1
|
Wang L, Dong L, Zhao M, Jiang C, Geng M, Li S, Xing J, Wang T. A case of EBV encephalomyelitis with positive anti-GFAP-IgG antibody with recurrent fever and dysuresia as the main symptoms: Case report and retrospective analysis. Medicine (Baltimore) 2022; 101:e31995. [PMID: 36482607 PMCID: PMC9726296 DOI: 10.1097/md.0000000000031995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Due to neuronal destruction caused by Epstein-Barr virus (EBV) infection, exposure to neuronal surface antigens may lead to an imbalance in immune tolerance, which in turn triggers an autoimmune response. In addition, due to the involvement of nonspecific B-cell activation or molecular mimicry, EBV and Glial Fibrillary Acidic Protein (GFAP) receptors may have common epitopes. Viral infection triggers activation of B-cell and cross-reaction with viral antibodies, resulting in autoimmune encephalomyelitis. The clinical presentation may be complex or even atypical. A small number of patients may develop autoimmune reactions. PATIENT CONCERNS Most patients with EBV encephalomyelitis have a good prognosis, with the disease generally having a short course, few complications, and a good prognosis. In most patients, after treatment, their neurological function basically recovers within a few weeks or months. DIAGNOSIS INTERVENTIONS The patient had fever and headache. His 3 tests for cerebral spinal fluid (CSF) are consistent with the features of viral encephalomyelitis. Pathogenic examination of CSF confirmed EBV, and imaging suggested brain and spinal cord involvement. After antiviral treatment, the patient's symptoms relieved. The diagnosis of EBV encephalomyelitis was considered. However, the patient's temperature continued to increase. He was transferred to a superior hospital and was given GFAP-Ab in CSF, which was strongly positive. The patient was given immunoglobulin and antiviral therapy. This supports the diagnosis of GFAP-IgG antibody positive with EBV encephalomyelitis. OUTCOMES After treatment with antiviral drugs and immunoglobulins, the patient's symptoms improved and he was able to function. LESSONS EBV encephalomyelitis is a rare clinical disease. Therefore, more attention should be paid to the early diagnosis and treatment of similar patients to avoid misdiagnosis. CSF tests, genetic tests, and imaging tests can confirm the diagnosis.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Lulu Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Mingmin Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Chao Jiang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Minxia Geng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Shuang Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Jiahao Xing
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianjun Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- *Correspondence: Tianjun Wang, Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China (e-mail: )
| |
Collapse
|
2
|
Meister TL, Brüggemann Y, Nocke MK, Ulrich RG, Schuhenn J, Sutter K, Gömer A, Bader V, Winklhofer KF, Broering R, Verhoye L, Meuleman P, Vondran FWR, Camuzet C, Cocquerel L, Todt D, Steinmann E. A ribavirin-induced ORF2 single-nucleotide variant produces defective hepatitis E virus particles with immune decoy function. Proc Natl Acad Sci U S A 2022; 119:e2202653119. [PMID: 35969792 PMCID: PMC9407633 DOI: 10.1073/pnas.2202653119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically transmitted viral hepatitis worldwide. Ribavirin (RBV) is currently the only treatment option for many patients; however, cases of treatment failures or posttreatment relapses have been frequently reported. RBV therapy was shown to be associated with an increase in HEV genome heterogeneity and the emergence of distinct HEV variants. In this study, we analyzed the impact of eight patient-derived open reading frame 2 (ORF2) single-nucleotide variants (SNVs), which occurred under RBV treatment, on the replication cycle and pathogenesis of HEV. The parental HEV strain and seven ORF2 variants showed comparable levels of RNA replication in human hepatoma cells and primary human hepatocytes. However, a P79S ORF2 variant demonstrated reduced RNA copy numbers released in the supernatant and an impairment in the production of infectious particles. Biophysical and biochemical characterization revealed that this SNV caused defective, smaller HEV particles with a loss of infectiousness. Furthermore, the P79S variant displayed an altered subcellular distribution of the ORF2 protein and was able to interfere with antibody-mediated neutralization of HEV in a competition assay. In conclusion, an SNV in the HEV ORF2 could be identified that resulted in altered virus particles that were noninfectious in vitro and in vivo, but could potentially serve as immune decoys. These findings provide insights in understanding the biology of circulating HEV variants and may guide development of personalized antiviral strategies in the future.
