1
|
Aftab S, Nelson E, Hildreth M, Wang X. Silencing RNA-Mediated Knockdown of IFITM3 Enhances Senecavirus A Replication. Pathogens 2024; 13:290. [PMID: 38668245 PMCID: PMC11054092 DOI: 10.3390/pathogens13040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
Senecavirus A (SVA) is a non-enveloped, positive sense, single-stranded RNA virus that causes vesicular diseases in pigs. Interferon-induced transmembrane 3 (IFITM3) is an interferon-stimulated gene (ISG) that exhibits broad antiviral activity. We investigated the role of IFITM3 in SVA replication. Both viral protein expression and supernatant virus titer were significantly increased when endogenous IFITM3 was knocked down by approximately 80% in human non-smallcell lung carcinoma cell line (NCI-H1299) compared to silencing RNA control. Interestingly, overexpression of exogenous IFITM3 in NCI-H1299 cells also significantly enhanced viral protein expression and virus titer compared to vector control, which was positively correlated with induction of autophagy mediated by IFITM3 overexpression. Overall, our results indicate an antiviral role of endogenous IFITM3 against SVA. The exact molecular mechanisms by which endogenous IFITM3 limits SVA replication remain to be determined in future studies.
Collapse
Affiliation(s)
- Shamiq Aftab
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (S.A.); (M.H.)
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | - Michael Hildreth
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (S.A.); (M.H.)
| | - Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (S.A.); (M.H.)
| |
Collapse
|
2
|
Du S, Wang Y, Wang J, Ma Y, Xu W, Shi X, Li L, Hao P, Liu Q, Liao M, Zhou B, Jin N, Wong YK, Hu L, Wang J, Liu W, Li C. IFITM3 inhibits severe fever with thrombocytopenia syndrome virus entry and interacts with viral Gc protein. J Med Virol 2024; 96:e29491. [PMID: 38402626 DOI: 10.1002/jmv.29491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne hemorrhagic fever disease with high fatality rate of 10%-20%. Vaccines or specific therapeutic measures remain lacking. Human interferon inducible transmembrane protein 3 (hIFITM3) is a broad-spectrum antiviral factor targeting viral entry. However, the antiviral activity of hIFITM3 against SFTS virus (SFTSV) and the functional mechanism of IFITM3 remains unclear. Here we demonstrate that endogenous IFITM3 provides protection against SFTSV infection and participates in the anti-SFTSV effect of type Ⅰ and Ⅲ interferons (IFNs). IFITM3 overexpression exhibits anti-SFTSV function by blocking Gn/Gc-mediated viral entry and fusion. Further studies showed that IFITM3 binds SFTSV Gc directly and its intramembrane domain (IMD) is responsible for this interaction and restriction of SFTSV entry. Mutation of two neighboring cysteines on IMD weakens IFITM3-Gc interaction and attenuates the antiviral activity of IFITM3, suggesting that IFITM3-Gc interaction may partly mediate the inhibition of SFTSV entry. Overall, our data demonstrate for the first time that hIFITM3 plays a critical role in the IFNs-mediated anti-SFTSV response, and uncover a novel mechanism of IFITM3 restriction of SFTSV infection, highlighting the potential of clinical intervention on SFTS disease.
Collapse
Affiliation(s)
- Shouwen Du
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, P.R. China
| | - Yuhang Wang
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, P.R. China
| | - Jiamin Wang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Yidan Ma
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Xiaoshuang Shi
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Quan Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Ming Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Boping Zhou
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, P.R. China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Yin K Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lifen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Jigang Wang
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, P.R. China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| |
Collapse
|
3
|
Ren H, Wang S, Xie Z, Wan L, Xie L, Luo S, Li M, Xie Z, Fan Q, Zeng T, Zhang Y, Zhang M, Huang J, Wei Y. Analysis of Chicken IFITM3 Gene Expression and Its Effect on Avian Reovirus Replication. Viruses 2024; 16:330. [PMID: 38543696 PMCID: PMC10974799 DOI: 10.3390/v16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 05/23/2024] Open
Abstract
Interferon-inducible transmembrane protein 3 (IFITM3) is an antiviral factor that plays an important role in the host innate immune response against viruses. Previous studies have shown that IFITM3 is upregulated in various tissues and organs after avian reovirus (ARV) infection, which suggests that IFITM3 may be involved in the antiviral response after ARV infection. In this study, the chicken IFITM3 gene was cloned and analyzed bioinformatically. Then, the role of chicken IFITM3 in ARV infection was further explored. The results showed that the molecular weight of the chicken IFITM3 protein was approximately 13 kDa. This protein was found to be localized mainly in the cytoplasm, and its protein structure contained the CD225 domain. The homology analysis and phylogenetic tree analysis showed that the IFITM3 genes of different species exhibited great variation during genetic evolution, and chicken IFITM3 shared the highest homology with that of Anas platyrhynchos and displayed relatively low homology with those of birds such as Anser cygnoides and Serinus canaria. An analysis of the distribution of chicken IFITM3 in tissues and organs revealed that the IFITM3 gene was expressed at its highest level in the intestine and in large quantities in immune organs, such as the bursa of Fabricius, thymus and spleen. Further studies showed that the overexpression of IFITM3 in chicken embryo fibroblasts (DF-1) could inhibit the replication of ARV, whereas the inhibition of IFITM3 expression in DF-1 cells promoted ARV replication. In addition, chicken IFITM3 may exert negative feedback regulatory effects on the expression of TBK1, IFN-γ and IRF1 during ARV infection, and it is speculated that IFITM3 may participate in the innate immune response after ARV infection by negatively regulating the expression of TBK1, IFN-γ and IRF1. The results of this study further enrich the understanding of the role and function of chicken IFITM3 in ARV infection and provide a theoretical basis for an in-depth understanding of the antiviral mechanism of host resistance to ARV infection.
