1
|
Yang Z, Yang M, Rui S, Hao W, Wu X, Guo L, Armstrong DG, Yang C, Deng W. Exosome-based cell therapy for diabetic foot ulcers: Present and prospect. Heliyon 2024; 10:e39251. [DOI: 10.1016/j.heliyon.2024.e39251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
|
2
|
Li Z, Li Q, Ahmad A, Yue Z, Wang H, Wu G. Highly concentrated collagen/chondroitin sulfate scaffold with platelet-rich plasma promotes bone-exposed wound healing in porcine. Front Bioeng Biotechnol 2024; 12:1441053. [PMID: 39380894 PMCID: PMC11458455 DOI: 10.3389/fbioe.2024.1441053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
In the case of wounds with exposed bone, it is essential to provide not only scaffolds with sufficient mechanical strength for protection, but also environments that are conducive to the regeneration of tissues and blood vessels. Despite the excellent biocompatibility and biodegradability of collagen and chondroitin sulfate, they display poor mechanical strength and rapid degradation rates. In contrast to previous methodologies that augmented the mechanical properties of biomaterials through the incorporation of additional substances, this investigation exclusively enhanced the mechanical strength of collagen/chondroitin sulfate scaffolds by modulating collagen concentrations. Furthermore, platelet-rich plasma (PRP) was employed to establish optimal conditions for vascular and tissue regeneration at the wound site. High-concentration collagen/chondroitin sulfate (H C-S) scaffolds were synthesized using high-speed centrifugation and combined with PRP, and their effects on endothelial cell proliferation were assessed. A porcine model of bone-exposed wounds was developed to investigate the healing effects and mechanisms. The experimental results indicated that scaffolds with increased collagen concentration significantly enhanced both tensile and compressive moduli. The combination of H C-S scaffolds with PRP markedly promoted endothelial cell proliferation. In vivo experiments demonstrated that this combination significantly accelerated the healing of porcine bone-exposed wounds and promoted vascular regeneration. This represents a promising strategy for promoting tissue regeneration that is worthy of further exploration and clinical application.
Collapse
Affiliation(s)
- Zhihao Li
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Qian Li
- Medical Laboratory of Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Akhlaq Ahmad
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhongjie Yue
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Hongxia Wang
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Guofeng Wu
- Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Bush KA, Kashgari G, Jahid S, Hur J, Powell HM, Doshi N. Biological attributes required for epidermal regeneration: Evaluation of the next-generation autologous cell harvesting device. Int Wound J 2024; 21:e14941. [PMID: 38860606 PMCID: PMC11165398 DOI: 10.1111/iwj.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
Early wound intervention and closure is critical for reducing infection and improving aesthetic and functional outcomes for patients with acute burn wounds and nonthermal full-thickness skin defects. Treatment of partial-thickness burns or full-thickness injuries with autologous skin cell suspension (ASCS) achieves robust wound closure while limiting the amount of donor skin compared with standard autografting. A Next Generation Autologous Cell Harvesting Device (NG-ACHD) was developed to standardize the preparation process for ASCS to ensure biological attributes are obtained known to correlate with well-established safety and performance data. This study compared ASCS prepared using the NG-ACHD and ACHD following the manufacturer's guidance, evaluating cellular yields, viability, apoptotic activity, aggregates, phenotypes and functional capacity. Non-inferiority was established for all biological attributes tested and comparable healing trajectories were demonstrated using an in vitro skin regeneration model. In addition to standardization, the NG-ACHD also provides workflow efficiencies with the potential to decrease training requirements and increase the ease of incorporation and utilization of ASCS in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Heather M. Powell
- Department of Materials Science and Engineering, Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Scientific StaffShriners Children's OhioDaytonOhioUSA
| | | |
Collapse
|
4
|
Yu C, Yu S, Liu Z, Xu L, Zhang Z, Wan J, Ji P, Zhang P, Fu Y, Le Y, Hou R. Morroniside promotes skin wound re-epithelialization by facilitating epidermal stem cell proliferation through GLP-1R-mediated upregulation of β-catenin expression. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1072-1084. [PMID: 38779766 PMCID: PMC11322873 DOI: 10.3724/abbs.2024070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 05/25/2024] Open
Abstract
Epidermal stem cells (EpSCs) play a vital role in skin wound healing through re-epithelialization. Identifying chemicals that can promote EpSC proliferation is helpful for treating skin wounds. This study investigates the effect of morroniside on cutaneous wound healing in mice and explores the underlying mechanisms. Application of 10‒50 μg/mL of morroniside to the skin wound promotes wound healing in mice. In vitro studies demonstrate that morroniside stimulates the proliferation of mouse and human EpSCs in a time- and dose-dependent manner. Mechanistic studies reveal that morroniside promotes the proliferation of EpSCs by facilitating the cell cycle transition from the G1 to S phase. Morroniside increases the expression of β-catenin via the glucagon-like peptide-1 receptor (GLP-1R)-mediated PKA, PKA/PI3K/AKT and PKA/ERK signaling pathways, resulting in an increase in cyclin D1 and cyclin E1 expression, either directly or by upregulating c-Myc expression. This process ultimately leads to EpSC proliferation. Administration of morroniside to mouse skin wounds increases the phosphorylation of AKT and ERK, the expressions of β-catenin, c-Myc, cyclin D1, and cyclin E1, as well as the proliferation of EpSCs, in periwound skin tissue, and accelerates wound re-epithelialization. These effects of morroniside are mediated by the GLP-1R. Overall, these results indicate that morroniside promotes skin wound healing by stimulating the proliferation of EpSCs via increasing β-catenin expression and subsequently upregulating c-Myc, cyclin D1, and cyclin E1 expressions through GLP-1R signaling pathways. Morroniside has clinical potential for treating skin wounds.
Collapse
Affiliation(s)
- Chenghao Yu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Siyuan Yu
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| | - Zuohua Liu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Lei Xu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Zhiqiang Zhang
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Jiaming Wan
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| | - Pengxiang Ji
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Ping Zhang
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Yi Fu
- Department of Human AnatomyHistology and EmbryologySchool of Biology and Basic Medical SciencesSuzhou Medical College of Soochow UniversitySuzhou215123China
| | - Yingying Le
- Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ruixing Hou
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| |
Collapse
|
5
|
Manginstar CO, Tallei TE, Niode NJ, Salaki CL, Hessel SS. Therapeutic potential of propolis in alleviating inflammatory response and promoting wound healing in skin burn. Phytother Res 2024; 38:856-879. [PMID: 38084816 DOI: 10.1002/ptr.8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 02/15/2024]
Abstract
Burns can cause inflammation and delayed healing, necessitating alternative therapies due to the limitations of conventional treatments. Propolis, a natural bee-produced substance, has shown promise in facilitating burn healing. This literature review provides a comprehensive overview of propolis' mechanisms of action, wound-healing properties, and its application in treating skin burns. Propolis contains bioactive compounds with antimicrobial, antioxidant, and anti-inflammatory properties, making it a promising candidate for managing skin burn injuries. It helps prevent infections, neutralize harmful free radicals, and promote a well-balanced inflammatory response. Moreover, propolis aids in wound closure, tissue regeneration, collagen synthesis, cellular proliferation, and angiogenesis, contributing to tissue regeneration and remodeling. The article discusses various propolis extracts, extraction methods, chemical composition, and optimized formulations like ointments and creams for burn wound treatment. Considerations regarding dosage and safety are addressed. Further research is needed to fully understand propolis' mechanisms, determine optimal formulations, and establish suitable clinical dosages. Nevertheless, propolis' natural origin and demonstrated benefits make it a compelling avenue for burn care exploration, potentially complementing existing therapies and improving burn management outcomes.