Collapse
Affiliation(s)
- Toni Luise Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, 44801 Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, 44801 Germany
| | - Maximilian K. Nocke
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, 44801 Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Jonas Schuhenn
- University Hospital Essen, Institute for Virology, University Duisburg-Essen, 47057 Essen, Germany
| | - Kathrin Sutter
- University Hospital Essen, Institute for Virology, University Duisburg-Essen, 47057 Essen, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, 44801 Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, 44801 Germany
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, 44801 Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, 44801 Germany
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology, and Transplant Medicine, University Hospital Essen, University Duisburg-Essen, 47057 Essen, Germany
| | - Lieven Verhoye
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Laboratory of Liver Infectious Diseases, Ghent University, B-9000 Ghent, Belgium
| | - Philip Meuleman
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Laboratory of Liver Infectious Diseases, Ghent University, B-9000 Ghent, Belgium
| | - Florian W. R. Vondran
- Department of General, Visceral, and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Infection Research, Partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Charline Camuzet
- Pasteur Institute of Lille, Centre Hospitalier Universitaire Lille, CNRS, INSERM, University of Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laurence Cocquerel
- Pasteur Institute of Lille, Centre Hospitalier Universitaire Lille, CNRS, INSERM, University of Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, 44801 Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, 44801 Germany
- German Centre for Infection Research, External Partner Site, 44801 Bochum, Germany
| |
Collapse
|
3
|
Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front Microbiol 2022; 13:955603. [PMID: 35935191 PMCID: PMC9355577 DOI: 10.3389/fmicb.2022.955603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients. The early phase of viral infection is crucial for EBV to establish latency, but different viral components are sensed by cellular sensors called pattern recognition receptors (PRRs) as the first line of host defense. The efficacy of innate immunity, in particular the interferon-mediated response, is critical to control viral infection initially and to trigger a broad spectrum of specific adaptive immune responses against EBV later. Despite these restrictions, the virus has developed various strategies to evade the immune reaction of its host and to establish its lifelong latency. In its different phases of infection, EBV expresses up to 44 different viral miRNAs. Some act as viral immunoevasins because they have been shown to counteract innate as well as adaptive immune responses. Similarly, certain virally encoded proteins also control antiviral immunity. In this review, we discuss how the virus governs innate immune responses of its host and exploits them to its advantage.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
- Istituto Nazionale di Genetica Molecolare, “Romeo ed Enrica Invernizzi,” Milan, Italy
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
4
|
Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol 2021; 11:587380. [PMID: 33488588 PMCID: PMC7817975 DOI: 10.3389/fimmu.2020.587380] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr Virus (EBV) is an extremely successful human herpes virus, which infects essentially all human beings at some time during their life span. EBV infection and the associated immune response results in production of antibodies (seroconversion), which occurs mainly during the first years of life, but may also happen during adolescence or later in life. Infection of adolescents can result in infectious mononucleosis, an acute serious condition characterized by massive lymphocytosis. Transmission of EBV mainly occurs through saliva but can rarely be spread through semen or blood, e.g. through organ transplantations and blood transfusions. EBV transmission through oral secretions results in infection of epithelial cells of the oropharynx. From the epithelial cells EBV can infect B cells, which are the major reservoir for the virus, but other cell types may also become infected. As a result, EBV can shuttle between different cell types, mainly B cells and epithelial cells. Moreover, since the virus can switch between a latent and a lytic life cycle, EBV has the ability to cause chronic relapsing/reactivating infections. Chronic or recurrent EBV infection of epithelial cells has been linked to systemic lupus erythematosus and Sjögren’s syndrome, whereas chronic/recurrent infection of B cells has been associated with rheumatoid arthritis, multiple sclerosis and other diseases. Accordingly, since EBV can shuttle between epithelial cells and B cells, the systemic autoimmune diseases often occur as overlapping syndromes with symptoms and characteristic autoantibodies (e.g. antinuclear antibodies and rheumatoid factors) reflecting epithelial and/or B cell infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | |
Collapse
|
5
|
Núñez-Acurio D, Bravo D, Aguayo F. Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020; 9:E1059. [PMID: 33352891 PMCID: PMC7765927 DOI: 10.3390/pathogens9121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Its development has been associated with diverse factors such as tobacco smoking and alcohol consumption. In addition, it has been suggested that microorganisms are risk factors for oral carcinogenesis. Epstein-Barr virus (EBV), which establishes lifelong persistent infections and is intermittently shed in the saliva, has been associated with several lymphomas and carcinomas that arise in the oral cavity. In particular, it has been detected in a subset of OSCCs. Moreover, its presence in patients with periodontitis has also been described. Porphyromonas gingivalis (P. gingivalis) is an oral bacterium in the development of periodontal diseases. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues but also to evade the host immune system and eventually affect systemic health. Persistent exposure to P. gingivalis promotes tumorigenic properties of oral epithelial cells, suggesting that chronic P. gingivalis infection is a potential risk factor for OSCC. Given that the oral cavity serves as the main site where EBV and P. gingivalis are harbored, and because of their oncogenic potential, we review here the current information about the participation of these microorganisms in oral carcinogenesis, describe the mechanisms by which EBV and P. gingivalis independently or synergistically can collaborate, and propose a model of interaction between both microorganisms.
Collapse
Affiliation(s)
- Daniela Núñez-Acurio
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
| | - Denisse Bravo
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisco Aguayo
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
6
|
The Therapeutic Potential of Targeting BARF1 in EBV-Associated Malignancies. Cancers (Basel) 2020; 12:cancers12071940. [PMID: 32708965 PMCID: PMC7409022 DOI: 10.3390/cancers12071940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely linked to the development of a number of human cancers. EBV-associated malignancies are characterized by a restricted pattern of viral latent protein expression which is sufficient for the virus to both initiate and sustain cell growth and to protect virus-infected cells from immune attack. Expression of these EBV proteins in malignant cells provides an attractive target for therapeutic intervention. Among the viral proteins expressed in the EBV-associated epithelial malignancies, the protein encoded by the BamHI-A rightward frame 1 (BARF1) is of particular interest. BARF1 is a viral oncoprotein selectively expressed in latently infected epithelial cancers, nasopharyngeal carcinoma (NPC) and EBV-positive gastric cancer (EBV-GC). Here, we review the roles of BARF1 in oncogenesis and immunomodulation. We also discuss potential strategies for targeting the BARF1 protein as a novel therapy for EBV-driven epithelial cancers.
Collapse
|
7
|
Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019; 1863:1480-1497. [PMID: 31121217 PMCID: PMC6686077 DOI: 10.1016/j.bbagen.2019.05.012] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
8
|
Corvalán AH, Ruedlinger J, de Mayo T, Polakovicova I, Gonzalez-Hormazabal P, Aguayo F. The Phylogeographic Diversity of EBV and Admixed Ancestry in the Americas⁻Another Model of Disrupted Human-Pathogen Co-Evolution. Cancers (Basel) 2019; 11:cancers11020217. [PMID: 30769835 PMCID: PMC6406347 DOI: 10.3390/cancers11020217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) is an etiological agent for gastric cancer with significant worldwide variations. Molecular characterizations of EBV have shown phylogeographical variations among healthy populations and in EBV-associated diseases, particularly the cosegregated BamHI-I fragment and XhoI restriction site of exon 1 of the LMP-1 gene. In the Americas, both cosegregated variants are present in EBV carriers, which aligns with the history of Asian and European human migration to this continent. Furthermore, novel recombinant variants have been found, reflecting the genetic makeup of this continent. However, in the case of EBV-associated gastric cancer (EBV-associated GC), the cosegregated European BamHI-“i” fragment and XhoI restriction site strain prevails. Thus, we propose that a disrupted coevolution between viral phylogeographical strains and mixed human ancestry in the Americas might explain the high prevalence of this particular gastric cancer subtype. This cosegregated region contains two relevant transcripts for EBV-associated GC, the BARF-1 and miR-BARTs. Thus, genome-wide association studies (GWAS) or targeted sequencing of both transcripts may be required to clarify their role as a potential source of this disrupted coevolution.