Collapse
Affiliation(s)
- Hongyu Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
4
|
Pang Z, Hao P, Qu Q, Li L, Jiang Y, Xiao S, Jin N, Li C. Interferon-Inducible Transmembrane Protein 3 (IFITM3) Restricts Rotavirus Infection. Viruses 2022; 14:v14112407. [PMID: 36366505 PMCID: PMC9696312 DOI: 10.3390/v14112407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
Rotavirus (RV) is a non-enveloped icosahedral virus with an 11-segment double-stranded RNA genome, belonging to the family of rotaviruses. RV is one of the pathogens causing diarrhea in infants and young animals, and it induces the production of type I interferons (IFNs), which can trigger antiviral function by inducing the production of interferon-stimulated genes (ISGs). Although IFITM3, an ISG localizing to late endosomes, can limit many viral infections, whether or not it restricts the infection of RV is still unknown. Therefore, we attempted to determine whether IFITM3 also restricts RV infection by using over-expression and knockout cell strains. It was found that IFITM3-expressing cell strains were less susceptible to RV infection, as the replication of RV in over-expressing cells was significantly less than in control group cells. Correspondingly, IFITM3-knockout cells were significantly susceptible compared to the normal cells. Furthermore, the IFN-induced antiviral effect was significantly attenuated in the absence of IFITM3, and IFITM3 delayed RV escape from endosomes in the presence of IFITM3, suggesting that endogenous IFITM3 is of great importance in type I IFN-mediated antiviral responses and may restrict infection by affecting the function of the late endosomal compartment. In conclusion, these data provide the first evidence that IFITM3 limits RV infection in vitro and delays RV escape from late endosomes into the cytoplasm.
Collapse
Affiliation(s)
- Zhaoxia Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Pengfei Hao
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
| | - Qiaoqiao Qu
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
| | - Letian Li
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
| | - Yuhang Jiang
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (S.X.); (N.J.); (C.L.)
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
- Correspondence: (S.X.); (N.J.); (C.L.)
| | - Chang Li
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
- Correspondence: (S.X.); (N.J.); (C.L.)