Collapse
Grants
- 158/E5/PG.02.00.PL/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
- 1803/UN12.13/LT/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
Collapse
Affiliation(s)
- Christian Oktavianus Manginstar
- Entomology Study Program, Postgraduate Program, Sam Ratulangi University, Manado, Indonesia
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Christina Leta Salaki
- Plant Protection Study Program, Faculty of Agriculture, Sam Ratulangi University, Manado, Indonesia
| | - Sofia Safitri Hessel
- Indonesia Biodiversity and Biogeography Research Institute (INABIG), Bandung, Indonesia
| |
Collapse
|
6
|
Zhang X, Shi W, Wang X, Zou Y, Xiang W, Lu N. Evaluation of the Composite Skin Patch Loaded with Bioactive Functional Factors Derived from Multicellular Spheres of EMSCs for Regeneration of Full-thickness Skin Defects in Rats. Curr Stem Cell Res Ther 2024; 19:1142-1152. [PMID: 37694794 DOI: 10.2174/1574888x19666230908142426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Transplantation of stem cells/scaffold is an efficient approach for treating tissue injury including full-thickness skin defects. However, the application of stem cells is limited by preservation issues, ethical restriction, low viability, and immune rejection in vivo. The mesenchymal stem cell conditioned medium is abundant in bioactive functional factors, making it a viable alternative to living cells in regeneration medicine. METHODS Nasal mucosa-derived ecto-mesenchymal stem cells (EMSCs) of rats were identified and grown in suspension sphere-forming 3D culture. The EMSCs-conditioned medium (EMSCs-CM) was collected, lyophilized, and analyzed for its bioactive components. Next, fibrinogen and chitosan were further mixed and cross-linked with the lyophilized powder to obtain functional skin patches. Their capacity to gradually release bioactive substances and biocompatibility with epidermal cells were assessed in vitro. Finally, a full-thickness skin defect model was established to evaluate the therapeutic efficacy of the skin patch. RESULTS The EMSCs-CM contains abundant bioactive proteins including VEGF, KGF, EGF, bFGF, SHH, IL-10, and fibronectin. The bioactive functional composite skin patch containing EMSCs-CM lyophilized powder showed the network-like microstructure could continuously release the bioactive proteins, and possessed ideal biocompatibility with rat epidermal cells in vitro. Transplantation of the composite skin patch could expedite the healing of the full-thickness skin defect by promoting endogenous epidermal stem cell proliferation and skin appendage regeneration in rats. CONCLUSION In summary, the bioactive functional composite skin patch containing EMSCs-CM lyophilized powder can effectively accelerate skin repair, which has promising application prospects in the treatment of skin defects.
Collapse
Affiliation(s)
- Xuan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Wentao Shi
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Central Hospital of Jiangnan University, Wuxi, China
| | - Yin Zou
- The Affiliated Children Hospital of Jiangnan University, Wuxi, China
| | - Wen Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Naiyan Lu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Bonnici L, Suleiman S, Schembri-Wismayer P, Cassar A. Targeting Signalling Pathways in Chronic Wound Healing. Int J Mol Sci 2023; 25:50. [PMID: 38203220 PMCID: PMC10779022 DOI: 10.3390/ijms25010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wounds fail to achieve complete closure and are an economic burden to healthcare systems due to the limited treatment options and constant medical attention. Chronic wounds are characterised by dysregulated signalling pathways. Research has focused on naturally derived compounds, stem-cell-based therapy, small molecule drugs, oligonucleotide delivery nanoparticles, exosomes and peptide-based platforms. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wingless-related integration (Wnt)/β-catenin, transforming growth factor-β (TGF-β), nuclear factor erythroid 2-related factor 2 (Nrf2), Notch and hypoxia-inducible factor 1 (HIF-1) signalling pathways have critical roles in wound healing by modulating the inflammatory, proliferative and remodelling phases. Moreover, several regulators of the signalling pathways were demonstrated to be potential treatment targets. In this review, the current research on targeting signalling pathways under chronic wound conditions will be discussed together with implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Analisse Cassar
- Department of Anatomy, University of Malta, MSD 2080 Msida, Malta; (L.B.); (S.S.); (P.S.-W.)
| |
Collapse
|
8
|
Zawrzykraj M, Deptuła M, Kondej K, Tymińska A, Pikuła M. The effect of chemotherapy and radiotherapy on stem cells and wound healing. Current perspectives and challenges for cell-based therapies. Biomed Pharmacother 2023; 168:115781. [PMID: 39491418 DOI: 10.1016/j.biopha.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024] Open
Abstract
Cancers are part of the group of diseases that carry a high mortality rate. According to World Health Organization in 2020 reported 10 million deaths due to cancers. Treatment of oncological patients is focused on chemotherapeutic agents, radiology, or immunology. Surgical interventions are also an important aspect of treatment. The above methods contribute to saving the patients' health and lives. However, cancer treatment possesses side effects. Commonly observed complications are hair loss, mucositis, nausea, diarrhea, or various skin damage. To improve the quality of medical care for cancer patients, new methods of reducing side effects are sought. Strategies include the use of stem cells (SCs). Due to unlimited proliferation potential and differentiating abilities, SCs are used in the treatment of many disease entities, including wounds. One of the most used types of stem cells supposed adipose-derived mesenchymal stromal cells (AD-MSCs). Clinical trials confirm the application of AD-MSCs in wound healing. Furthermore, in vivo studies considered the utilization of AD-MSCs in radiation injury. The use of stem cells in cancer treatment still involves many questions, such as the impact of treatment on SCs' condition and oncological safety. However, development in regenerative medicine research may contribute to the use of stem cells in personalized medicine, customized for the patient. This could represent a breakthrough step in preventing the side effects of cancer therapies, including chronic wounds.
Collapse
Affiliation(s)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Poland
| | - Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Poland.
| |
Collapse
|
9
|
Feng J, Yao Y, Wang Q, Han X, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Exosomes: Potential key players towards novel therapeutic options in diabetic wounds. Biomed Pharmacother 2023; 166:115297. [PMID: 37562235 DOI: 10.1016/j.biopha.2023.115297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetic wounds are usually difficult to heal, and wounds in foot in particular are often aggravated by infection, trauma, diabetic neuropathy, peripheral vascular disease and other factors, resulting in serious foot ulcers. The pathogenesis and clinical manifestations of diabetic wounds are complicated, and there is still a lack of objective and in-depth laboratory diagnosis and classification standards. Exosomes are nanoscale vesicles containing DNA, mRNA, microRNA, cyclic RNA, metabolites, lipids, cytoplasm and cell surface proteins, etc., which are involved in intercellular communication and play a crucial role in vascular regeneration, tissue repair and inflammation regulation in the process of diabetic wound healing. Here, we discussed exosomes of different cellular origins, such as diabetic wound-related fibroblasts (DWAF), adipose stem cells (ASCs), mesenchymal stem cells (MSCs), immune cells, platelets, human amniotic epithelial cells (hAECs), epidermal stem cells (ESCs), and their various molecular components. They exhibit multiple therapeutic effects during diabetic wound healing, including promoting cell proliferation and migration associated with wound healing, regulating macrophage polarization to inhibit inflammatory responses, promoting nerve repair, and promoting vascular renewal and accelerating wound vascularization. In addition, exosomes can be designed to deliver different therapeutic loads and have the ability to deliver them to the desired target. Therefore, exosomes may become an innovative target for precision therapeutics in diabetic wounds. In this review, we summarize the latest research on the role of exosomes in the healing of diabetic wound by regulating the pathogenesis of diabetic wounds, and discuss their potential applications in the precision treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yichen Yao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaozhou Han
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Afflicted to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
10
|
Arandes-Marcocci J, Quintana-Codina M, Altemir A, Carrera-Morodo M, Sola Casas MÁ. Functional and aesthetic results of plicature and forced approximation technique for surgical defect closure: A prospective observational study. Australas J Dermatol 2023; 64:e274-e277. [PMID: 37052288 DOI: 10.1111/ajd.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Jorge Arandes-Marcocci
- Department of Dermatology, Hospital Universitari Sagrat Cor. Grupo Hospitalario Quirónsalud, Barcelona, Spain
| | - Mònica Quintana-Codina
- Department of Dermatology, Hospital Universitari Sagrat Cor. Grupo Hospitalario Quirónsalud, Barcelona, Spain
| | - Arcadi Altemir
- Department of Dermatology, Hospital Universitari Sagrat Cor. Grupo Hospitalario Quirónsalud, Barcelona, Spain
| | - María Carrera-Morodo
- La Marina Primary Health Care Center, SAP Esquerra Barcelona, Institut Catalá de la Salut, Barcelona, Spain
| | - Mª Ángeles Sola Casas
- Department of Dermatology, Hospital Universitari Sagrat Cor. Grupo Hospitalario Quirónsalud, Barcelona, Spain
| |
Collapse
|
11
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Zhao P, Dang Z, Liu M, Guo D, Luo R, Zhang M, Xie F, Zhang X, Wang Y, Pan S, Ma X. Molecular hydrogen promotes wound healing by inducing early epidermal stem cell proliferation and extracellular matrix deposition. Inflamm Regen 2023; 43:22. [PMID: 36973725 PMCID: PMC10044764 DOI: 10.1186/s41232-023-00271-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Despite progress in developing wound care strategies, there is currently no treatment that promotes the self-tissue repair capabilities. H2 has been shown to effectively protect cells and tissues from oxidative and inflammatory damage. While comprehensive effects and how H2 functions in wound healing remains unknown, especially for the link between H2 and extracellular matrix (ECM) deposition and epidermal stem cells (EpSCs) activation. METHODS Here, we established a cutaneous aseptic wound model and applied a high concentration of H2 (66% H2) in a treatment chamber. Molecular mechanisms and the effects of healing were evaluated by gene functional enrichment analysis, digital spatial profiler analysis, blood perfusion/oxygen detection assay, in vitro tube formation assay, enzyme-linked immunosorbent assay, immunofluorescent staining, non-targeted metabonomic analysis, flow cytometry, transmission electron microscope, and live-cell imaging. RESULTS We revealed that a high concentration of H2 (66% H2) greatly increased the healing rate (3 times higher than the control group) on day 11 post-wounding. The effect was not dependent on O2 or anti-reactive oxygen species functions. Histological and cellular experiments proved the fast re-epithelialization in the H2 group. ECM components early (3 days post-wounding) deposition were found in the H2 group of the proximal wound, especially for the dermal col-I, epidermal col-III, and dermis-epidermis-junction col-XVII. H2 accelerated early autologous EpSCs proliferation (1-2 days in advance) and then differentiation into myoepithelial cells. These epidermal myoepithelial cells could further contribute to ECM deposition. Other beneficial outcomes include sustained moist healing, greater vascularization, less T-helper-1 and T-helper-17 cell-related systemic inflammation, and better tissue remodelling. CONCLUSION We have discovered a novel pattern of wound healing induced by molecular hydrogen treatment. This is the first time to reveal the direct link between H2 and ECM deposition and EpSCs activation. These H2-induced multiple advantages in healing may be related to the enhancement of cell viability in various cells and the maintenance of mitochondrial functions at a basic level in the biological processes of life.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Zheng Dang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ruiliu Luo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People's Republic of China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People's Republic of China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China.
