1
|
Wooster AL, Girgis LH, Brazeale H, Anderson TS, Wood LM, Lowe DB. Dendritic cell vaccine therapy for colorectal cancer. Pharmacol Res 2021; 164:105374. [PMID: 33348026 PMCID: PMC7867624 DOI: 10.1016/j.phrs.2020.105374] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths in the United States despite an array of available treatment options. Current standard-of-care interventions for this malignancy include surgical resection, chemotherapy, and targeted therapies depending on the disease stage. Specifically, infusion of anti-vascular endothelial growth factor agents in combination with chemotherapy was an important development in improving the survival of patients with advanced colorectal cancer, while also helping give rise to other forms of anti-angiogenic therapies. Yet, one approach by which tumor angiogenesis may be further disrupted is through the administration of a dendritic cell (DC) vaccine targeting tumor-derived blood vessels, leading to cytotoxic immune responses that decrease tumor growth and synergize with other systemic therapies. Early generations of such vaccines exhibited protection against various forms of cancer in pre-clinical models, but clinical results have historically been disappointing. Sipuleucel-T (Provenge®) was the first, and to-date, only dendritic cell-based therapy to receive FDA approval after significantly increasing overall survival in prostate cancer patients. The unparalleled success of Sipuleucel-T has helped revitalize the clinical development of dendritic cell vaccines, which will be examined in this review. We also highlight the promise of these vaccines to instill anti-angiogenic immunity for individuals with advanced colorectal cancer.
Collapse
Affiliation(s)
- Amanda L Wooster
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Lydia H Girgis
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Hayley Brazeale
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Trevor S Anderson
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Laurence M Wood
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
2
|
Barra F, Leone Roberti Maggiore U, Bogani G, Ditto A, Signorelli M, Martinelli F, Chiappa V, Lorusso D, Raspagliesi F, Ferrero S. New prophylactics human papilloma virus (HPV) vaccines against cervical cancer. J OBSTET GYNAECOL 2018; 39:1-10. [DOI: 10.1080/01443615.2018.1493441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Fabio Barra
- Academic Unit of Obstetrics and Gynaecology, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Giorgio Bogani
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Antonino Ditto
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Mauro Signorelli
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Fabio Martinelli
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Valentina Chiappa
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Domenica Lorusso
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | | | - Simone Ferrero
- Academic Unit of Obstetrics and Gynaecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genoa, Italy
| |
Collapse
|
3
|
Ding C, Wang X, Ma J, Xie M, Dong Q, Liu Q. Exploration of the bacterial invasion capacity of Listeria monocytogenes in ZF4 cells. Microb Pathog 2018; 124:238-243. [PMID: 30145253 DOI: 10.1016/j.micpath.2018.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022]
Abstract
Despite the results from zebrafish challenged model have demonstrated that Listeria monocytogenes (Lm) has strong adjuvant effects when this attenuated pathogenic bacteria is viewed as aquaculture vaccine vector, the underlying mechanism is not clear and extensive investigations are required. To further explore the potential of Lm in the field of aquaculture vaccine, zebrafish embryonic fibroblast cell line (ZF4) was used to evaluate the invasion ability of Lm. The data from cellular level showed that Lm had the lower invasion tendentiousness in ZF4 cells while bacterial invasion capacity was compared between zebrafish embryos cell line and human intestinal epithelial cell line. In ZF4 cells, there is no significant difference in bacterial invasion capacity between wild strain EGD-e and double-deleted strain ΔactA/inlB, which suggested that this attenuated effect was not showed in zebrafish cells. In addition, translation analysis indicated that the expressions of CD4 and CD8a in ZF4 cells increased after 2-h infection of the two Lm strains. These results further demonstrated that Lm presented multiple advantages including lower pathogenicity and antigen presentation when attenuated stain was viewed as aquaculture vaccine vector.
Collapse
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Manman Xie
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
4
|
Ding C, Ma J, Dong Q, Liu Q. Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunol Lett 2018; 197:70-77. [PMID: 29550258 DOI: 10.1016/j.imlet.2018.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Live bacteria, including attenuated bacteria and probiotics, can be engineered to deliver target antigen to excite the host immune system. The preponderance of these live bacterial vaccine vectors is that they can stimulate durable humoral and cellular immunity. Moreover, delivery strategies of heterologous antigen in live bacterial promote the applications of new vaccine development. Genetic technologies are evolving, which potentiate the developing of heterologous antigen delivery systems, including bacterial surface display system, bacterial secretion system and balanced lethal vector system. Although the live bacterial vaccine vector is a powerful adjuvant, certain disadvantages, such as safety risk, must also be taken into account. In this review, we compare the development of representative live bacterial vectors, and summarize the main characterizations of the various delivery strategies of heterologous antigen in live vector vaccines.