Collapse
Affiliation(s)
- Alejandro H Corvalán
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Jenny Ruedlinger
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Tomas de Mayo
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Faculty of Sciences, School of Medicine, Universidad Mayor, Santiago 7510041, Chile.
| | - Iva Polakovicova
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Patricio Gonzalez-Hormazabal
- Program of Human Genetics, Instituto Ciencias Biomedicas, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
| |
Collapse
|
9
|
Liu J, Ji X, Shen Z, Wang PhD Y, Luo PhD B. Sequence variations of Epstein-Barr virus-encoded BARF1 gene in nasopharyngeal carcinomas and healthy donors from southern and northern China. J Med Virol 2018; 90:1629-1635. [PMID: 29797589 DOI: 10.1002/jmv.25233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
The BamHI A rightward frame 1 (BARF1) gene of the Epstein-Barr virus (EBV) is involved in carcinogenesis and immunomodulation of EBV-associated malignancies. The geographical distributions and the disease associations of BARF1 variants remain unclear. In the current study, the BARF1 variants in nasopharyngeal carcinoma (NPC) cases and healthy donors from southern and northern China, the NPC endemic and non-endemic areas, as well as in 153 sequenced EBV genomes from diseased and normal people from around the world, were determined and compared among areas and populations. Only 1 consistent coding change, V29A, and several consistent silent mutations were identified. Two BARF1 types (B95-8 and V29A) and 2 B95-8 subtypes (B95-8t165545c and B95-8P ) were classified. For Chinese isolates, the B95-8 type was dominant in both southern and northern China, but the isolates from southern China showed a higher frequency of the B95-8t165545c subtype than the isolates from northern China (76.0%, 38/50 NPC cases and 50.7%, 37/73 healthy donors vs 26.4%, 24/91 NPC cases and 7.6%, 6/79 healthy donors, P < .0001). Furthermore, the B95-8t165545c subtype was more frequent in NPC cases than healthy donors in both southern China (P = .005) and northern China (P = .001). For EBV genomes, the B95-8P subtype was dominant in northern China, Europe, America, and Australia, while V29A was dominant in Africa. The B95-8t165545c subtype was only identified in Asia and demonstrated high frequency (81.2%, 26/32) in genomes from NPC cases in southern China. These results further reveal conservation and possibly geographically spread variations of BARF1 and may also indicate the preference of EBV strains with the B95-8t165545c subtype in NPC cases, without biological or pathogenic implications.