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China.
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China.
| |
Collapse
|
13
|
Wang T, Rho O, Eguiarte-Solomon F, DiGiovanni J. Twist1 as a target for prevention of cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:62-76. [PMID: 36373194 PMCID: PMC9772054 DOI: 10.1002/mc.23482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- Tingzeng Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Fernando Eguiarte-Solomon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78723, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, United States
| |
Collapse
|
14
|
Ramos-Gonzalez G, Salazar L, Wittig O, Diaz-Solano D, Cardier JE. The effects of mesenchymal stromal cells and platelet-rich plasma treatments on cutaneous wound healing. Arch Dermatol Res 2022; 315:815-823. [PMID: 36326886 DOI: 10.1007/s00403-022-02451-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cellular therapy and platelet-rich plasma (PRP) have been used as a treatment for skin wounds. Previous evidence has shown that mesenchymal stromal cells (MSC) may improve skin wound healing. In contrast, contradictory effects have been reported by using PRP treatment on skin wound healing. However, there is evidence that PRP constitutes an excellent scaffold for tissue engineering. In this work, we aim to study the effect of MSC on skin wound healing. We used an experimental murine model of full-thickness wounds. Wounds were treated with human bone marrow-MSC contained in a PRP clot. Untreated or PRP-treated wounds were used as controls. Wound healing was evaluated by macroscopic observation and histological analysis at day 7 post-wounding. Immunohistochemical studies were performed to detect the presence of epithelial progenitor cells (EPC) and the expression of basic fibroblast growth factor (bFGF). MSC/PRP implantation induced a significant wound closure and re-epithelialization as compared with the controls. Increase of CD34+ cells and bFGF was observed in the wounds treated with MSC/PRP. Our results show that MSC included in PRP clot induce cutaneous wound repair by promoting re-epithelialization, migration of EPC and expression of bFGF. PRP alone does not exert a significant effect on wound healing. Our results support the possible clinical use of MSC in PRP scaffold as potential treatment of skin wounds.
Collapse
Affiliation(s)
- Giselle Ramos-Gonzalez
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal: 20632, Caracas, 1020A, Venezuela
| | - Lianeth Salazar
- Servicio de Cirugía Plástica, Hospital de la Cruz Roja, Caracas, 1080, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal: 20632, Caracas, 1020A, Venezuela
| | - Dylana Diaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal: 20632, Caracas, 1020A, Venezuela
| | - Jose E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal: 20632, Caracas, 1020A, Venezuela.
| |
Collapse
|
15
|
Advances in polysaccharide-based nano/microcapsules for biomedical applications: A review. Int J Biol Macromol 2022; 220:878-891. [PMID: 36007696 DOI: 10.1016/j.ijbiomac.2022.08.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023]
Abstract
Biocompatible and biodegradable polysaccharides are abundant and renewable natural materials. Polysaccharides and their derivatives are developed into various carrier materials for biomedical applications. In particular, advanced polysaccharide-based nano/microcapsules have received extensive attention in biomedical applications due to their good encapsulation ability and tunability. In recent years, polysaccharide-based nano/microcapsules have been widely used in drug carriers, gene carriers, antigen carriers, wound dressings, bioimaging and biosensors. Numerous research results have confirmed the feasibility, safety, and effectiveness of polysaccharide-based nano/microcapsules in the above-mentioned biomedical applications. This review discussed and analyzed the latest research strategies and design considerations for these applications in detail. The preparation methods, application strategies, and design considerations of polysaccharide-based nano/microcapsules are summarized and analyzed, and their challenges and future research prospects in biomedicine are further discussed. It is expected to provide researchers with inspiration and design ideas.
Collapse
|
16
|
Calabrese EJ, Calabrese V. Hormesis and Epidermal Stem Cells. Dose Response 2022; 20:15593258221119911. [PMID: 36158736 PMCID: PMC9500281 DOI: 10.1177/15593258221119911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This paper provides an assessment of hormetic dose responses in epidermal stem cells (EpSCs) in animal models and humans, with emphasis on cell proliferation and differentiation and application to wound healing and aging processes. Hormetic dose responses were induced by several agents, including dietary supplements (eg, luteolin, quercetin), pharmaceuticals (eg, nitric oxide), endogenous agents (eg, growth/differentiation factor 5), and via diverse chemical means to sustain steaminess features to retard aging and disease onset. While hormetic dose responses have been extensively reported in a broad spectrum of stem cells, this area has only been explored to a limited extent in EpSCs, principally within the past 5 years. Nonetheless, these findings provide the first integrated assessment of hormesis and EpSC biology within the context of enhancing key functions such as cell proliferation and differentiation and resilience to inflammatory stresses. This paper assesses putative mechanisms of hormetic responses in EpSCs and potential therapeutic applications to prevent dermatological injury and disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, Italy
| |
Collapse
|
17
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Aulanni’am A, Raissa R, Riawan W, Wuragil DK, Permata FS, Beltran MAG. Epidermal Stem Cell in Wound Healing of Gliricidia sepium Leaves from Indonesia and the Philippines in Rats (Rattus norvegicus). Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study intended to investigate the regenerate wound, due to the ointment therapy containing Gliricidia sepium leaves that has potential-induced epidermal stem cells producing. It determined its effect on the expression of transforming growth factor-β1 (TGF-β1), Smad-3, β-catenin, LGR-6.
MATERIALS AND METHODS: About 16 Wistar male rats aged approximately 2 months (150–200g) were used and were divided into four treatment groups (T1, positive control; T2, negative control; T3, wounds treated with G. sepium from Indonesia; and T4, wounds treated with G. sepium from the Philippines). The treatment of ointment was applied to the wound for 3 days. The expression of TGF-β1, Smad-3, β-catenin, and LGR-6 was observed by immunohistochemistry staining.
RESULTS: G. sepium leaves significantly (p < 0.05) upregulated the expression of TGF-β1, Smad-3, β-catenin, and LGR-6 in the group treated with Indonesian G. sepium leaves were higher than that in the group treated with G. sepium leaves from the Philippines.
CONCLUSIONS: Both leaves Varian contain flavonoids, saponins, and tannins, which act as producing epidermal stem cell agents to enhance the wound healing process. It can be concluded that both Gl. sepium Varian Indonesia and the Philippines have a potential effect on wound healing.
Collapse
|
19
|
Phytochemical Analysis, Antioxidant, and Wound Healing Activity of Pluchea indica L. (Less) Branch Extract Nanoparticles. Molecules 2022; 27:molecules27030635. [PMID: 35163900 PMCID: PMC8839647 DOI: 10.3390/molecules27030635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Proliferation and migration of keratinocytes and fibroblasts play an important role in cutaneous wound healing, while oral mucosal squamous cell proliferation and migration are crucial for oral wound healing. In this study, the phytochemical profile of Pluchea indica branch ethanolic extract was characterized. The bioactive compound of Pluchea indica branch ethanolic extract was identified and analyzed by the validated HPLC method. The nanoparticles of P. indica branch extract were formulated by solvent displacement method to increase the solubility and the colloidal stability of the extract. The stability of the nanoparticles was investigated by using the dynamic light scattering technique. Effects of P. indica crude extract and nanoparticles on cell viability, proliferation and migration of primary epidermal keratinocytes, human dermal fibroblasts, and oral mucosal keratinocyte cells were investigated by MTT assay and scratch assay, respectively. The results showed that P. indica branch extract contained a high content of total phenolic and total flavonoids. The HPLC analysis revealed that the main compound in the extract was 4,5-O-dicaffeoylquinic acid. The cell viability of the extract and nanoparticles decreased when cells were exposed to a high concentration of extract and nanoparticles. These results demonstrate that P. indica branch extract and extract nanoparticles at specific concentrations possess in vitro wound healing activity and they may be possibly used to treat different types of wounds including dermal and oral mucosal wounds.