Collapse
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
5
|
Bolhassani A, Naderi N, Soleymani S. Prospects and progress of Listeria-based cancer vaccines. Expert Opin Biol Ther 2017; 17:1389-1400. [PMID: 28823183 DOI: 10.1080/14712598.2017.1366446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The development of an effective therapeutic vaccine to induce cancer-specific immunity remains problematic. Recently, a species of intracellular pathogen known as Listeria monocytogenes (Lm) has been used to transfer DNA, RNA and proteins into tumour cells as well as elicit an immune response against tumour-specific antigens. Areas covered: Herein, the authors provide the mechanisms of different Listeria monocytogenes strains, which are potential therapeutic cancer vaccine vectors, in addition to their preclinical and clinical development. They also speculate on the future of Lm-based tumour immunotherapies. The article is based on literature published on PubMed and data reported in clinical trials. Expert opinion: Attenuated strains of Listeria monocytogenes have safely been applied as therapeutic bacterial vectors for the delivery of cancer vaccines. These vectors stimulate MHCI and MHCII pathways as well as the proliferation of antigen-specific T lymphocytes. Several preclinical studies have demonstrated the potency of Lm in intracellular gene and protein delivery in vitro and in vivo. They have also indicated safety and efficiacy in clinical trials. Readers should be aware that the ability of attenuated Lm strains to induce potent immune responses depends on the type of deleted or inactivated Lm virulent gene or genes.
Collapse
Affiliation(s)
- Azam Bolhassani
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| | - Niloofar Naderi
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| | - Sepehr Soleymani
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
6
|
Yan X, Wang D, Liang F, Fu L, Guo C. HPV16L1-attenuated Shigella recombinant vaccine induced strong vaginal and systemic immune responses in guinea pig model. Hum Vaccin Immunother 2015; 10:3491-8. [PMID: 25483698 DOI: 10.4161/hv.36084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Though human papillomavirus (HPV) vaccines based on L1 virus-like particles (VLPs) have excellent protective effect against HPV-induced cervical cancer, they are too expensive to be afforded by the developing countries, where most cases of cervical cancer occur. A live bacterial-based vaccine could be an inexpensive alternative. The aim of this study was to evaluate the potential value of live attenuated Shigella. flexneri 2a sc602 strain-based HPV16L1 as a high-efficiency, low-cost HPV16L1 mucosal vaccine. Recombinant sc602/L1 vaccine induced high L1-specific systemic and mucosal immune responses as well as cell-mediated Th1 and Th2 immune responses in guinea pig model. Sc602/L1 vaccine induced higher L1-specific IgG and IgA antibodies as well as HPV16-neutralizing antibodies in genital region in sc602/L1 mucosal immunized animals than in L1 intramuscular immunized animals. Though both are via mucosal delivery, immunized sc602/L1 vaccine by rectum route induced higher L1-specific IgA and IgG titers in genital region than by conjunctiva route. In addition, sc602/L1 also strongly increased L1-specific IFN-γ and IL-4 expression, implying its effect on cell-mediated immune response. HPV16L1 was expressed in sc602 bacteria and their biologic characteristics were detected by immunoblot, electron microscope and HeLa cell invasion assay. Guinea pigs were immunized with sc602L1 through conjunctiva (i.c.) or rectum (i.r.). Mucosal and systemic immune responses were detected by ELISA, ELISPOT and Neutralization activity assays. Strong mucosal and systemic immune responses were induced by sc602/L1 vaccine. This study provides evidence that sc602/L1 vaccine may have protective effect on HPV infection.