| |
Collapse
|
5
|
Wen S, Song Y, Li C, Jin N, Zhai J, Lu H. Positive Regulation of the Antiviral Activity of Interferon-Induced Transmembrane Protein 3 by S-Palmitoylation. Front Immunol 2022; 13:919477. [PMID: 35769480 PMCID: PMC9236556 DOI: 10.3389/fimmu.2022.919477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The interferon-induced transmembrane protein 3 (IFITM3), a small molecule transmembrane protein induced by interferon, is generally conserved in vertebrates, which can inhibit infection by a diverse range of pathogenic viruses such as influenza virus. However, the precise antiviral mechanisms of IFITM3 remain unclear. At least four post-translational modifications (PTMs) were found to modulate the antiviral effect of IFITM3. These include positive regulation provided by S-palmitoylation of cysteine and negative regulation provided by lysine ubiquitination, lysine methylation, and tyrosine phosphorylation. IFITM3 S-palmitoylation is an enzymatic addition of a 16-carbon fatty acid on the three cysteine residues within or adjacent to its two hydrophobic domains at positions 71, 72, and 105, that is essential for its proper targeting, stability, and function. As S-palmitoylation is the only PTM known to enhance the antiviral activity of IFITM3, enzymes that add this modification may play important roles in IFN-induced immune responses. This study mainly reviews the research progresses on the antiviral mechanism of IFITM3, the regulation mechanism of S-palmitoylation modification on its subcellular localization, stability, and function, and the enzymes that mediate the S-palmitoylation modification of IFITM3, which may help elucidate the mechanism by which this IFN effector restrict virus replication and thus aid in the design of therapeutics targeted at pathogenic viruses.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
6
|
Song L, Chen J, Hao P, Jiang Y, Xu W, Li L, Chen S, Gao Z, Jin N, Ren L, Li C. Differential Transcriptomics Analysis of IPEC-J2 Cells Single or Coinfected With Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus. Front Immunol 2022; 13:844657. [PMID: 35401515 PMCID: PMC8989846 DOI: 10.3389/fimmu.2022.844657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Porcine epidemic diarrhea (PED) and transmissible gastroenteritis (TGE) caused by porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are two highly contagious intestinal diseases in the swine industry worldwide. Notably, coinfection of TGEV and PEDV is common in piglets with diarrhea-related diseases. In this study, intestinal porcine epithelial cells (IPEC-J2) were single or coinfected with PEDV and/or TGEV, followed by the comparison of differentially expressed genes (DEGs), especially interferon-stimulated genes (ISGs), between different groups via transcriptomics analysis and real-time qPCR. The antiviral activity of swine interferon-induced transmembrane protein 3 (sIFITM3) on PEDV and TGEV infection was also evaluated. The results showed that DEGs can be detected in the cells infected with PEDV, TGEV, and PEDV+TGEV at 12, 24, and 48 hpi, and the number of DEGs was the highest at 24 hpi. The DEGs are mainly annotated to the GO terms of protein binding, immune system process, organelle part, and intracellular organelle part. Furthermore, 90 ISGs were upregulated during PEDV or TGEV infection, 27 of which were associated with antiviral activity, including ISG15, OASL, IFITM1, and IFITM3. Furthermore, sIFITM3 can significantly inhibit PEDV and TGEV infection in porcine IPEC-J2 cells and/or monkey Vero cells. Besides, sIFITM3 can also inhibit vesicular stomatitis virus (VSV) replication in Vero cells. These results indicate that sIFITM3 has broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Lina Song
- College of Veterinary Medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Chen
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Si Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Linzhu Ren
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
7
|
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of interferon-inducible proteins that inhibit a broad range of viruses by interfering with viral-to-cellular membrane fusion. The antiviral activity of IFITMs is highly regulated by several posttranslational modifications and by a number of protein domains that modulate steady-state protein levels, trafficking, and antiviral effectiveness. Taking advantage of the natural diversity existing among IFITMs of different animal species, we have compared 21 IFITMs for their ability to inhibit HIV-1 at two steps, during virus entry into cells (target cell protection) and during the production of novel virion particles (negative imprinting of virion particles' infectivity). We found a high functional heterogeneity among IFITM homologs with respect to both antiviral modalities, with IFITM members that exhibit enhanced viral inhibition, while others have no ability to block HIV-1. These differences could not be ascribed to known regulatory domains and could only be partially explained through differential protein stability, implying the existence of additional mechanisms. Through the use of chimeras between active and inactive IFITMs, we demonstrate that the cross talk between distinct domains of IFITMs is an important contributor of their antiviral potency. Finally, we identified murine IFITMs as natural variants competent for target cell protection, but not for negative imprinting of virion particles' infectivity, suggesting that the two properties may, at least in principle, be uncoupled. Overall, our results shed new light on the complex relationship between IFITMs and viral infection and point to the cross talk between IFITM domains as a novel layer of regulation of their activity. IMPORTANCE IFITMs are broad viral inhibitors capable of interfering with both early and late phases of the replicative cycle of many different viruses. By comparing 21 IFITM proteins issued from different animal species for their ability to inhibit HIV-1, we have identified several that exhibit either enhanced or impaired antiviral behavior. This functional diversity is not driven by differences in known domains and can only be partly explained through differential protein stability. Chimeras between active and inactive IFITMs point to the cross talk between individual IFITM domains as important for optimal antiviral activity. Finally, we show that murine IFITMs are not capable of decreasing the infectivity of newly produced HIV-1 virion particles, although they retain target cell protection abilities, suggesting that these properties may be, in principle, disconnected. Overall, our results shed new light on the complex layers of regulation of IFITM proteins and enrich our current understanding of these broad antiviral factors.
Collapse
|