Collapse
|
20
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Fan ZX, Liu F, Li KT, Hu ZQ, Miao Y. Effect of De-epithelialization on Graft Survival Rate After Follicular Unit Extraction. Dermatol Surg 2021; 47:1083-1086. [PMID: 34397543 DOI: 10.1097/dss.0000000000003145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To achieve a natural postoperative appearance, hair grafts are often de-epithelialized from the epidermis during follicular unit extraction (FUE). However, the effect of de-epithelialization on the survival rate of transplanted hair follicles (HFs) has not been investigated. OBJECTIVE To investigate the effect of de-epithelialization on the survival rate of transplanted HFs. METHODS A total of 64 male patients with androgenetic alopecia were included in this study. They were randomly divided into de-epithelialization and control groups. Organ culture was performed to assess the elongation of hair shaft and the percentage of anagen HFs in both groups. Patients were followed up postoperatively to evaluate complications, postoperative shedding, survival rates, and satisfaction. RESULTS No significant difference in hair shaft elongation and percentage of anagen HFs was observed between both groups. The immediate postoperative satisfaction in the control group was much lower than that in the de-epithelialization group (71.25% and 100%, respectively). No significant differences in shedding rate, graft survival rate, and complications were noticed between both groups. CONCLUSION Follicular de-epithelialization does not affect the survival rate of graft in FUE. Based on these data, de-epithelialization may improve immediate postoperative appearance and lead to a more pleasing cosmetic outcome.
Collapse
Affiliation(s)
- Zhe-Xiang Fan
- All authors are affiliated with the Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
22
|
Amer Y, Bridges C, Marathe K. Epidemiology, Pathophysiology, and Management Strategies of Neonatal Wound Care. Neoreviews 2021; 22:e452-e460. [PMID: 34210809 DOI: 10.1542/neo.22-7-e452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Guidelines for neonatal skin care are scarce, and there is no consensus on the best management practices for neonatal skin breakdown. This review presents the pathology and phases of wound healing, reasons for neonatal skin fragility, and approaches to recognition of commonly encountered neonatal wounds. This review also provides general strategies for neonatal wound prevention, care, dressing, and management to avoid further damage to the fragile neonatal skin. The importance and role of retaining moisture in expediting wound healing is discussed, as well as updated classifications on how to grade and assess pressure ulcers and the role of negative pressure wound therapy and silver dressings. Lastly, this review discusses prevention and treatment options for surgical wounds, intravenous extravasation wounds, congenital wounds, and thermal injuries, in addition to how to differentiate these wounds from the common diaper dermatitis and contact dermatitis.
Collapse
Affiliation(s)
- Yomna Amer
- School of Medicine, University of Louisville, Louisville, KY
| | - Catherine Bridges
- Department of Dermatology, University of Cincinnati, Cincinnati, OH.,Department of Dermatology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Kalyani Marathe
- Department of Dermatology, Cincinnati Children's Hospital, Cincinnati, OH
| |
Collapse
|
23
|
Xu Z, Zhang C, Yu Y, Li W, Ma Z, Wang J, Zhang X, Gao H, Liu D. Photoactive Silver Nanoagents for Backgroundless Monitoring and Precision Killing of Multidrug-Resistant Bacteria. Nanotheranostics 2021; 5:472-487. [PMID: 34150471 PMCID: PMC8210445 DOI: 10.7150/ntno.62364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose: The growing prevalence of multidrug-resistant (MDR) bacteria makes it clinically urgent to develop an agent able to detect and treat infections simultaneously. Silver has served as a broad-spectrum antimicrobial since ancient times but suffers from major challenges such as moderate antimicrobial activity, nonspecific toxicity, and difficulty to be visualized in situ. Here, we propose a new photoactive silver nanoagent that relies on a photosensitizer-triggered cascade reaction to liberate Ag+ on bacterial surfaces exclusively, allowing the precise killing of MDR bacteria. Additionally, the AgNP core acts as a backgroundless surface-enhanced Raman scattering (SERS) substrate for imaging the distribution of the nanoagents on bacterial surfaces and monitoring their metabolic dynamics in the infection sites. Methods: In this strategy, the photoactive antibacterial AgNP was decorated with photosensitizers (Chlorin e6, Ce6) and Raman reporter (4-Mercaptobenzonitrile, 4-MB) to provide new opportunities for clinically monitoring and fighting MDR bacterial infections. Upon 655 nm laser activation, the Ce6 molecules produce ROS efficiently, triggering the rapid release of Ag+ from the AgNP core to kill bacteria. Poly[4-O-(α-D-glucopyranosyl)-D-glucopyranose] (GP) was introduced as bacteria-specific targeting ligands. SERS spectra of the prepared GP-Ce6/MB-AgNPs were recorded after injecting for 0.5, 4, 8, 12, 24, and 48 h to track the dynamic metabolism of the nanoagents and thus guiding the antibacterial therapy. Results: This new antimicrobial strategy exerts a dramatically enhanced antibacterial activity. The in vitro antibacterial efficiencies of this non-antibiotic technique were up to 99.6% against Methicillin-resistant Staphylococcus aureus (MRSA) and 98.8% against Escherichia coli (EC), while the in vivo antibacterial efficiencies for MRSA- and Carbapenem-resistant Pseudomonas aeruginosa (CRPA)-infected mice models were 96.8% and 93.6%, respectively. Besides, backgroundless SERS signal intensity of the wound declined to the level of normal tissue until 24 h, indicating that the nanoagents had been completely metabolized from the infected area. Conclusion: Given the backgroundless monitoring ability, high antibacterial efficacy, and low toxicity, the photoactive cascading agents would hold great potential for MDR-bacterial detection and elimination in diverse clinical settings.
Collapse
Affiliation(s)
- Zhiwen Xu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenshuai Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Wang
- Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongmei Gao
- Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Ebrahiminaseri A, Sadeghizadeh M, Moshaii A, Asgaritarghi G, Safari Z. Combination treatment of dendrosomal nanocurcumin and low-level laser therapy develops proliferation and migration of mouse embryonic fibroblasts and alter TGF-β, VEGF, TNF-α and IL-6 expressions involved in wound healing process. PLoS One 2021; 16:e0247098. [PMID: 33956815 PMCID: PMC8101758 DOI: 10.1371/journal.pone.0247098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Pressure ulcer (PU) is known as the third most costly disorder usually caused by prolonged pressure and stagnation in various parts of the body. Although several therapeutic approaches are employing, obstacles in appropriate healing for skin lesions still exist which necessitates new practical alternative or adjunctive treatments. Low level laser therapy (LLLT) as one of the mentioned new strategies have gained attention. Besides, curcumin is an herbal medicine extracted from turmeric with anti-inflammatory and antioxidative properties with promising beneficial therapeutic effects in wound healing. Employing dendrosomal nanoparticles, we overcome the hydrophobicity of curcumin in the present study. We hypothesized that combination treatment of DNC+LLLT (450 nm) simultaneously may promote the wound healing process. MATERIAL AND METHODS MTT assay, PI staining followed by flowcytometry, scratch assay and intracellular ROS measurement were used to investigate the effects caused by DNC and LLLT (450 nm) alone and in combination, on proliferation, cell cycle, migration and oxidative stress mouse embryonic fibroblast cells, respectively. The levels of growth factors and pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. RESULTS Our results indicated that combination exposure with DNC and LLLT leads to increased proliferation and migration of MEFs as well as being more efficient in significantly upregulating growth factors (TGF-β, VEGF) and decline in inflammatory cytokines (TNF-α, IL-6). Moreover, findings of this research provide persuasive support for the notion that DNC could reduce the LLLT-induced enhancement in intracellular ROS in mouse embryonic fibroblasts. CONCLUSION Concurrent exposure to anti-oxidant concentrations of DNC and LLLT enriched S phase entry and therefor increased proliferation as well as migration on MEFs through regulating the expression levels growth factors and shortening the inflammatory phase by modulating of cytokines. It should be noted that DNC were able to reduce the laser-induced oxidative stress, during wound healing, representing an informative accompaniment with LLLT.
Collapse
Affiliation(s)
- Afsaneh Ebrahiminaseri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, Tehran, Iran
| | - Golareh Asgaritarghi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat Commun 2021; 12:1670. [PMID: 33723267 PMCID: PMC7960722 DOI: 10.1038/s41467-021-21964-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Effective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair. Dysfunctional and disfiguring scars can result from aberrant wound repair. Here, the authors develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for scarless wound repair.
