1
|
Artiaga BL, Madden D, Kwon T, McDowell C, Keating C, Balaraman V, de Carvahlo Madrid DM, Touchard L, Henningson J, Meade P, Krammer F, Morozov I, Richt JA, Driver JP. Adjuvant Use of the Invariant-Natural-Killer-T-Cell Agonist α-Galactosylceramide Leads to Vaccine-Associated Enhanced Respiratory Disease in Influenza-Vaccinated Pigs. Vaccines (Basel) 2024; 12:1068. [PMID: 39340098 PMCID: PMC11435877 DOI: 10.3390/vaccines12091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This includes harnessing iNKT-cell-mediated immune responses to adjuvant whole inactivated influenza virus (WIV) vaccines. An important concern with WIV vaccines is that under certain circumstances, they are capable of triggering vaccine-associated enhanced respiratory disease (VAERD). This immunopathological phenomenon can arise after immunization with an oil-in-water (OIW) adjuvanted WIV vaccine, followed by infection with a hemagglutinin and neuraminidase mismatched challenge virus. This elicits antibodies (Abs) that bind immunodominant epitopes in the HA2 region of the heterologous virus, which purportedly causes enhanced virus fusion activity to the host cell and increased infection. Here, we show that αGC can induce severe VAERD in pigs. However, instead of stimulating high concentrations of HA2 Abs, αGC elicits high concentrations of interferon (IFN)-γ-secreting cells both in the lungs and systemically. Additionally, we found that VAERD mediated by iNKT cells results in distinct cytokine profiles and altered adaptation of the challenge virus following infection compared to an OIW adjuvant. Overall, these results provide a cautionary note about considering the formulation of WIV vaccines with iNKT-cell agonists as a potential strategy to modulate antigen-specific immunity.
Collapse
Affiliation(s)
- Bianca L Artiaga
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel Madden
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Chester McDowell
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Cassidy Keating
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Darling Melany de Carvahlo Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Laurie Touchard
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Philip Meade
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - John P Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Keay S, Poljak Z, Alberts F, O’Connor A, Friendship R, O’Sullivan TL, Sargeant JM. Does Vaccine-Induced Maternally-Derived Immunity Protect Swine Offspring against Influenza a Viruses? A Systematic Review and Meta-Analysis of Challenge Trials from 1990 to May 2021. Animals (Basel) 2023; 13:3085. [PMID: 37835692 PMCID: PMC10571953 DOI: 10.3390/ani13193085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
It is unclear if piglets benefit from vaccination of sows against influenza. For the first time, methods of evidence-based medicine were applied to answer the question: "Does vaccine-induced maternally-derived immunity (MDI) protect swine offspring against influenza A viruses?". Challenge trials were reviewed that were published from 1990 to April 2021 and measured at least one of six outcomes in MDI-positive versus MDI-negative offspring (hemagglutination inhibition (HI) titers, virus titers, time to begin and time to stop shedding, risk of infection, average daily gain (ADG), and coughing) (n = 15). Screening and extraction of study characteristics was conducted in duplicate by two reviewers, with data extraction and assessment for risk of bias performed by one. Homology was defined by the antigenic match of vaccine and challenge virus hemagglutinin epitopes. Results: Homologous, but not heterologous MDI, reduced virus titers in piglets. There was no difference, calculated as relative risks (RR), in infection incidence risk over the entire study period; however, infection hazard (instantaneous risk) was decreased in pigs with MDI (log HR = -0.64, 95% CI: -1.13, -0.15). Overall, pigs with MDI took about a ½ day longer to begin shedding virus post-challenge (MD = 0.51, 95% CI: 0.03, 0.99) but the hazard of infected pigs ceasing to shed was not different (log HR = 0.32, 95% CI: -0.29, 0.93). HI titers were synthesized qualitatively and although data on ADG and coughing was extracted, details were insufficient for conducting meta-analyses. Conclusion: Homology of vaccine strains with challenge viruses is an important consideration when assessing vaccine effectiveness. Herd viral dynamics are complex and may include concurrent or sequential exposures in the field. The practical significance of reduced weaned pig virus titers is, therefore, not known and evidence from challenge trials is insufficient to make inferences on the effects of MDI on incidence risk, time to begin or to cease shedding virus, coughing, and ADG. The applicability of evidence from single-strain challenge trials to field practices is limited. Despite the synthesis of six outcomes, challenge trial evidence does not support or refute vaccination of sows against influenza to protect piglets. Additional research is needed; controlled trials with multi-strain concurrent or sequential heterologous challenges have not been conducted, and sequential homologous exposure trials were rare. Consensus is also warranted on (1) the selection of core outcomes, (2) the sizing of trial populations to be reflective of field populations, (3) the reporting of antigenic characterization of vaccines, challenge viruses, and sow exposure history, and (4) on the collection of non-aggregated individual pig data.
