1
|
Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A, Ozhan G. Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells. Front Cell Dev Biol 2023; 11:1297910. [PMID: 38020918 PMCID: PMC10679360 DOI: 10.3389/fcell.2023.1297910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer and develops from the melanocytes that are responsible for the pigmentation of the skin. The skin is also a highly regenerative organ, harboring a pool of undifferentiated melanocyte stem cells that proliferate and differentiate into mature melanocytes during regenerative processes in the adult. Melanoma and melanocyte regeneration share remarkable cellular features, including activation of cell proliferation and migration. Yet, melanoma considerably differs from the regenerating melanocytes with respect to abnormal proliferation, invasive growth, and metastasis. Thus, it is likely that at the cellular level, melanoma resembles early stages of melanocyte regeneration with increased proliferation but separates from the later melanocyte regeneration stages due to reduced proliferation and enhanced differentiation. Here, by exploiting the zebrafish melanocytes that can efficiently regenerate and be induced to undergo malignant melanoma, we unravel the transcriptome profiles of the regenerating melanocytes during early and late regeneration and the melanocytic nevi and malignant melanoma. Our global comparison of the gene expression profiles of melanocyte regeneration and nevi/melanoma uncovers the opposite regulation of a substantial number of genes related to Wnt signaling and transforming growth factor beta (TGF-β)/(bone morphogenetic protein) BMP signaling pathways between regeneration and cancer. Functional activation of canonical Wnt or TGF-β/BMP pathways during melanocyte regeneration promoted melanocyte regeneration but potently suppressed the invasiveness, migration, and proliferation of human melanoma cells in vitro and in vivo. Therefore, the opposite regulation of signaling mechanisms between melanocyte regeneration and melanoma can be exploited to stop tumor growth and develop new anti-cancer therapies.
Collapse
Affiliation(s)
- Esra Katkat
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | | | - Doga Karagulle
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Irene Papatheodorou
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| |
Collapse
|
2
|
Anti-Melanogenic Potential of Natural and Synthetic Substances: Application in Zebrafish Model. Molecules 2023; 28:molecules28031053. [PMID: 36770722 PMCID: PMC9920495 DOI: 10.3390/molecules28031053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.
Collapse
|
3
|
Zheng L, Cao L, Zheng XL. ADAMTS13 protease or lack of von Willebrand factor protects irradiation and melanoma-induced thrombotic microangiopathy in zebrafish. J Thromb Haemost 2022; 20:2270-2283. [PMID: 35894519 PMCID: PMC9641623 DOI: 10.1111/jth.15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Severe deficiency of plasma ADAMTS13 activity may result in potentially fatal thrombotic thrombocytopenic purpura and relative deficiency of plasma ADAMTS13 activity may be associated with adverse outcomes of certain malignancies. Here, we report the role of ADAMTS13 or lack of von Willebrand factor (VWF) in reducing irradiation and melanoma-induced thrombotic microangiopathy (TMA) and mortality in zebrafish. METHODS Zebrafish melanoma cell line (ZMEL) was injected subcutaneously into wild-type (wt), adamts13-/- (a13-/- ), von Willebrand factor (vwf-/- ), and a13-/- vwf-/- zebrafish following total body irradiation; the tumor growth, its gene expression pattern, the resulting thrombocytopenia, and the mortality were determined. RESULTS Total body irradiation at 30 Gy alone resulted in a transient thrombocytopenia in both wt and a13-/- zebrafish. However, thrombocytopenia occurred earlier and more profound in a13-/- than in wt zebrafish, which was resolved 2 weeks following irradiation alone. An inoculation of ZMEL following the irradiation resulted in more severe and persistent thrombocytopenia, as well as earlier death in a13-/- than in wt zebrafish. The vwf-/- or a13-/- vwf-/- zebrafish were protected from developing severe thrombocytopenia following the same maneuvers. RNA-sequencing revealed significant differentially expressed genes associated with oxidation-reduction, metabolism, lipid, fatty acid and cholesterol metabolic processes, steroid synthesis, and phospholipid efflux in the melanoma explanted from a13-/- zebrafish compared with that from the wt controls. CONCLUSIONS Our results indicated that plasma ADAMTS13 or lack of VWF may offer a significant protection against the development of irradiation- and/or melanoma-induced TMA. Such a microenvironment may directly affect melanoma cell phenotypes via alternation in the oxidation-reduction and lipid metabolic pathways.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liyun Cao