Collapse
|
26
|
In-vivo evaluation of tissue scaffolds containing simvastatin loaded nanostructured lipid carriers and mesenchymal stem cells in diabetic wound healing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, Amin R. Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules 2021; 26:619. [PMID: 33504080 PMCID: PMC7865423 DOI: 10.3390/molecules26030619] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Punjab, Pakistan
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU), 1954 Huashan Road, Shanghai 200030, China
| | - Saiful Izwan Abd Razak
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
| | - Wafa Shamsan Al Arjan
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (W.S.A.A.); (S.N.)
| | - Samina Nazir
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (W.S.A.A.); (S.N.)
| | - T. Joseph Sahaya Anand
- Sustainable and Responsive Manufacturing Group, Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Melaka 76100, Malacca, Malaysia;
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Rafha Street, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rashid Amin
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al-Batin 39524, Saudi Arabia
| |
Collapse
|
28
|
Zhao X, Bian R, Wang F, Wang Y, Li X, Guo Y, Zhang X, Luo G, Zhan R. GDF-5 promotes epidermal stem cells proliferation via Foxg1-cyclin D1 signaling. Stem Cell Res Ther 2021; 12:42. [PMID: 33413682 PMCID: PMC7792190 DOI: 10.1186/s13287-020-02106-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Epidermal stem cells (EpSCs) can self-renew, which are responsible for the long-term maintenance of the skin, and it also plays a critical role in wound re-epithelization, but the mechanism underlying EpSCs proliferation is unclear. GDF-5, also known as BMP-14, is a member of the BMP family and can be used as a self-renewal supporter. Here, we studied the effects of GDF-5 on mouse EpSCs proliferation mechanism in wound healing. METHODS Firstly, the effects of GDF-5 on EpSCs proliferation was tested by using CCK8 reagent and PCNA expression was analyzed by Western blotting. Secondly, we screened genes that promote EpSCs proliferation in the FOX and cyclin family by qPCR, and then the protein expression level of the selected genes was further analyzed by Western blotting. Thirdly, siRNA plasmids and pAdEasy adenovirus were transfected or infected, respectively, into mouse EpSCs to detect the effect of target genes on GDF-5-induced cell proliferation. Furthermore, we injected GDF-5 to a deep partial thickness burn mouse model for finding out whether EpSCs proliferation can be detected by immunohistochemical. Finally, the relevant target genes were analyzed by qPCR, immunoblotting, and dual-luciferase reporter gene detection. RESULTS We discovered that 100 ng/ml recombinant mouse GDF-5 was the optimal concentration for promoting mouse EpSCs proliferation. Through preliminary screened by qPCR, we found that Foxg1 and cyclin D1 could be the downstream molecules of GDF-5, and the results were confirmed by Western blotting. And the effect of GDF-5 on mouse EpSCs proliferation was adjusted by Foxg1/cyclin D1 in vitro and in vivo. Besides, GDF-5-induced transcription of cyclin D1 was regulated by Foxg1-mediated cyclin D1 promoter activity. CONCLUSION This paper showed that GDF-5 promotes mouse EpSCs proliferation via Foxg1-cyclin D1 signal pathway. It is suggested that GDF-5 may be a new approach to make EpSCs proliferation which can be used in wound healing.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Institute of Burn Research; State Key Laboratory of Trauma, Burn and Combined Injury; Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruyu Bian
- Institute of Burn Research; State Key Laboratory of Trauma, Burn and Combined Injury; Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fan Wang
- Department of Plastic and Reconstructive Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ying Wang
- Institute of Burn Research; State Key Laboratory of Trauma, Burn and Combined Injury; Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xue Li
- Institute of Burn Research; State Key Laboratory of Trauma, Burn and Combined Injury; Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yicheng Guo
- Institute of Burn Research; State Key Laboratory of Trauma, Burn and Combined Injury; Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaorong Zhang
- Institute of Burn Research; State Key Laboratory of Trauma, Burn and Combined Injury; Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research; State Key Laboratory of Trauma, Burn and Combined Injury; Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Rixing Zhan
- Institute of Burn Research; State Key Laboratory of Trauma, Burn and Combined Injury; Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
29
|
Lee JSJ, Kim SJ, Choi JS, Eom MR, Shin H, Kwon SK. Adipose-derived mesenchymal stem cell spheroid sheet accelerates regeneration of ulcerated oral mucosa by enhancing inherent therapeutic properties. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Xu P, Wu Y, Zhou L, Yang Z, Zhang X, Hu X, Yang J, Wang M, Wang B, Luo G, He W, Cheng B. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. BURNS & TRAUMA 2020; 8:tkaa028. [PMID: 32821743 PMCID: PMC7427034 DOI: 10.1093/burnst/tkaa028] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. METHODS Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. RESULTS PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. CONCLUSION PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yaguang Wu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lina Zhou
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Mingying Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Binjie Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| |
Collapse
|
31
|
Huang S, Hu Z, Wang P, Zhang Y, Cao X, Dong Y, Cheng P, Xu H, Zhu W, Tang B, Zhu J. Rat epidermal stem cells promote the angiogenesis of full-thickness wounds. Stem Cell Res Ther 2020; 11:344. [PMID: 32771044 PMCID: PMC7414990 DOI: 10.1186/s13287-020-01844-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Full-thickness wounds severely affect patients' life quality and become challenging problems for clinicians. Stem cells have great prospects in the treatment of wounds. Our previous study confirmed that autologous basal cell suspension could promote wound healing, and epidermal stem cells (ESCs) were detected in the basal cell suspension. Herein, this study aimed to explore the effect of ESCs on full-thickness wounds. METHODS Rat ESCs were isolated and expanded and then were transfected with lentivirus to stably express enhanced green fluorescent protein. The experimental rats were randomly divided into 2 groups: in the ESC group, the rat ESCs were sprayed on the full-thickness wounds of rats; in the control group, phosphate-buffered saline was sprayed the on the wounds. Next, wound healing and neovascularization were evaluated. Colonization, division, and differentiation of ESCs on the wound were analyzed by immunofluorescence. RESULTS The rat ESCs colonized, divided, and proliferated in the wound. Additionally, rat ESCs around blood vessels differentiated into vascular endothelial cells and formed a lumen-like structure. Compared with the control group, the ESC group showed enhanced angiogenesis and accelerated wound healing. CONCLUSIONS Our study confirmed that rat ESCs are safe and effective for treating full-thickness wounds. Additionally, under certain conditions, ESCs can differentiate into vascular endothelial cells to promote angiogenesis and wound healing.
Collapse
Affiliation(s)
- Shaobin Huang
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Department of Plastic Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Zhicheng Hu
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Peng Wang
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiaoling Cao
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yunxian Dong
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Pu Cheng
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Hailin Xu
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Wenkai Zhu
- Department of Chemistry, Portland State University, Portland, USA
| | - Bing Tang
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Jiayuan Zhu
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
32
|
Pharmacological activation of Nrf2 promotes wound healing. Eur J Pharmacol 2020; 886:173395. [PMID: 32710954 DOI: 10.1016/j.ejphar.2020.173395] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Wound repair and regeneration is a complex orchestrated process, comprising several phases interconnecting various cellular events and triggering multiple intracellular molecular pathways in damaged cells and tissues. In several metabolic disorders including diabetes mellitus, delay in wound healing due to elevated levels of cellular stress poses a key challenge. Several therapeutic wound dressing materials and strategies including hyperbaric oxygen therapy and negative pressure wound therapy have been developed to accelerate repair and restore cellular homeostasis at the wound site. Further, tremendous progress has been made in identification of transcriptional regulators involved in the process of wound healing. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, is the key regulator of intracellular redox homeostasis which induces the expression of cytoprotective genes and increases the production of antioxidants that scavenge free radicals. Activators of Nrf2 have been reported to combat oxidative stress and enhance the process of wound healing in several pathophysiological conditions, including diabetes and its complications such as diabetic foot ulcer, and chronic kidney disease, and diabetic nephropathy. Several bioactive compounds have been reported to reduce cellular stress, and thus accelerate cell proliferation, neovascularization results in repairing damaged tissues by the activation of the transcription factor, Nrf2. This review is focused on the strategies for diabetic wound healing and the highlights the role of bioactive compounds that activate the Nrf2 signaling and revitalize the cellular and molecular mechanism in the chronic wound niche, regulate and restore redox homeostasis thereby promoting wound repair and regeneration.
