Indexed: 11/18/2022] Open
Abstract
Prions are unconventional infectious agents thought to be primarily composed of PrP(Sc), a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrP(Sc) conformation could encode this 'strain' diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrP(Sc) aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrP(Sc) aggregates from PrP(C). The distribution of PrP(Sc) and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrP(Sc) peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12-30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrP(Sc) aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics.
Collapse
Affiliation(s)
- Philippe Tixador
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laëtitia Herzog
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Jaumain
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Annick Le Dur
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail: (HL); (VB)
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail: (HL); (VB)
| |
Collapse
|
13
|
Agent-specific Shadoo responses in transmissible encephalopathies. J Neuroimmune Pharmacol 2010; 5:155-63. [PMID: 20112073 DOI: 10.1007/s11481-010-9191-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) are neurodegenerative diseases caused by an infectious agent with viral properties. Host prion protein (PrP), a marker of late stage TSE pathology, is linked to a similar protein called Shadoo (Sho). Sho is reduced in mice infected with the RML scrapie agent, but has not been investigated in other TSEs. Although PrP is required for infection by TSE agents, it is not known if Sho is similarly required. Presumably Sho protects cells from toxic effects of misfolded PrP. We compared Sho and PrP changes after infection by very distinct TSE agents including sporadic CJD, Asiatic CJD, New Guinea kuru, vCJD (the UK epidemic bovine agent) and 22L sheep scrapie, all passaged in standard mice. We found that Sho reductions were agent-specific. Variable Sho reductions in standard mice could be partly explained by agent-specific differences in regional neuropathology. However, Sho did not follow PrP misfolding in any quantitative or consistent way. Tga20 mice with high murine PrP levels revealed additional agent-specific differences. Sho was unaffected by Asiatic CJD yet was markedly reduced by the kuru agent in Tga20 mice; in standard mice both agents induced the same Sho reductions. Analyses of neural GT1 cells demonstrated that Sho was not essential for TSE infections. Furthermore, because all infected GT1 cells appeared as healthy as uninfected controls, Sho was not needed to protect infected cells from their "toxic" burden of abundant abnormal PrP and intracellular amyloid.
Collapse
|
14
|
The kuru infectious agent is a unique geographic isolate distinct from Creutzfeldt-Jakob disease and scrapie agents. Proc Natl Acad Sci U S A 2009; 106:13529-34. [PMID: 19633190 DOI: 10.1073/pnas.0905825106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human sporadic Creutzfeldt-Jakob disease (sCJD), endemic sheep scrapie, and epidemic bovine spongiform encephalopathy (BSE) are caused by a related group of infectious agents. The new U.K. BSE agent spread to many species, including humans, and clarifying the origin, specificity, virulence, and diversity of these agents is critical, particularly because infected humans do not develop disease for many years. As with viruses, transmissible spongiform encephalopathy (TSE) agents can adapt to new species and become more virulent yet maintain fundamentally unique and stable identities. To make agent differences manifest, one must keep the host genotype constant. Many TSE agents have revealed their independent identities in normal mice. We transmitted primate kuru, a TSE once epidemic in New Guinea, to mice expressing normal and approximately 8-fold higher levels of murine prion protein (PrP). High levels of murine PrP did not prevent infection but instead shortened incubation time, as would be expected for a viral receptor. Sporadic CJD and BSE agents and representative scrapie agents were clearly different from kuru in incubation time, brain neuropathology, and lymphoreticular involvement. Many TSE agents can infect monotypic cultured GT1 cells, and unlike sporadic CJD isolates, kuru rapidly and stably infected these cells. The geographic independence of the kuru agent provides additional reasons to explore causal environmental pathogens in these infectious neurodegenerative diseases.
Collapse
|
15
|
Karapetyan YE, Saá P, Mahal SP, Sferrazza GF, Sherman A, Salès N, Weissmann C, Lasmézas CI. Prion strain discrimination based on rapid in vivo amplification and analysis by the cell panel assay. PLoS One 2009; 4:e5730. [PMID: 19478942 PMCID: PMC2684634 DOI: 10.1371/journal.pone.0005730] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022] Open
Abstract
Prion strain identification has been hitherto achieved using time-consuming incubation time determinations in one or more mouse lines and elaborate neuropathological assessment. In the present work, we make a detailed study of the properties of PrP-overproducing Tga20 mice. We show that in these mice the four prion strains examined are rapidly and faithfully amplified and can subsequently be discriminated by a cell-based procedure, the Cell Panel Assay.