Collapse
Affiliation(s)
- Sheila Keay
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Famke Alberts
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Annette O’Connor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Robert Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Terri L. O’Sullivan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Jan M. Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Yang Y, Huang Y, Huang K, Zhang Y, Hu X, Zou W, Wu C, Hui X, Li C, Zhao Y, Sun X, Zou Z, Jin M. Isolation and identification of Eurasian avian-like H1N1 swine influenza virus and evaluation of their pathogenicity and immune protective effects in pigs. Vet Microbiol 2023; 284:109827. [PMID: 37542928 DOI: 10.1016/j.vetmic.2023.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/07/2023]
Abstract
Swine influenza (SI) is a severe disease affecting pigs, with a huge economic impact on pig farmers. Currently, available SIV vaccines do not meet the requirements for Swine influenza prevention and control, indicating the need for vaccine development using predominant strains. Here, we isolated and identified the swine influenza virus in farms and slaughterhouses in nine provinces in China to determine the most prevalent strain. A total of 8383 samples were collected between 2013 and 2022, from which 87 swine influenza virus strains were isolated. Genome sequencing identified 62 strains of the H1N1 subtype, three strains of the H1N2 subtype, and 22 strains of the H3N2 subtype. The 521# strain virus possesses the viral ribonucleoprotein (vRNP) and matrix (M) genes from the pdm/09 lineage, the HA, NA from the original Eurasian avian-like (EA) H1N1 lineage, and the nonstructural (NS) gene from the triple-reassortant (TR) lineage. The 431# strain was also a TR, except its M-gene was derived from the original EA H1N1 lineage. The pathogenicity of two 431# strains and one typical 521# strain was evaluated in mice, and the 431# strain exhibited higher pathogenicity. Therefore, a new 521# strain was selected for vaccine production because it is the current circulating strain. The vaccine produced using the 521# strain and pre-evaluated adjuvants was effective against the homologous H05 strain, as evidenced by the normal body temperature of vaccinated pigs and low virus titer of nasal swabs. In contrast, infection with the H05 strain significantly increased the body temperature of unvaccinated pigs and increased the virus titer of nasal swabs. Notably, vaccination with the 521#-based vaccine conferred some level of protection against the heterologous B15 strain (H3N2 subtype), thus reducing the viral load in pigs.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Keqian Biological Co. Ltd., Wuhan 430200, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Yunfu Huang
- Wuhan Keqian Biological Co. Ltd., Wuhan 430200, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaotong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihua Zou
- Wuhan Keqian Biological Co. Ltd., Wuhan 430200, China
| | - Chao Wu
- Wuhan Keqian Biological Co. Ltd., Wuhan 430200, China
| | - Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Keqian Biological Co. Ltd., Wuhan 430200, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Keqian Biological Co. Ltd., Wuhan 430200, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
4
|
Vaccine-Associated Enhanced Respiratory Disease following Influenza Virus Infection in Ferrets Recapitulates the Model in Pigs. J Virol 2022; 96:e0172521. [PMID: 34985999 DOI: 10.1128/jvi.01725-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy. Whole inactivated virus (WIV) vaccines with adjuvant, utilized by the swine industry, are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil-in-water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) 5 weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD-affected pigs exhibited a 2-fold increase in lung lesions, while VAERD-affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD-affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate that VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. IMPORTANCE We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine-associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed toward a conserved epitope on the HA stalk induced by an oil-in-water, adjuvanted, whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines for humans and the need to consider VAERD when designing and evaluating vaccine strategies.
Collapse
|
5
|
Souza CK, Rajão DS, Sandbulte MR, Lopes S, Lewis NS, Loving CL, Gauger PC, Vincent AL. The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease. Vaccine 2018; 36:6103-6110. [PMID: 30181048 DOI: 10.1016/j.vaccine.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge.