Collapse
Affiliation(s)
- Jincheng Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Xinqiang Ji
- Modern Educational Technology Center, Qingdao University, Qingdao, China
| | - Zhichao Shen
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China.,Department of Clinical Laboratory, The People's Liberation Army 107 Hospital, Yantai, China
| | - Yun Wang PhD
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo PhD
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
10
|
The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers (Basel) 2018; 10:cancers10040098. [PMID: 29601503 PMCID: PMC5923353 DOI: 10.3390/cancers10040098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV) is characterized by a bipartite life cycle in which latent and lytic stages are alternated. Latency is compatible with long-lasting persistency within the infected host, while lytic expression, preferentially found in oropharyngeal epithelial tissue, is thought to favor host-to-host viral dissemination. The clinical importance of EBV relates to its association with cancer, which we think is mainly a consequence of the latency/persistency mechanisms. However, studies in murine models of tumorigenesis/lymphomagenesis indicate that the lytic cycle also contributes to cancer formation. Indeed, EBV lytic expression is often observed in established cell lines and tumor biopsies. Within the lytic cycle EBV expresses a handful of immunomodulatory (BCRF1, BARF1, BNLF2A, BGLF5 & BILF1) and anti-apoptotic (BHRF1 & BALF1) proteins. In this review, we discuss the evidence supporting an abortive lytic cycle in which these lytic genes are expressed, and how the immunomodulatory mechanisms of EBV and related herpesviruses Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV) result in paracrine signals that feed tumor cells. An abortive lytic cycle would reconcile the need of lytic expression for viral tumorigenesis without relaying in a complete cycle that would induce cell lysis to release the newly formed infective viral particles.
Collapse
|
11
|
Epstein-Barr Virus Gene BARF1 Expression is Regulated by the Epithelial Differentiation Factor ΔNp63α in Undifferentiated Nasopharyngeal Carcinoma. Cancers (Basel) 2018; 10:cancers10030076. [PMID: 29562599 PMCID: PMC5876651 DOI: 10.3390/cancers10030076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr Virus (EBV) BamHI-A rightward frame 1 (BARF1) protein is considered a viral oncogene in epithelial cells and has immune-modulating properties. During viral lytic replication BARF1 is expressed as an early gene, regulated by the immediate early EBV protein R. However, in viral latency BARF1 is exclusively expressed in epithelial tumors such as nasopharyngeal (NPC) and gastric carcinoma (GC) but not in lymphomas, indicating that activation of the BARF1 promoter is cell type specific. Undifferentiated NPC is characterized by high expression of ΔNp63 isoforms of the epithelial differentiation marker p63, a member of the p53 family of transcription factors. Transcription factor binding site analysis indicated potential p53 family binding sites within the BARF1 promoter region. This study investigated ability of various p53 family members to transactivate the BARF1 promoter. Using BARF1 promoter luciferase reporter constructs we demonstrate that only p63 isoform ΔNp63α is capable of transactivating the BARF1 promoter, but not the TAp63 isoforms, p53 or p73. Direct promoter binding of ΔNp63α was confirmed by Chromatin Immune Precipitation (ChIP) analysis. Deletion mutants of the BARF1 promoter revealed multiple ΔNp63 response elements to be responsible for BARF1 promoter transactivation. However, ΔNp63α alone was not sufficient to induce BARF1 in tumor cells harboring full EBV genomes, indicating that additional cofactors might be required for full BARF1 regulation. In conclusion, in EBV positive NPC and GC, BARF1 expression might be induced by the epithelial differentiation marker ΔNp63α, explaining BARF1 expression in the absence of lytic reactivation.