Collapse
|
33
|
Xiao T, Yan Z, Xiao S, Xia Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res Ther 2020; 11:232. [PMID: 32527289 PMCID: PMC7291661 DOI: 10.1186/s13287-020-01755-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The skin, which serves as the first barrier of the human body, is particularly susceptible to exogenous injuries. Skin wounds, including acute burns and chronic non-healing ulcers, are commonly observed in clinics. Healing of skin wounds is a complex process, consisting of infiltration of inflammatory cells, cellular proliferation, and tissue remodeling phases, which restore the integrity and functions of the skin. Epithelialization is involved in wound healing through re-establishing an intact keratinocyte layer. Epidermal stem cells are indispensable for epithelialization, and they are regulated by multiple proinflammatory cytokines or growth factors. In this review, we summarize recent advances in the effect of these cytokines on migration, proliferation, and differentiation processes of epidermal stem cells. We also introduce promising therapeutic strategies targeting epidermal stem cells or related proinflammatory cytokines for patients with skin wounds.
Collapse
Affiliation(s)
- Tong Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Zhu Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China.
| |
Collapse
|
34
|
Zhang M, Ye Y, Zhao P, Bai L, Li X. Preliminary studies of hair follicle regeneration by injections of epidermal stem cells and dermal papilla cells into nude mice. Cell Tissue Bank 2020; 21:321-327. [PMID: 32162163 PMCID: PMC7230069 DOI: 10.1007/s10561-020-09825-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/05/2020] [Indexed: 01/13/2023]
Abstract
The ultimate goal of organ regenerative therapy is to reproduce fully functional organs to replace which have been damaged as a result of diseases or injury. Although several studies claimed that using different types of cells in some animal models promote hair follicles regeneration, more researches can be done to develop a sufficient and efficient protocol to induce hair generation from different animal models. In this study, we investigated the therapeutic potentials for hair follicle formation by injecting a mixture of epidermal stem cells and dermal papilla cells. Those cells were isolated and culture-expanded. Then we randomly allocated 8 nude mice into two groups. The experiment group received an injection of a mixture that containing of epidermal stem cells and dermal papilla cells. The control group received injection of keratinocyte serum-free medium. The hair follicles regeneration was observed and the injection area was harvested for HE staining. 14 day later, the regenerated hair shafts were observed and HE staining indicated that the newly hair follicle formed the correct structures in experiment group. Furthermore, the mixture injection induced a regular and multilayered stratified epidermis and the epidermis contained of hair follicle-likes structures. Our data showed that injection of a mixture of epidermal stem cells and dermal papilla cells could induce hair follicles regeneration and well-ordered epidermis formation. This study emphasized that the rearrangement of the interactions during seed cells and the niches of the seed cells is essential and necessary for tissue-engineered construct success.
Collapse
Affiliation(s)
- Mingsheng Zhang
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Yan Ye
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Guangzhou, 528000, China
| | - Pin Zhao
- Guangzhou Huayin Medical Laboratory Center, Guangzhou, 510515, China
| | - Liming Bai
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Xinping Li
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, 510080, China.
| |
Collapse
|
35
|
The Clinical Efficacy of ReCell® Autologous Cell Regeneration Techniques Combined with Dermabrasion Treatment in Acne Scars. Aesthetic Plast Surg 2020; 44:535-542. [PMID: 31451856 DOI: 10.1007/s00266-019-01481-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/13/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To evaluate the efficacy of ReCell® autologous cell regeneration techniques combined with dermabrasion treatment on the therapy of acne scars. METHODS We analyzed retrospectively 78 patients with acne scars who presented to the Department of Plastic Surgery at Peking Union Medical College Hospital from May 2015 to May 2017; 30 patients were treated with dermabrasion (Group 1), and the other 48 patients were treated with ReCell® autologous regeneration techniques combined with dermabrasion (Group 2). Efficacy was evaluated through self-evaluation of the patient, third-party evaluation and photographs taken before and after treatment. The wound healing time and postoperative complication rate were also recorded. RESULTS The study revealed a significant difference in healing time (P < 0.001) between patients treated with dermabrasion (Group 1) and patients treated with ReCell® autologous regeneration techniques combined with dermabrasion (Group 2). The average healing time of Group 1 was 12.30 ± 1.725 days, while the average healing time of Group 2 was 5.27 ± 1.086 days. In Group 2, patient self-evaluation and third-party evaluation were more satisfactory than those of Group 1 (P < 0.001). Moreover, there were no postoperative complications in Group 2 such as pigmentation and scar hyperplasia. CONCLUSION The ReCell® technique is simple, minimally invasive, biocompatible and effective in the treatment of acne scars. It can shorten healing time and reduce the occurrence of postoperative complications, thereby providing a safe and effective treatment approach for patients with facial acne scars. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
36
|
Zomer HD, Jeremias TDS, Ratner B, Trentin AG. Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy 2020; 22:247-260. [PMID: 32234290 DOI: 10.1016/j.jcyt.2020.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
The process of wound healing restores skin homeostasis but not full functionality; thus, novel therapeutic strategies are needed to accelerate wound closure and improve the quality of healing. In this context, tissue engineering and cellular therapies are promising approaches. Although sharing essential characteristics, mesenchymal stromal cells (MSCs) isolated from different tissues might have distinct properties. Therefore, the aim of this study was to comparatively investigate, by a mouse model in vivo assay, the potential use of dermal-derived MSCs (DSCs) and adipose tissue-derived MSCs (ASCs) in improving skin wound healing. Human DSCs and ASCs were delivered to full-thickness mouse wounds by a collagen-based scaffold (Integra Matrix). We found that the association of both DSCs and ASCs with the Integra accelerated wound closure in mice compared with the biomaterial only (control). Both types of MSCs stimulated angiogenesis and extracellular matrix remodeling, leading to better quality scars. However, the DSCs showed smaller scar size,superior extracellular matrix deposition, and greater number of cutaneous appendages. Besides, DSCs and ASCs reduced inflammation by induction of macrophage polarization from a pro-inflammatory (M1) to a pro-repair (M2) phenotype. In conclusion, both DSCs and ASCs were able to accelerate the healing of mice skin wounds and promote repair with scars of better quality and more similar to healthy skin than the empty scaffold. DSCs associated with Integra induced superior overall results than the Integra alone, whereas scaffolds with ASCs showed an intermediate effect, often not significantly better than the empty biomaterial.
Collapse
Affiliation(s)
- Helena Debiazi Zomer
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Talita da Silva Jeremias
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Andrea Goncalves Trentin
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Dhingra GA, Kaur M, Singh M, Aggarwal G, Nagpal M. Lock Stock and Barrel of Wound Healing. Curr Pharm Des 2019; 25:4090-4107. [PMID: 31556852 DOI: 10.2174/1381612825666190926163431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023]
Abstract
Any kind of injury may lead to wound formation. As per World Health Organization Report, "more than 5 million people die each year due to injuries. This accounts for 9% of the world's population death, nearly 1.7 times the number of fatalities that result from HIV/AIDS, tuberculosis and malaria combined. In addition, ten million people suffer from non-fatal injuries which require treatment". This scenario leads to increased health and economic burden worldwide. Rapid wound healing is exigent subject-field in the health care system. It is imperative to be updated on wound care strategies as impaired wound healing may lead to chronic, non-healing wounds and thus further contributes to the national burden. This article is a comprehensive review of wound care strategies. The first and second part of this review article focuses on the understanding of wound, its types and human body's healing mechanism. Wound healing is natural, highly coordinated process that starts on its own, immediately after the injury. However, individual health condition influences the healing process. Discussion of factors affecting wound healing has also been included. Next part includes the detailed review of diverse wound healing strategies that have already been developed for different types of wound. A detailed description of various polymers that may be used has been discussed. Amongst drug delivery systems, oligomers, dendrimers, films, gels, different nano-formulations, like nanocomposites, nanofibers, nanoemulsions and nanoparticles are discussed. Emphasis on bandages has been made in this article.