Collapse
Affiliation(s)
- Carine K Souza
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; Laboratório de Virologia, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9090, CEP: 91540-000 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Daniela S Rajão
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | - Matthew R Sandbulte
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA
| | - Sara Lopes
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Nicola S Lewis
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Crystal L Loving
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | | | - Amy L Vincent
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| |
Collapse
|
6
|
Souza CK, Rajão DS, Loving CL, Gauger PC, Pérez DR, Vincent AL. Age at Vaccination and Timing of Infection Do Not Alter Vaccine-Associated Enhanced Respiratory Disease in Influenza A Virus-Infected Pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:470-482. [PMID: 27030585 PMCID: PMC4895012 DOI: 10.1128/cvi.00563-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
Whole inactivated virus (WIV) vaccines are widely used in the swine industry to reduce clinical disease against homologous influenza A virus (IAV) infection. In pigs experimentally challenged with antigenically distinct heterologous IAV of the same hemagglutinin subtype, WIV vaccinates have been shown to develop vaccine-associated enhanced respiratory disease (VAERD). We evaluated the impact of vaccine valency, age at vaccination, and duration between vaccination and challenge on the development of VAERD using vaccine containing δ1-H1N2 and challenge with pandemic H1N1 (pH1N1) virus. Pigs were vaccinated with monovalent WIV MN08 (δ1-H1N2) and bivalent (δ1-H1N2-H3N2 or δ1-H1N2-pH1N1) vaccines and then were challenged with pH1N1 at 3 weeks postboost (wpb). Another group was vaccinated with the same monovalent WIV and challenged at 6 wpb to determine if the time postvaccination plays a role in the development of VAERD. In a follow-up study, the impact of age of first WIV vaccination (at 4 versus 9 weeks of age) with a boost 3 weeks later (at 7 versus 12 weeks of age) was evaluated. A monovalent live-attenuated influenza virus (LAIV) vaccine administered at 4 and 7 weeks of age was also included. All mismatched WIV groups had significantly higher lung lesions than the LAIV, bivalent MN08-CA09, and control groups. Age of first vaccination or length of time between booster dose and subsequent challenge did not alter the development of VAERD in WIV-vaccinated pigs. Importantly, the mismatched component of the bivalent MN08-CA09 WIV did not override the protective effect of the matched vaccine component.
Collapse
MESH Headings
- Age Factors
- Animals
- Antibodies, Viral/blood
- Follow-Up Studies
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/immunology
- Lung/pathology
- Lung/virology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- Respiratory Tract Diseases/immunology
- Respiratory Tract Diseases/prevention & control
- Respiratory Tract Diseases/veterinary
- Respiratory Tract Diseases/virology
- Swine
- Swine Diseases/immunology
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Time Factors
- Vaccination/adverse effects
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Carine K Souza
- Virus and Prion Diseases Research Unit, USDA-ARS, Ames, Iowa, USA
- Laboratório de Virologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniela S Rajão
- Virus and Prion Diseases Research Unit, USDA-ARS, Ames, Iowa, USA
| | - Crystal L Loving
- Virus and Prion Diseases Research Unit, USDA-ARS, Ames, Iowa, USA
| | | | - Daniel R Pérez
- Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Amy L Vincent
- Virus and Prion Diseases Research Unit, USDA-ARS, Ames, Iowa, USA
| |
Collapse
|
7
|
Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L, Maosheng S. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2016; 11:1209-22. [PMID: 25876176 DOI: 10.1080/21645515.2015.1016674] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- APC, antigen-presenting cell
- Ad: adenovirus
- CAR, Coxsackie-Adenovirus Receptor
- CTLs, cytotoxic T lymphocytes
- DC, lung dendritic cells
- DVD, drug–vaccine duo
- FcγRs, Fc receptors for IgG
- HA, hemagglutinin
- HDAd, helper-dependent adenoviral
- HEK293, human embryonic kidney 293 cell
- HI, hemagglutination inhibition
- HLA, human leukocyte antigen
- IF-γ, interferon-γ
- IFV, Influenza virus
- IIVV, inactivated influenza virus vaccine
- IL-2, interleukin-2
- ITRs, inverted terminal repeats
- LAIV, live attenuated influenza vaccine
- M1, matrix protein 1
- M2, matrix protein 2
- MHC-I, major histocompatibility complex class I
- NA, neuraminidase
- NP, nucleoprotein
- RCA, replication competent adenovirus
- VAERD, vaccine-associated enhanced respiratory disease
- adenovirus vector
- broadly neutralizing antibodies
- cellular immunity
- flu, influenza
- hemagglutinin
- humoral immunity
- influenza
- mAbs, monoclonal antibodies
- mucosal immunity
- rAd, recombinant adenovirus
- universal vaccine
Collapse
Affiliation(s)
- Kui Xiang
- a Department of Molecular Biology; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming , Yunnan , PR China