Collapse
Affiliation(s)
- Xiaofei Yan
- a Department of Genetics and Molecular Biology ; Medical College of Xi'an Jiaotong University ; Xi'an , Shaanxi , China
| | | | | | | | | |
Collapse
|
7
|
Yang B, Yang A, Peng S, Pang X, Roden RBS, Wu TC, Hung CF. Co-administration with DNA encoding papillomavirus capsid proteins enhances the antitumor effects generated by therapeutic HPV DNA vaccination. Cell Biosci 2015; 5:35. [PMID: 26113972 PMCID: PMC4480891 DOI: 10.1186/s13578-015-0025-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022] Open
Abstract
Background DNA vaccines have emerged as attractive candidates for the control of human papillomavirus (HPV)-associated malignancies. However, DNA vaccines suffer from limited immunogenicity and thus strategies to enhance DNA vaccine potency are needed. We have previously demonstrated that for DNA vaccines encoding HPV-16 E7 antigen (CRT/E7) linkage with calreticulin (CRT) linked enhances both the E7-specific CD8+ T cell immune responses and antitumor effects against E7-expressing tumors. In the current study, we aim to introduce an approach to elicit potent CD4+ T cell help for the enhancement of antigen-specific CD8+ T cell immune responses generated by CRT/E7 DNA vaccination by using co-administration of a DNA vector expressing papillomavirus major and minor capsid antigens, L1 and L2. Result We showed that co-administration of vectors containing codon-optimized bovine papillomavirus type 1 (BPV-1) L1 and L2 in combination with DNA vaccines could elicit enhanced antigen-specific CD8+ in both CRT/E7 and ovalbumin (OVA) antigenic systems. We also demonstrated that co-administration of vectors expressing BPV-1 L1 and/or L2 DNA with CRT/E7 DNA led to the generation of L1/L2-specific CD4+ T cell immune responses and L1-specific neutralizing antibodies. Furthermore, we showed that co-administration with DNA encoding BPV1 L1 significantly enhances the therapeutic antitumor effects generated by CRT/E7 DNA vaccination. In addition, the observed enhancement of CD8+ T cell immune responses by DNA encoding L1 and L2 was also found to extend to HPV-16 L1/L2 system. Conclusion Our strategy elicits both potent neutralizing antibody and therapeutic responses and may potentially be extended to other antigenic systems beyond papillomavirus for the control of infection and/or cancer.
Collapse
Affiliation(s)
- Benjamin Yang
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Andrew Yang
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Shiwen Peng
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC USA
| | - Richard B S Roden
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA ; Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - T-C Wu
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA ; Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD USA ; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Chien-Fu Hung
- Departments of Pathology, School of Medicine, Johns Hopkins University, CRBII Room 307, 1550 Orleans Street, Baltimore, MD 21231 USA ; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD USA
| |
Collapse
|
8
|
Toussaint B, Chauchet X, Wang Y, Polack B, Le Gouëllec A. Live-attenuated bacteria as a cancer vaccine vector. Expert Rev Vaccines 2014; 12:1139-54. [PMID: 24124876 DOI: 10.1586/14760584.2013.836914] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the emerging field of active and specific cancer immunotherapy, strategies using live-attenuated bacterial vectors have matured in terms of academic and industrial development. Different bacterial species can be genetically engineered to deliver antigen to APCs with strong adjuvant effects due to their microbial origin. Proteic or DNA-encoding antigen delivery routes and natural bacterial tropisms might differ among species, permitting different applications. After many academic efforts to resolve safety and efficacy issues, some firms have recently engaged clinical trials with live Listeria or Salmonella spp. We describe here the main technological advances that allowed bacteria to become one of the most promising vectors in cancer immunotherapy.
Collapse
Affiliation(s)
- Bertrand Toussaint
- Laboratoire TIMC-IMAG/TheREx (UMR 5525 CNRS-UJF), UFR de médecine, Université Joseph Fourier Grenoble I, 38700 La Tronche Cedex, France
| | | | | | | | | |
Collapse
|
9
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Hervé Fridman W, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 3:e28185. [PMID: 24800178 PMCID: PMC4008456 DOI: 10.4161/onci.28185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022] Open
Abstract
During the past 2 decades, the possibility that preparations capable of eliciting tumor-specific immune responses would mediate robust therapeutic effects in cancer patients has received renovated interest. In this context, several approaches to vaccinate cancer patients against their own malignancies have been conceived, including the administration of DNA constructs coding for one or more tumor-associated antigens (TAAs). Such DNA-based vaccines conceptually differ from other types of gene therapy in that they are not devised to directly kill cancer cells or sensitize them to the cytotoxic activity of a drug, but rather to elicit a tumor-specific immune response. In spite of an intense wave of preclinical development, the introduction of this immunotherapeutic paradigm into the clinical practice is facing difficulties. Indeed, while most DNA-based anticancer vaccines are well tolerated by cancer patients, they often fail to generate therapeutically relevant clinical responses. In this Trial Watch, we discuss the latest advances on the use of DNA-based vaccines in cancer therapy, discussing the literature that has been produced around this topic during the last 13 months as well as clinical studies that have been launched in the same time frame to assess the actual therapeutic potential of this intervention.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers; Paris, France