Collapse
Affiliation(s)
- Gitika A Dhingra
- NCRD's Sterling Institute of Pharmacy, Nerul, Navi Mumbai-400706, India
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
38
|
Fibronectin precoating wound bed enhances the therapeutic effects of autologous epidermal basal cell suspension for full-thickness wounds by improving epidermal stem cells' utilization. Stem Cell Res Ther 2019; 10:154. [PMID: 31506090 PMCID: PMC6737622 DOI: 10.1186/s13287-019-1236-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background Autologous epidermal basal cell suspension therapy has been proven to be one of the most effective treatments for full-thickness wounds. However, we found there remain obvious defects that significantly confined the utilization and function of the epidermal basal cells (EBCs), especially the epidermal stem cells (ESCs) in it. This study investigated whether precoating fibronectin (FN) on the wound bed before spraying EBCs could overcome these defects and further explored its possible mechanisms. Methods In the in vitro study, EBCs were isolated from the donor skin of patients who needed skin grafting. Different concentrations of FN were used to precoat culture dishes before cell culture; the adherent efficiency, proliferation and migration ability of ESCs were analyzed and compared with traditional collagen IV precoating. In the in vivo study, Sprague–Dawley (SD) rats with full-thickness skin wounds were selected as full-thickness wounds’ model. For the experiment groups, 20 μg/ml FN was precoated on the wound bed 10 min before EBC spray. The quality of wound healing was estimated by the residual wound area rate, wound healing time, and hematoxylin and eosin (H&E) staining. Expression of ESC markers, neovascular markers, inflammation markers, and collagen formation and degradation markers was elucidated by immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and RT-qPCR analysis. Results The in vitro study showed that the dishes precoated with 20 μg/ml FN had a similar adherent efficiency and colony formation rate with collagen IV, but it could improve the proliferation and migration of ESCs significantly. Similarly, in the in vivo study, precoating FN on wound bed before EBC spray also significantly promote wound healing by improving ESCs’ utilization efficiency, promoting angiogenesis, decreasing inflammations, and regulating collagen formation and degradation. Conclusion FN precoating wound bed before EBC spray could significantly promote full-thickness wound healing by improving the utilization and function of the ESCs and further by promoting angiogenesis, decreasing inflammations, and regulating collagen formation and degradation. Graphical abstract ![]()
Collapse
|
39
|
Lang CMR, Chan CK, Veltri A, Lien WH. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers (Basel) 2019; 11:cancers11091216. [PMID: 31438551 PMCID: PMC6769728 DOI: 10.3390/cancers11091216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers. Wnt signaling is one such regulatory pathway orchestrating skin development, homeostasis, and stem cell activation. Aberrant regulation of Wnt signaling cascades not only gives rise to tumor initiation, progression and invasion, but also maintains cancer stem cells which contribute to tumor recurrence. In this review, we summarize recent studies highlighting functional evidence of Wnt-related oncology in keratinocyte carcinomas, as well as discussing preclinical and clinical approaches that target oncogenic Wnt signaling to treat cancers. Our review provides valuable insight into the significance of Wnt signaling for future interventions against keratinocyte carcinomas.
Collapse
Affiliation(s)
| | - Chim Kei Chan
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Anthony Veltri
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
40
|
Wu P, Cao Y, Zhao R, Wang Y. Netrin-1 plays a critical role in regulating capacities of epidermal stem cells upon ultraviolet-B (UV-B) irradiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1416-1422. [PMID: 31012327 DOI: 10.1080/21691401.2019.1593849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of the capacities of epidermal stem cells (ESCs) induced by ultraviolet-B (UV-B) irradiation has been widely associated with various skin diseases. Netrin-1, a member of the axonal guidance protein family, has displayed diverse biological functions in different types of cells and tissues, mediated by its specific receptor UNC-5 homolog B (UNC5b). In this study, we examined the physiological functions of netrin-1 and UNC5b in ESCs upon UV-B exposure. Our results indicate that UNC5b is expressed in ESCs, and its expression is upregulated in response to UV-B radiation. We found that treatment with netrin-1 prevented UV-B radiation-induced oxidative stress by reducing the generation of reactive oxygen species (ROS) and expression of NADPH oxidase 4 (NOX-4). Additionally, treatment with netrin-1 improved UV-B radiation-induced mitochondrial dysfunction by increasing mitochondrial membrane potential (MMP) levels and adenosine triphosphate (ATP) production. The presence of netrin-1 attenuated UV-B radiation-induced lactic dehydrogenase (LDH) release. UV-B exposure resulted in the loss of the capacities of ESCs by reducing the expressions of integrin β1 and Krt19, the two major ESC markers. Importantly, this process was prevented by netrin-1. Silencing of UNC5b abolished the effects of netrin-1 on the expression of integrin β1 and Krt19, suggesting that the effects of netrin-1 in maintaining the capacities of ESCs are dependent on UNC5b. Mechanistically, we found that the Wnt/β-catenin signalling may be involved. Our findings suggest that netrin-1 may serve as a therapeutic agent for the treatment of skin diseases.
Collapse
Affiliation(s)
- Peng Wu
- a Department of Burns and Plastic Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China.,b Department of Burns and Plastic Surgery , Linyi People's Hospital , Linyi , China
| | - Yongqian Cao
- a Department of Burns and Plastic Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Ran Zhao
- a Department of Burns and Plastic Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Yibing Wang
- a Department of Burns and Plastic Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
41
|
Thaweekitphathanaphakdee S, Chanvorachote P, Prateepchinda S, Khongkow M, Sucontphunt A. Abalone Collagen Extracts Potentiate Stem Cell Properties of Human Epidermal Keratinocytes. Mar Drugs 2019; 17:E424. [PMID: 31330853 PMCID: PMC6669461 DOI: 10.3390/md17070424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell activities in human tissues are critical for tissue integrity and function. Maintaining keratinocyte stem cells (KSCs) stemness helps sustain healthy skin by supporting keratinocyte renewal, involving the formation of epidermal barriers. In this study, abalone collagen (AC) extracts with molecular weights of 3 kDa (AC 1) and 300 kDa (AC 2) were compared to the epidermal growth factor (EGF) for their effects on cell proliferation, cell migration (wound healing), spheroid formation, and the expression level of stem cell markers on human keratinocytes (HaCaT cells). Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell proliferation was quantified by ATP and DNA content analysis and Sulforhodamine B (SRB) assays. Cell migration assay was determined using the scratch wound healing test. Spheroid formation was evaluated and the expression level of stem cell markers was investigated by western blot analysis. The results showed that AC 1 at the concentration of 100 µg/mL could stimulate HaCaT cell proliferation, migration, spheroid formation, and the expression level of stem cell markers (keratin 19, β-catenin, ALDH1A1) compared to the control. In conclusion, a smaller molecular weight of abalone collagen extract exhibits a better effect on keratinocytes proliferation, migration, and stemness, which could be a potential active ingredient in cosmeceutical products.
Collapse
Affiliation(s)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sagaw Prateepchinda
- Nation Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- Nation Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Apirada Sucontphunt
- The Herbal Medicinal Products Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| |
Collapse
|
42
|
Luteolin-7-glucoside Promotes Human Epidermal Stem Cell Proliferation by Upregulating β-Catenin, c-Myc, and Cyclin Expression. Stem Cells Int 2019; 2019:1575480. [PMID: 31281367 PMCID: PMC6589269 DOI: 10.1155/2019/1575480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/31/2019] [Accepted: 04/21/2019] [Indexed: 02/02/2023] Open
Abstract
Skin epidermal stem cells (EpSCs) play critical roles in skin homeostasis and the repair of skin injury. Luteolin-7-glucoside (L7G) has been reported to accelerate skin wound healing through its anti-inflammatory and antioxidative activity. But its effect on EpSCs is not clear. In the present study, we examined the effect of L7G on the proliferation of human EpSCs and explored the mechanisms involved. MTT assay showed that L7G promoted EpSC proliferation in a dose- and time-dependent manner. BrdU incorporation assay and Ki67 immunofluorescence staining confirmed the proproliferative effect of L7G on EpSCs. Cell cycle analysis showed that treatment of EpSCs with L7G decreased the cell number in the G1 phase and increased the cell number in the S phase. In addition, L7G significantly enhanced EpSC migration. Mechanistic studies showed that L7G significantly induced the expression of β-catenin and c-Myc, as well as cyclins D1, A2, and E1 which are critical for G1/S phase transition. L7G stimulated EpSC proliferation through β-catenin and c-Myc. We further examined the effect of L7G on EpSC proliferation in skin tissues by treatment of human skin explants with L7G and examined the number of EpSCs by immunohistochemical stain of EpSC markers α 6 integrin and β 1 integrin. We found that treatment of human skin tissue explants with L7G significantly increased the thickness of the epidermis and increased the numbers of α 6 integrin-positive and β 1 integrin-positive cells at the basal layer of the epidermis. Taken together, these results indicate that L7G promotes EpSC proliferation through upregulating β-catenin, c-Myc, and cyclin expression. L7G can be used to expand EpSCs for generating epidermal autografts and engineered skin equivalents.
