1
|
Misplon JA, Lo CY, Crabbs TA, Price GE, Epstein SL. Adenoviral-vectored universal influenza vaccines administered intranasally reduce lung inflammatory responses upon viral challenge 15 months post-vaccination. J Virol 2023; 97:e0067423. [PMID: 37830821 PMCID: PMC10617573 DOI: 10.1128/jvi.00674-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Vaccines targeting highly conserved proteins can protect broadly against diverse viral strains. When a vaccine is administered to the respiratory tract, protection against disease is especially powerful. However, it is important to establish that this approach is safe. When vaccinated animals later encounter viruses, does reactivation of powerful local immunity, including T cell responses, damage the lungs? This study investigates the safety of mucosal vaccination of the respiratory tract. Non-replicating adenoviral vaccine vectors expressing conserved influenza virus proteins were given intranasally. This vaccine-induced protection persists for at least 15 months. Vaccination did not exacerbate inflammatory responses or tissue damage upon influenza virus infection. Instead, vaccination with nucleoprotein reduced cytokine responses and histopathology, while neutrophil and T cell responses resolved earlier. The results are promising for safe vaccination at the site of infection and thus have implications for the control of influenza and other respiratory viruses.
Collapse
Affiliation(s)
- Julia A. Misplon
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chia-Yun Lo
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Torrie A. Crabbs
- Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA
| | - Graeme E. Price
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Suzanne L. Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Moon EK, Kang HJ, Chu KB, Lee SH, Lee DH, Soh Y, Quan FS. Immune Correlates of Protection Induced by Virus-Like Particles Containing 2009 H1N1 Pandemic Influenza HA, NA or M1 Proteins. Immunol Invest 2018; 48:355-366. [DOI: 10.1080/08820139.2018.1544640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yunsoo Soh
- Department of Medicine, Graduate School, Kyung Hee University Seoul, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, Korea
| |
Collapse
|
3
|
Stab V, Nitsche S, Niezold T, Storcksdieck genannt Bonsmann M, Wiechers A, Tippler B, Hannaman D, Ehrhardt C, Überla K, Grunwald T, Tenbusch M. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus. PLoS One 2013; 8:e72217. [PMID: 23967287 PMCID: PMC3743785 DOI: 10.1371/journal.pone.0072217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/05/2013] [Indexed: 12/18/2022] Open
Abstract
The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.
Collapse
Affiliation(s)
- Viktoria Stab
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Sandra Nitsche
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Niezold
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | | | - Andrea Wiechers
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Bettina Tippler
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Drew Hannaman
- Ichor Medical Systems, San Diego, California, United States of America
| | - Christina Ehrhardt
- Institute of Molecular Virology, Centre of Molecular Biology of Inflammation, Westfaelische Wilhelms University, Muenster, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
4
|
Szurgot I, Szolajska E, Laurin D, Lambrecht B, Chaperot L, Schoehn G, Chroboczek J. Self-adjuvanting influenza candidate vaccine presenting epitopes for cell-mediated immunity on a proteinaceous multivalent nanoplatform. Vaccine 2013; 31:4338-46. [PMID: 23880363 DOI: 10.1016/j.vaccine.2013.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022]
Abstract
We exploit the features of a virus-like particle, adenoviral dodecahedron (Ad Dd), for engineering a multivalent vaccination platform carrying influenza epitopes for cell-mediated immunity. The delivery platform, Ad Dd, is a proteinaceous, polyvalent, and biodegradable nanoparticle endowed with remarkable endocytosis activity that can be engineered to carry 60 copies of a peptide. Influenza M1 is the most abundant influenza internal protein with the conserved primary structure. Two different M1 immunodominant epitopes were separately inserted in Dd external positions without destroying the particles' dodecahedric structure. Both kinds of DdFluM1 obtained through expression in baculovirus system were properly presented by human dendritic cells triggering efficient activation of antigen-specific T cells responses. Importantly, the candidate vaccine was able to induce cellular immunity in vivo in chickens. These results warrant further investigation of Dd as a platform for candidate vaccine, able to stimulate cellular immune responses.
Collapse
Affiliation(s)
- Inga Szurgot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
5
|
Hughes B, Hayden F, Perikov Y, Hombach J, Tam JS. Report of the 5th meeting on influenza vaccines that induce broad spectrum and long-lasting immune responses, World Health Organization, Geneva, 16-17 November 2011. Vaccine 2012; 30:6612-22. [PMID: 22981850 DOI: 10.1016/j.vaccine.2012.08.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022]
Abstract
On 16-17 November 2011, the Initiative for Vaccine Research of the World Health Organization convened jointly with the Wellcome Trust the fifth meeting on 'Influenza vaccines that induce broad spectrum and long-lasting immune responses'. The goals of the meeting were to examine new influenza vaccine research developments related to increased duration and breadth of protection, including immune responses against novel strains that may present zoonotic and pandemic threats; improved delivery and administration; and safety issues related to novel vaccine approaches. A number of investigational vaccines based on unique antigens, adjuvants, and/or modes of delivery were presented. The challenges for feasible regulatory pathways to approval of such vaccines were discussed.
Collapse
Affiliation(s)
- Bethan Hughes
- The Wellcome Trust, 215 Euston Road, London, NW1 2BE, UK.
| | | | | | | | | |
Collapse
|
6
|
Quan FS, Kim MC, Lee BJ, Song JM, Compans RW, Kang SM. Influenza M1 VLPs containing neuraminidase induce heterosubtypic cross-protection. Virology 2012; 430:127-35. [PMID: 22658901 DOI: 10.1016/j.virol.2012.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/30/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
Influenza virus like particles (VLPs) containing hemagglutinin were previously demonstrated to induce protection against the homologous strains. However, little information is available on the protective role of neuraminidase (NA), the second major glycoprotein. In this study, we developed VLPs (NA VLPs) containing NA and M1 derived from A/PR/8/34 (H1N1) influenza virus, and investigated their ability to induce protective immunity. Intranasal immunization with NA VLPs induced serum antibody responses to H1N1 and H3N2 influenza A viruses as well as significant neuraminidase inhibition activity. Importantly, mice immunized with NA VLPs were 100% protected against lethal infection by the homologous A/PR/8/34 (H1N1) as well as heterosubtypic A/Philippines/82 (H3N2) virus, although body weight loss was observed after lethal challenge with heterosubtypic H3N2 virus. The present study therefore provides evidence that influenza VLPs containing M1 and NA are capable of inducing immunity to homologous as well as antigenically distinct influenza A virus strains.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|