| | - Wolf Hervé Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
10
|
Xu D, Wang D, Yang X, Cao M, Yu J, Wang Y. Fusion of HPV L1 into Shigella surface IcsA: a new approach in developing live attenuated Shigella-HPV vaccine. Antiviral Res 2013; 102:61-9. [PMID: 24333518 DOI: 10.1016/j.antiviral.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/05/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
Abstract
Despite the success of L1 virus-like particles (VLPs) vaccines in prevention of high-risk human papillomavirus (HPV) infection and cervical cancer, extraordinary high cost for the complete vaccination has impeded widespread use of the vaccine in resource-poor countries, where cervical cancers impose greater challenge. Presentation of HPV L1 protein by attenuated pathogenic bacteria through natural infection provides a promising low-cost and convenient alternative. Here, we describe the construction and characterization of attenuated L1-expressing Shigella vaccine candidate, by fusion of L1 into the autotransporter of Shigella sonnei, IcsA, an essential virulence factor responsible for actin-based motility. The functional α domain of IcsA was replaced by codon-optimized L1 gene with independent open reading frames (ORFs) facilitated by suicide vector pJCB12. The L1 gene was stabilized in the genome of recombinant S. sonnei with protein expression and assembly of VLPs in the bacterial cytoplasm. Through conjunctival route vaccination in guinea pigs, L1-containing S. sonnei was able to elicit specific immune response to HPV16 L1 VLP as well as bacterial antigens. The results demonstrated the feasibility of the novel stratagem to develop prophylactic Shigella-HPV vaccines.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Cancer Research, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an 710061, China; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Depu Wang
- Institute of Cancer Research, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaofeng Yang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Cao
- Institute of Cancer Research, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun Yu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yili Wang
- Institute of Cancer Research, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
11
|
Shollenberger LM, Bui CT, Paterson Y, Nyhoff L, Harn DA. HIV-1 vaccine-specific responses induced by Listeria vector vaccines are maintained in mice subsequently infected with a model helminth parasite, Schistosoma mansoni. Vaccine 2013; 31:5651-8. [PMID: 24120546 DOI: 10.1016/j.vaccine.2013.09.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/30/2013] [Accepted: 09/27/2013] [Indexed: 01/07/2023]
Abstract
In areas co-endemic for helminth parasites and HIV/AIDS, infants are often administered vaccines prior to infection with immune modulatory helminth parasites. Systemic Th2 biasing and immune suppression caused by helminth infection reduces cell-mediated responses to vaccines such as tetanus toxoid and BCG. Therefore, we asked if infection with helminthes post-vaccination, alters already established vaccine induced immune responses. In our model, mice are vaccinated against HIV-1 Gag using a Listeria vaccine vector (Lm-Gag) in a prime-boost manner, then infected with the human helminth parasite Schistosoma mansoni. This allows us to determine if established vaccine responses are maintained or altered after helminth infection. Our second objective asked if helminth infection post-vaccination alters the recipient's ability to respond to a second boost. Here we compared responses between uninfected mice, schistosome infected mice, and infected mice that were given an anthelminthic, which occurred coincident with the boost or four weeks prior, as well as comparing to un-boosted mice. We report that HIV-1 vaccine-specific responses generated by Listeria vector HIV-1 vaccines are maintained following subsequent chronic schistosome infection, providing further evidence that Listeria vector vaccines induce potent vaccine-specific responses that can withstand helminth infection. We also were able to demonstrate that administration of a second Listeria boost, which markedly enhanced the immune response, was minimally impacted by schistosome infection, or anthelminthic therapy. Surprisingly, we also observed enhanced antibody responses to HIV Gag in vaccinated mice subsequently infected with schistosomes.
Collapse
Affiliation(s)
- Lisa M Shollenberger
- Department of Infectious Diseases, College of Veterinary Medicine and the Center for Tropical and Emerging Global Diseases, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602-7387, USA.