Collapse
|
12
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
13
|
Farré D, Martínez-Vicente P, Engel P, Angulo A. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion. Eur J Immunol 2017; 47:780-796. [PMID: 28383780 DOI: 10.1002/eji.201746984] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Martínez-Vicente
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
14
|
Turrini R, Merlo A, Martorelli D, Faè DA, Sommaggio R, Montagner IM, Barbieri V, Marin O, Zanovello P, Dolcetti R, Rosato A. A BARF1-specific mAb as a new immunotherapeutic tool for the management of EBV-related tumors. Oncoimmunology 2017; 6:e1304338. [PMID: 28507812 PMCID: PMC5414862 DOI: 10.1080/2162402x.2017.1304338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
The use of monoclonal antibodies (mAb) for the diagnosis and treatment of malignancies is acquiring an increasing clinical importance, thanks to their specificity, efficacy and relative easiness of use. However, in the context of Epstein-Barr virus (EBV)-related malignancies, only cancers of B-cell origin can benefit from therapeutic mAb targeting specific B-cell lineage antigens. To overcome this limitation, we generated a new mAb specific for BARF1, an EBV-encoded protein with transforming and immune-modulating properties. BARF1 is expressed as a latent protein in nasopharyngeal (NPC) and gastric carcinoma (GC), and also in neoplastic B cells mainly upon lytic cycle induction, thus representing a potential target for all EBV-related malignancies. Considering that BARF1 is largely but not exclusively secreted, the BARF1 mAb was selected on the basis of its ability to bind a domain of the protein retained at the cell surface of tumor cells. In vitro, the newly generated mAb recognized the target molecule in its native conformation, and was highly effective in mediating both ADCC and CDC against BARF1-positive tumor cells. In vivo, biodistribution analysis in mice engrafted with BARF1-positive and -negative tumor cells confirmed its high specificity for the target. More importantly, the mAb disclosed a relevant antitumor potential in preclinical models of NPC and lymphoma, as evaluated in terms of both reduction of tumor masses and long-term survival. Taken together, these data not only confirm BARF1 as a promising target for immunotherapeutic interventions, but also pave the way for a successful translation of this new mAb to the clinical use.
Collapse
Affiliation(s)
- Riccardo Turrini
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Damiana Antonia Faè
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| | | | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| |
Collapse
|
15
|
Kim DH, Chang MS, Yoon CJ, Middeldorp JM, Martinez OM, Byeon SJ, Rha SY, Kim SH, Kim YS, Woo JH. Epstein-Barr virus BARF1-induced NFκB/miR-146a/SMAD4 alterations in stomach cancer cells. Oncotarget 2016; 7:82213-82227. [PMID: 27438138 PMCID: PMC5347686 DOI: 10.18632/oncotarget.10511] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded BamHI-A rightward frame 1 (BARF1) is a putative viral oncogene in EBV-infected stomach cancer. The aim of the present study was to investigate BARF1-induced cellular protein and microRNA alterations. In this study, BARF1-expressing stomach cancer cells showed a high rate of proliferation, high levels of NFκB, and miR-146a upregulation, which was reversed by NFκB knockdown. During BARF1-induced NFκB upregulation, hCSF1 receptor level was unchanged. Knockdown of BARF1 in the naturally EBV-infected YCCEL1 stomach cancer cells suppressed cell proliferation, and downregulated NFκB and miR-146a. SMAD4 was identified as a miR-146a target and was downregulated in BARF1-expressing cells, whereas SMAD4 expression was restored by anti-miR-146a. Knockdown of BARF1 in YCCEL1 cells upregulated SMAD4, and this effect was reversed by miR-146a overexpression. Transfection of BARF1-expressing cells with pCEP4-SMAD4 abolished the cell proliferating effect of BARF1. In stomach cancer tissues, miR-146a was expressed at higher levels, and more frequent NFκB nuclear positivity immunohistochemically, but not of SMAD4 nuclear loss was found in the EBV-positive group compared with the EBV-negative group. In conclusion, EBV-encoded BARF1 promotes cell proliferation in stomach cancer by upregulating NFκB and miR-146a and downregulating SMAD4, thereby contributing to EBV-induced stomach cancer progression.