| | | | | | | | | | | | | |
Collapse
|
8
|
Pyo HM, Hlasny M, Zhou Y. Influence of maternally-derived antibodies on live attenuated influenza vaccine efficacy in pigs. Vaccine 2015; 33:3667-72. [PMID: 26092308 DOI: 10.1016/j.vaccine.2015.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 01/10/2023]
Abstract
Vaccination during pregnancy is practiced in swine farms as one measure to control swine influenza virus (SIV) infection in piglets at an early age. Vaccine-induced maternal antibodies transfer to piglets through colostrum and stabilize the herd: however, maternally derived antibodies (MDA) interfere with immune response following influenza vaccination in piglets at the later stage of life. In addition, MDA is related to enhanced respiratory disease in SIV infection. Previously, we have developed a bivalent live attenuated influenza vaccine (LAIV) which harbors both H1 and H3 HAs. We demonstrated vaccination of this LAIV provided protection to homologous and heterologous SIV infection in pigs. In this study we aimed to investigate the influence of MDA on LAIV efficacy. To this end, SIV sero-negative sows were vaccinated with a commercial vaccine. After parturition, nursery piglets were vaccinated with LAIV intranasally or intramuscularly, and were then challenged with SIV. We report that MDA hampered serum antibody response induced by intramuscular vaccination but not by intranasal vaccination of the LAIV. Viral challenge in the presence of MDA caused exacerbated respiratory disease in unvaccinated piglets. In contrast, all LAIV vaccinated piglets were protected from homologous viral infection regardless of the route of vaccination and the presence of MDA. Our results demonstrated that LAIV conferred protection in the presence of MDA without inciting exacerbated respiratory disease.
Collapse
Affiliation(s)
- Hyun Mi Pyo
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Magda Hlasny
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3.
| |
Collapse
|
9
|
Rajão DS, Loving CL, Gauger PC, Kitikoon P, Vincent AL. Influenza A virus hemagglutinin protein subunit vaccine elicits vaccine-associated enhanced respiratory disease in pigs. Vaccine 2014; 32:5170-6. [PMID: 25077416 DOI: 10.1016/j.vaccine.2014.07.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023]
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) can occur when pigs are challenged with heterologous virus in the presence of non-neutralizing but cross-reactive antibodies elicited by whole inactivated virus (WIV) vaccine. The aim of this study was to compare the effects of heterologous δ1-H1N2 influenza A virus (IAV) challenge of pigs after vaccination with 2009 pandemic H1N1 virus (H1N1pdm09) recombinant hemagglutinin (HA) subunit vaccine (HA-SV) or temperature-sensitive live attenuated influenza virus (LAIV) vaccine, and to assess the role of immunity to HA in the development of VAERD. Both HA-SV and LAIV vaccines induced high neutralizing antibodies to virus with homologous HA (H1N1pdm09), but not heterologous challenge virus (δ1-H1N2). LAIV partially protected pigs, resulting in reduced virus shedding and faster viral clearance, as no virus was detected in the lungs by 5 days post infection (dpi). HA-SV vaccinated pigs developed more severe lung and tracheal lesions consistent with VAERD following challenge. These results demonstrate that the immune response against the HA protein alone is sufficient to cause VAERD following heterologous challenge.
Collapse
Affiliation(s)
- Daniela S Rajão
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Crystal L Loving
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1648 Vet Med, Ames, IA 50011, USA
| | - Pravina Kitikoon
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA.
| |
Collapse
|
10
|
Abstract
Swine influenza is an acute respiratory disease of pigs caused by influenza A virus (IAV) and characterized by fever followed by lethargy, anorexia, and serous nasal discharge. The disease progresses rapidly and may be complicated when associated with other respiratory pathogens. IAV is one of the most prevalent respiratory pathogens of swine, resulting in substantial economic burden to pork producers. In the past 10-15 years, a dramatic evolution of the IAV in U.S. swine has occurred, resulting in the co-circulation of many antigenically distinct IAV strains, derived from 13 phylogenetically distinct hemagglutinin clusters of H1 and H3 viruses. Vaccination is the most common strategy to prevent influenza in pigs, however, the current diverse IAV epidemiology poses a challenge for the production of efficacious and protective vaccines. A concern regarding the use of traditional inactivated vaccines is the possibility of inducing vaccine-associated enhanced respiratory disease (VAERD) when vaccine virus strains are mismatched with the infecting strain. In this review, we discuss the current epidemiology and pathogenesis of swine influenza in the United States, different vaccines platforms with potential to control influenza in pigs, and the factors associated with vaccine-associated disease enhancement.
Collapse
|