| | | | | | | | | |
Collapse
|
12
|
Shollenberger LM, Bui C, Paterson Y, Allen K, Harn D. Successful vaccination of immune suppressed recipients using Listeria vector HIV-1 vaccines in helminth infected mice. Vaccine 2013; 31:2050-6. [PMID: 23470236 DOI: 10.1016/j.vaccine.2013.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/22/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Vaccines for HIV, malaria and TB remain high priorities, especially for sub-Saharan populations. The question is: will vaccines currently in development for these diseases function in populations that have a high prevalence of helminth infection? Infection with helminth parasites causes immune suppression and a CD4+ Th2 skewing of the immune system, thereby impairing Th1-type vaccine efficacy. In this study, we conduct HIV vaccine trials in mice with and without chronic helminth infection to mimic the human vaccine recipient populations in Sub-Saharan Africa and other helminth parasite endemic regions of the world, as there is large overlap in global prevalence for HIV and helminth infection. Here, we demonstrate that Listeria monocytogenes functions as a vaccine vector to drive robust and functional HIV-specific cellular immune responses, irrespective of chronic helminth infection. This observation represents a significant advance in the field of vaccine research and underscores the concept that vaccines in the developmental pipeline should be effective in the target populations.
Collapse
Affiliation(s)
- Lisa M Shollenberger
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602-7387, USA.
| | | | | | | | | |
Collapse
|
13
|
Guirnalda P, Wood L, Paterson Y. Listeria monocytogenes and its products as agents for cancer immunotherapy. Adv Immunol 2012; 113:81-118. [PMID: 22244580 DOI: 10.1016/b978-0-12-394590-7.00004-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review covers the use of Listeria monocytogenes and its virulence factors as cancer immunotherapeutics. We describe their development as vectors to carry protein tumor antigen and eukaryotic DNA plasmids to antigen-presenting cells and efforts to harness their tumor-homing properties. We also describe their use as vectors of angiogenic molecules to induce an immune response that will destroy tumor vasculature. The background knowledge necessary to understand the biology behind the rationale to develop Listeria as a vaccine vector for tumor immunotherapy is included as well as a brief summary of the major therapies that have used this approach thus far.
Collapse
Affiliation(s)
- Patrick Guirnalda
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
14
|
Gersch ED, Gissmann L, Garcea RL. New approaches to prophylactic human papillomavirus vaccines for cervical cancer prevention. Antivir Ther 2011; 17:425-34. [PMID: 22293302 DOI: 10.3851/imp1941] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 12/12/2022]
Abstract
The currently licensed human papillomavirus (HPV) vaccines are safe and highly effective at preventing HPV infection for a select number of papillomavirus types, thus decreasing the incidence of precursors to cervical cancer. It is expected that vaccination will also ultimately reduce the incidence of this cancer. The licensed HPV vaccines are, however, type restricted and expensive, and also require refrigeration, multiple doses and intramuscular injection. Second-generation vaccines are currently being developed to address these shortcomings. New expression systems, viral and bacterial vectors for HPV L1 capsid protein delivery, and use of the HPV L2 capsid protein will hopefully aid in decreasing cost and increasing ease of use and breadth of protection. These second-generation vaccines could also allow affordable immunization of women in developing countries, where the incidence of cervical cancer is high.
Collapse
Affiliation(s)
- Elizabeth D Gersch
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO, USA
| | | | | |
Collapse
|
15
|
Johnson PV, Blair BM, Zeller S, Kotton CN, Hohmann EL. Attenuated Listeria monocytogenes vaccine vectors expressing influenza A nucleoprotein: preclinical evaluation and oral inoculation of volunteers. Microbiol Immunol 2011; 55:304-17. [PMID: 21338384 DOI: 10.1111/j.1348-0421.2011.00322.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes vectors have shown promise for delivery of viral and tumor antigens in animals. We used two mutant vector strains deleted for actA/plcB (BMB72) and actA/inlB (BMB54), and engineered both strains to secrete a heterologous nucleoprotein antigen from the Influenza A virus. Strains were evaluated in vitro and in mice. Twenty-two healthy volunteers received single oral doses of either strain in a physiological study of safety, shedding, and immunogenicity. Volunteers were observed in the hospital for seven days and had daily blood cultures, routine safety blood tests (complete blood count with differential; hepatic and renal function), and fecal cultures; none had fever, positive blood cultures, prolonged shedding, or serious or unexpected events. Four of 12 volunteers who received the actA/plcB-deleted strain had minor, transient, asymptomatic serum transaminase elevations (maximum increase 1.4× upper normal). Six of six volunteers who received ≥4 × 10(9) colony forming units had detectable mucosal immune responses to listerial antigens, but not to the vectored influenza antigen. Approximately half the volunteers had modest interferon-γ ELISpot responses to a complex listerial antigen, but none had increases over their baseline responses to the influenza antigen. Comparison with prior work suggests that foreign antigen expression, and perhaps also freezing, may adversely affect the organisms' immunogenicity.
Collapse
Affiliation(s)
- Paul V Johnson
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|