Collapse
Affiliation(s)
- Dong Ha Kim
- Asan Institute for Life Sciences, Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Jin Yoon
- Asan Institute for Life Sciences, Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaap M. Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Olivia M. Martinez
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun-ju Byeon
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Han Kim
- Asan Institute for Life Sciences, Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yang Soo Kim
- Asan Institute for Life Sciences, Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Hee Woo
- Asan Institute for Life Sciences, Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
BARF1 gene silencing triggers caspase-dependent mitochondrial apoptosis in Epstein-Barr virus-positive malignant cells. J Biosci 2015; 40:41-51. [DOI: 10.1007/s12038-015-9502-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Murata T. Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol 2015; 58:307-17. [PMID: 24786491 DOI: 10.1111/1348-0421.12155] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/03/2014] [Accepted: 04/26/2014] [Indexed: 12/13/2022]
Abstract
The Epstein-Barr virus (EBV) is a human gamma-herpesvirus that is implicated in various types of proliferative diseases. Upon infection, it predominantly establishes latency in B cells and cannot ever be eradicated; it persists for the host's lifetime. Reactivation of the virus from latency depends on expression of the viral immediate-early gene, BamHI Z fragment leftward open reading frame 1 (BZLF1). The BZLF1 promoter normally exhibits only low basal activity but is activated in response to chemical or biological inducers, such as 12-O-tetradecanoylphorbol-13-acetate, calcium ionophore, histone deacetylase inhibitor, or anti-Ig. Transcription from the BZLF1 promoter is activated by myocyte enhancer factor 2, specificity protein 1, b-Zip type transcription factors and mediating epigenetic modifications of the promoter, such as histone acetylation and H3K4me3. In contrast, repression of the promoter is mediated by transcriptional suppressors, such as ZEB, ZIIR-BP, and jun dimerization protein 2, causing suppressive histone modifications like histone H3K27me3, H3K9me2/3 and H4K20me3. Interestingly, there is little CpG DNA methylation of the promoter, indicating that DNA methylation is not crucial for suppression of BZLF1. This review will focus on the molecular mechanisms by which the EBV lytic switch is controlled and discuss the physiological significance of this switching for its survival and oncogenesis.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Division of Virology, Aichi Cancer Center Research Institute, 1-Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| |
Collapse
|
18
|
Abstract
The ability of Epstein-Barr virus (EBV) to establish latency despite specific immune responses and to successfully persist lifelong in the human host shows that EBV has developed powerful strategies and mechanisms to exploit, evade, abolish, or downsize otherwise effective immune responses to ensure its own survival. This chapter focuses on current knowledge on innate immune responses against EBV and its evasion strategies for own benefit and summarizes the questions that remain to be tackled. Innate immune reactions against EBV originate both from the main target cells of EBV and from nontarget cells, which are elements of the innate immune system. Thus, we structured our review accordingly but with a particular focus on the innate recognition of EBV in its two stages in its life cycle, latent state and lytic replication. Specifically, we discuss (I) innate sensing and resulting innate immune responses against EBV by its main target cells, focusing on (i) EBV transmission between epithelial cells and B cells and their life cycle stages; and (ii) elements of innate immunity in EBV's target cells. Further, we debate (II) the innate recognition and resulting innate immune responses against EBV by cells other than the main target cells, focusing on (iii) myeloid cells: dendritic cells, monocytes, macrophages, and neutrophil granulocytes; and (iv) natural killer cells. Finally, we address (III) how EBV counteracts or exploits innate immunity in its latent and lytic life cycle stages, concentrating on (v) TLRs; (vi) EBERs; and (vii) microRNAs.
Collapse
Affiliation(s)
- Anna Lünemann
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Martin Rowe
- Centre for Human Virology, School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - David Nadal
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland. .,Children's Research Center, University Children's Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Wang X, Pesakhov S, Harrison JS, Kafka M, Danilenko M, Studzinski GP. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage. Exp Cell Res 2014; 330:199-211. [PMID: 25447310 DOI: 10.1016/j.yexcr.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/04/2014] [Accepted: 10/03/2014] [Indexed: 02/06/2023]
Abstract
Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D3 (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology & Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103, USA
| | - Stella Pesakhov
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva, Israel
| | - Jonathan S Harrison
- Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Michael Kafka
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva, Israel
| | - Michael Danilenko
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva, Israel
| | - George P Studzinski
- Department of Pathology & Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103, USA.