Collapse
Affiliation(s)
- Yervand Eduard Karapetyan
- Department of Infectology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Paula Saá
- Department of Infectology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sukhvir Paul Mahal
- Department of Infectology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Gian Franco Sferrazza
- Department of Infectology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Alexandra Sherman
- Department of Infectology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Nicole Salès
- Department of Infectology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Charles Weissmann
- Department of Infectology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Corinne Ida Lasmézas
- Department of Infectology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Manuelidis L, Liu Y, Mullins B. Strain-specific viral properties of variant Creutzfeldt-Jakob disease (vCJD) are encoded by the agent and not by host prion protein. J Cell Biochem 2009; 106:220-31. [PMID: 19097123 DOI: 10.1002/jcb.21988] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human CJD, endemic sheep scrapie, epidemic bovine spongiform encephalopathy (BSE), and other transmissible spongiform encephalopathies (TSEs), are caused by a group of related but molecularly uncharacterized infectious agents. The UK-BSE agent infected many species, including humans where it causes variant CJD (vCJD). As in most viral infections, different TSE disease phenotypes are determined by both the agent strain and the host species. TSE strains are most reliably classified by incubation time and regional neuropathology in mice expressing wild-type (wt) prion protein (PrP). We compared vCJD to other human and animal derived TSE strains in both mice and neuronal cultures expressing wt murine PrP. Primary and serial passages of the human vCJD agent, as well as the highly selected mutant 263K sheep scrapie agent, revealed profound strain-specific characteristics were encoded by the agent, not by host PrP. Prion theory posits that PrP converts itself into the infectious agent, and thus short incubations require identical PrP sequences in the donor and recipient host. However, wt PrP mice injected with human vCJD brain homogenates showed dramatically shorter primary incubation times than mice expressing only human PrP, a finding not in accord with a PrP species barrier. All mouse passage brains showed the vCJD agent derived from a stable BSE strain. Additionally, both vCJD brain and monotypic neuronal cultures produced a diagnostic 19 kDa PrP fragment previously observed only in BSE and vCJD primate brains. Monotypic cultures can be used to identify the intrinsic, strain-determining molecules of TSE infectious particles.
Collapse
Affiliation(s)
- Laura Manuelidis
- Yale Medical School, 333 Cedar Street, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
17
|
Gordon PMK, Schütz E, Beck J, Urnovitz HB, Graham C, Clark R, Dudas S, Czub S, Sensen M, Brenig B, Groschup MH, Church RB, Sensen CW. Disease-specific motifs can be identified in circulating nucleic acids from live elk and cattle infected with transmissible spongiform encephalopathies. Nucleic Acids Res 2008; 37:550-6. [PMID: 19059996 PMCID: PMC2632913 DOI: 10.1093/nar/gkn963] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To gain insight into the disease progression of transmissible spongiform encephalopathies (TSE), we searched for disease-specific patterns in circulating nucleic acids (CNA) in elk and cattle. In a 25-month time-course experiment, CNAs were isolated from blood samples of 24 elk (Cervus elaphus) orally challenged with chronic wasting disease (CWD) infectious material. In a separate experiment, blood-sample CNAs from 29 experimental cattle (Bos taurus) 40 months post-inoculation with clinical bovine spongiform encephalopathy (BSE) were analyzed according to the same protocol. Next-generation sequencing provided broad elucidation of sample CNAs: we detected infection-specific sequences as early as 11 months in elk (i.e. at least 3 months before the appearance of the first clinical signs) and we established CNA patterns related to BSE in cattle at least 4 months prior to clinical signs. In elk, a progression of CNA sequence patterns was found to precede and correlate with macro-observable disease progression, including delayed CWD progression in elk with PrP genotype LM. Some of the patterns identified contain transcription-factor-binding sites linked to endogenous retroviral integration. These patterns suggest that retroviruses may be connected to the manifestation of TSEs. Our results may become useful for the early diagnosis of TSE in live elk and cattle.
Collapse
Affiliation(s)
- Paul M K Gordon
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Sun Center of Excellence for Visual Genomics, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|