Collapse
|
43
|
Jin Z, Yao C, Poonit K, Han T, Li S, Huang Z, Yan H. Allogenic endothelial progenitor cell transplantation increases flap survival through an upregulation of eNOs and VEGF on venous flap survival in rabbits. J Plast Reconstr Aesthet Surg 2019; 72:581-589. [PMID: 30661915 DOI: 10.1016/j.bjps.2018.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are one type of bone marrow hematopoietic stromal cells which play a vital role in neovascularization and tissue repair. In this study, we investigated whether EPCs promote flap survival in a rabbit venous model. MATERIALS AND METHODS EPCs were customized from CHI Scientific, Inc, China. Thirty-six rabbits were randomly assigned to either the sham group (n = 12), the control group (n = 12) or the EPC transplantation group (n = 12). A 10 × 6 cm venous flap was created on the rabbit abdomen. Both the EPC transplantation and control groups had the same volume of EPCs-PBS (phosphate buffered saline) and PBS on postoperative day 1. Flap survival, blood flow, histopathology, expression of endothelial nitric oxide synthase (eNOs) and Vascular Endothelial Growth Factor (VEGF) were detected on postoperative day 10. RESULTS Cellular immunofluorescence assay positively confirmed that the EPCs were undergoing differentiation. The survival rate of the flap in the EPC transplantation group was 58.4 ± 7.1%, which was significantly higher than that of the control group (4.8 ± 3.4%) (p<0.01). Histological examination revealed that the EPC transplantation group had higher microvessel density, fewer inflammatory cells, and a higher expression of eNOs and VEGF. Significantly increased blood flow perfusion was seen in the EPC transplantation group using laser Doppler imaging. The Western Blot technique revealed that the expression of eNOs and VEGF in the EPC transplantation group were both significantly higher than those in the control group. CONCLUSION This study demonstrated that EPC transplantation improved venous flap survival in rabbits. The present findings may provide insight into the promotion of venous flap survival in clinical practice in the future.
Collapse
Affiliation(s)
- Zeyuan Jin
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenglun Yao
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keshav Poonit
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Han
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunlong Li
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihuai Huang
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hede Yan
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
44
|
Zomer HD, Varela GKDS, Delben PB, Heck D, Jeremias TDS, Trentin AG. In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing. J Tissue Eng Regen Med 2019; 13:729-741. [PMID: 30773827 DOI: 10.1002/term.2820] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/09/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022]
Abstract
Novel strategies combining cell therapy, tissue engineering, and regenerative medicine have been developed to treat major skin wounds. Although mesenchymal stromal cells (MSCs) from different tissues have similar stem cell features, such as self-renewing mesodermal differentiation potential and expression of immunophenotypic markers, they also have distinct characteristics. Therefore, we aimed to characterize the application of MSCs derived from the dermis and adipose tissue (DSCs and ASCs, respectively) in cutaneous wound healing by in vitro approaches. Human DSC and ASC were obtained and evaluated for their isolation efficiency, stemness, proliferative profile, and genetic stability over time in culture. The ability of wound closure was first assessed by direct cell scratch assay. The paracrine effects of DSC- and ASC-conditioned medium in dermal fibroblasts and keratinocytes and in the induction of tubule formation were also investigated. Although the ASC isolation procedures resulted in 100 times more cells than DSC, the latter had a higher proliferation rate in culture. Both presented low frequency of nuclear alterations over time in culture and showed similar characteristics of stem cells, such as expression of immunophenotypic markers and differentiation potential. DSCs showed increased healing capacity, and their conditioned media had greater paracrine effect in closing the wound of dermal fibroblasts and keratinocytes and in inducing angiogenesis. In conclusion, the therapeutic potential of MSCs is influenced by the obtainment source. Both ASCs and DSCs are applicable for skin wound healing; however, DSCs have an improved potential and should be considered for future applications in cell therapy.
Collapse
Affiliation(s)
- Helena Debiazi Zomer
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, United States of America.,Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Priscilla Barros Delben
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Diana Heck
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Talita da Silva Jeremias
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, Zhang Y, Timashev P. Skin tissue regeneration for burn injury. Stem Cell Res Ther 2019; 10:94. [PMID: 30876456 PMCID: PMC6419807 DOI: 10.1186/s13287-019-1203-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin is the largest organ of the body, which meets the environment most directly. Thus, the skin is vulnerable to various damages, particularly burn injury. Skin wound healing is a serious interaction between cell types, cytokines, mediators, the neurovascular system, and matrix remodeling. Tissue regeneration technology remarkably enhances skin repair via re-epidermalization, epidermal-stromal cell interactions, angiogenesis, and inhabitation of hypertrophic scars and keloids. The success rates of skin healing for burn injuries have significantly increased with the use of various skin substitutes. In this review, we discuss skin replacement with cells, growth factors, scaffolds, or cell-seeded scaffolds for skin tissue reconstruction and also compare the high efficacy and cost-effectiveness of each therapy. We describe the essentials, achievements, and challenges of cell-based therapy in reducing scar formation and improving burn injury treatment.
Collapse
Affiliation(s)
- Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Denis Butnaru
- Sechenov Biomedical Science and Technology Park, Sechenov University, Moscow, Russia
| | | | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Vitaliy Burdukovskii
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Research Center “Crystallography and Photonics” RAS, Institute of Photonic Technologies, Troitsk, Moscow, Russia
- Departments of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
46
|
Yan JX, Liao X, Li SH, Liu HW, Chang HY, Dong N, Wu YD, She WL, Xie GH. Effects of Carbon Arc Lamp Irradiation on Wound Healing in a Rat Cutaneous Full-Thickness Wound Model. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:17-24. [PMID: 31050942 DOI: 10.1089/photob.2018.4447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jian-Xin Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Sheng-Hong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Hong-Wei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Han-Yu Chang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Nan Dong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Yin-Di Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Wen-Li She
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Guang-Hui Xie
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| |
Collapse
|
47
|
Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2018; 11:215-245. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Anastasakis
- National Institute of Musculoskeletal & Arthritis & Skin, NIH, 50 South Drive, Room 1152, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
48
|
Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 2018; 843:307-315. [PMID: 30537490 DOI: 10.1016/j.ejphar.2018.12.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
Abstract
The latest findings indicate the huge therapeutic potential of stem cells in regenerative medicine, including the healing of chronic wounds. Main stem cell types involved in wound healing process are: epidermal and dermal stem cells, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and hematopoietic stem cells (HSCs). In the therapy of chronic wounds, they can be administrated either topically or using different matrix like hydrogels, scaffolds, dermal substitutes and extracellular matrix (ECM) derivatives. Stem cells are proven to positively influence wound healing by different direct and indirect mechanisms including residing cells stimulation, biomolecules release, inflammation control and ECM remodelling. MSCs are especially worth mentioning as they can be easily derived from bone-marrow or adipose tissue. Apart from traditional approach of administering living stem cells to wounds, new trends have emerged in recent years. Good healing results are obtained using stem cell secretome alone, for example exosomes or conditioned media. There are also attempts to improve healing potential of stem cells by their co-culture with other cell types as well as by their genetic modifications or pretreatment using different chemicals or cell media. Moreover, stem cells have been tested for novel therapeutic purposes like for example acute burns and have been used in experiments on large animal models including pigs and sheep. In this review we discuss the role of stem cells in skin wound healing acceleration. In addition, we analyse possible new strategies of stem cells application in treatment of chronic wounds.
Collapse
|
49
|
Yan JX, Liao X, Li SH, Liu HW, Chang HY, Dong N, Wu YD, She WL, Xie GH. Effects of Carbon Arc Lamp Irradiation on Wound Healing in a Rat Cutaneous Full-Thickness Wound Model. Photomed Laser Surg 2018:pho.2018.4447. [PMID: 30335572 DOI: 10.1089/pho.2018.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of the present study was to investigate the application of a carbon arc lamp on wound healing in a rat cutaneous full-thickness wound model. BACKGROUND DATA In clinical practice, wound healing has been promoted by irradiation with a carbon arc lamp. However, the corresponding mechanism has not been clearly defined. METHODS A cutaneous full-thickness wound on the back of rats was irradiated using a carbon arc lamp at a wavelength peak range of 620-740 nm with 54 J/cm2. Injured sham-irradiated control rats were used as the control. The rats were euthanized after 7, 14, and 21 days, while wound reepithelialization and healing quality were examined by histological analyses with comparison between groups. Cell proliferation was observed by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemical staining. RESULTS Irradiation by the carbon arc lamp significantly accelerated wound healing. The wound-healing rate in the treated group at day 21 was 98.42% ± 0.56%, compared with 93.58% ± 1.26% in the control group (p < 0.05). Significant increases in the length of epithelial edges, collagen content, and microvessel density were observed in the wound sites in the treated group at days 7, 14, and 21 (p < 0.05). Moreover, the number of BrdU-labeled cells increased in the wound edge at days 7 and 14 due to irradiation (p < 0.05). CONCLUSIONS The results demonstrated that the carbon arc lamp can promote wound healing together with improvement in its quality by stimulating cell proliferation.
Collapse
Affiliation(s)
- Jian-Xin Yan
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Xuan Liao
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Sheng-Hong Li
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Hong-Wei Liu
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Han-Yu Chang
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Nan Dong
- 2 Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University , Guangzhou, P.R. China
| | - Yin-Di Wu
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Wen-Li She
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Guang-Hui Xie
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| |
Collapse
|
50
|
|