| |
Collapse
|
20
|
Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol 2013; 24:142-53. [DOI: 10.1002/rmv.1780] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Takayuki Murata
- Division of Virology; Aichi Cancer Center Research Institute; Nagoya Japan
- Department of Virology; Nagoya University School of Medicine; Nagoya Japan
| | - Tatsuya Tsurumi
- Division of Virology; Aichi Cancer Center Research Institute; Nagoya Japan
| |
Collapse
|
21
|
Hoebe EK, Le Large TYS, Greijer AE, Middeldorp JM. BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev Med Virol 2013; 23:367-83. [PMID: 23996634 PMCID: PMC4272418 DOI: 10.1002/rmv.1758] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Abstract
Epstein–Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive properties. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eveline K Hoebe
- VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Epstein-Barr virus-encoded BARF1 promotes proliferation of gastric carcinoma cells through regulation of NF-κB. J Virol 2013; 87:10515-23. [PMID: 23824821 DOI: 10.1128/jvi.00955-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Epstein-Barr virus (EBV)-infected gastric carcinoma, EBV-encoded BARF1 has been hypothesized to function as an oncogene. To evaluate cellular changes induced by BARF1, we isolated the full-length BARF1 gene from gastric carcinoma cells that were naturally infected with EBV and transfected BARF1 into EBV-negative gastric carcinoma cells. BARF1 protein was primarily secreted into culture supernatant and only marginally detectable within cells. Compared with gastric carcinoma cells containing empty vector, BARF1-expressing gastric carcinoma cells exhibited increased cell proliferation (P < 0.05). There were no significant differences in apoptosis, invasion, or migration between BARF1-expressing gastric carcinoma cells and empty vector-transfected cells. BARF1-expressing gastric carcinoma cells demonstrated increased nuclear expression of nuclear factor kappa B (NF-κB) RelA protein and increased NF-κB-dependent cyclin D1. The expression of p21(WAF1) was diminished by BARF1 transfection and increased by NF-κB inhibition. Proliferation of naturally EBV-infected gastric carcinoma cells was suppressed by BARF1 small interfering RNA (siRNA) (P < 0.05). Immunohistochemical analysis of 120 human gastric carcinoma tissues demonstrated increased expression of cyclin D1 and reduced expression of p21(WAF1) in EBV-positive samples versus EBV-negative gastric carcinomas (P < 0.05). In conclusion, the secreted BARF1 may stimulate proliferation of EBV-infected gastric carcinoma cells via upregulation of NF-κB/cyclin D1 and reduction of the cell cycle inhibitor p21(WAF1), thereby facilitating EBV-induced cancer progression.
Collapse
|
23
|
Epstein-Barr virus transcription activator R upregulates BARF1 expression by direct binding to its promoter, independent of methylation. J Virol 2012; 86:11322-32. [PMID: 22896599 DOI: 10.1128/jvi.01161-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) BamHI-A rightward frame 1 (BARF1) is considered a major viral oncogene in epithelial cells and has immune-modulating properties. However, in B cells and lymphomas, BARF1 expression is restricted to the viral lytic replication cycle. In this report, the transcriptional regulation of BARF1 during lytic replication is unraveled. Bisulfite sequencing of various cell lines indicated a high level of methylation of the BARF1 gene control region. A BARF1 promoter luciferase reporter construct was created using a CpG-free vector, enabling true assessment of promoter methylation. Induction of the EBV lytic cycle is mediated by the immediate-early proteins BZLF1 (Z) and BRLF1 (R). R was found to activate expression of the BARF1 promoter up to 250-fold independently of Z and unaffected by BARF1 promoter methylation. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), and specific mutagenesis of the R-responsive elements (RREs) demonstrated direct binding of R to RREs between nucleotides -554 and -327 relative to the BARF1 transcriptional ATG start site. The kinetics of BARF1 expression upon transactivation by R showed that BARF1 mRNA was expressed within 6 h in the context of the viral genome. In conclusion, expression of the BARF1 protein during lytic replication is regulated by direct binding of R to multiple RREs in the gene control region and is independent of the promoter methylation status. The early kinetics of BARF1 upon transactivation by R confirm its status as an early gene and emphasize the necessity of early immune modulation during lytic reactivation.
Collapse
|