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Belleri M, Paganini G, Coltrini D, Ronca R, Zizioli D, Corsini M, Barbieri A, Grillo E, Calza S, Bresciani R, Maiorano E, Mastropasqua MG, Annese T, Giacomini A, Ribatti D, Casas J, Levade T, Fabrias G, Presta M. β-Galactosylceramidase Promotes Melanoma Growth via Modulation of Ceramide Metabolism. Cancer Res 2020; 80:5011-5023. [PMID: 32998995 DOI: 10.1158/0008-5472.can-19-3382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Disturbance of sphingolipid metabolism may represent a novel therapeutic target in metastatic melanoma, the most lethal form of skin cancer. β-Galactosylceramidase (GALC) removes β-galactose from galactosylceramide and other sphingolipids. In this study, we show that downregulation of galcb, a zebrafish ortholog of human GALC, affects melanoblast and melanocyte differentiation in zebrafish embryos, suggesting a possible role for GALC in melanoma. On this basis, the impact of GALC expression in murine B16-F10 and human A2058 melanoma cells was investigated following its silencing or upregulation. Galc knockdown hampered growth, motility, and invasive capacity of B16-F10 cells and their tumorigenic and metastatic activity when grafted in syngeneic mice or zebrafish embryos. Galc-silenced cells displayed altered sphingolipid metabolism and increased intracellular levels of ceramide, paralleled by a nonredundant upregulation of Smpd3, which encodes for the ceramide-generating enzyme neutral sphingomyelinase 2. Accordingly, GALC downregulation caused SMPD3 upregulation, increased ceramide levels, and inhibited the tumorigenic activity of human melanoma A2058 cells, whereas GALC upregulation exerted opposite effects. In concordance with information from melanoma database mining, RNAscope analysis demonstrated a progressive increase of GALC expression from common nevi to stage IV human melanoma samples that was paralleled by increases in microphthalmia transcription factor and tyrosinase immunoreactivity inversely related to SMPD3 and ceramide levels. Overall, these findings indicate that GALC may play an oncogenic role in melanoma by modulating the levels of intracellular ceramide, thus providing novel opportunities for melanoma therapy. SIGNIFICANCE: Data from zebrafish embryos, murine and human cell melanoma lines, and patient-derived tumor specimens indicate that β-galactosylceramidase plays an oncogenic role in melanoma and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Giuseppe Paganini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Barbieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Mauro G Mastropasqua
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, and Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - Thierry Levade
- INSERM U1037, CRCT (Cancer Research Center of Toulouse) and Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, and Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Italian Consortium for Biotechnology (CIB), Unit of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Banik I, Cheng PF, Dooley CM, Travnickova J, Merteroglu M, Dummer R, Patton EE, Busch-Nentwich EM, Levesque MP. NRAS Q61K melanoma tumor formation is reduced by p38-MAPK14 activation in zebrafish models and NRAS-mutated human melanoma cells. Pigment Cell Melanoma Res 2020; 34:150-162. [PMID: 32910840 DOI: 10.1111/pcmr.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Oncogenic BRAF and NRAS mutations drive human melanoma initiation. We used transgenic zebrafish to model NRAS-mutant melanoma, and the rapid tumor onset allowed us to study candidate tumor suppressors. We identified P38α-MAPK14 as a potential tumor suppressor in The Cancer Genome Atlas melanoma cohort of NRAS-mutant melanomas, and overexpression significantly increased the time to tumor onset in transgenic zebrafish with NRAS-driven melanoma. Pharmacological activation of P38α-MAPK14 using anisomycin reduced in vitro viability of melanoma cultures, which we confirmed by stable overexpression of p38α. We observed that the viability of MEK inhibitor resistant melanoma cells could be reduced by combined treatment of anisomycin and MEK inhibition. Our study demonstrates that activating the p38α-MAPK14 pathway in the presence of oncogenic NRAS abrogates melanoma in vitro and in vivo. SIGNIFICANCE: The significance of our study is in the accountability of NRAS mutations in melanoma. We demonstrate here that activation of p38α-MAPK14 pathway can abrogate NRAS-mutant melanoma which is contrary to the previously published role of p38α-MAPK14 pathway in BRAF mutant melanoma. These results implicate that BRAF and NRAS-mutant melanoma may not be identical biologically. We also demonstrate the translational benefit of our study by using a small molecule compound-anisomycin (already in use for other diseases in clinical trials) to activate p38α-MAPK14 pathway.
Collapse
Affiliation(s)
- Ishani Banik
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Phil F Cheng
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christopher M Dooley
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jana Travnickova
- MRC Human Genetics Unit and Cancer Research, UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Munise Merteroglu
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Reinhard Dummer
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elizabeth E Patton
- MRC Human Genetics Unit and Cancer Research, UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
6
|
Cao HH, Liu DY, Lai YC, Chen YY, Yu LZ, Shao M, Liu JS. Inhibition of the STAT3 Signaling Pathway Contributes to the Anti-Melanoma Activities of Shikonin. Front Pharmacol 2020; 11:748. [PMID: 32536866 PMCID: PMC7267064 DOI: 10.3389/fphar.2020.00748] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background Malignant melanoma is an extremely aggressive and metastatic cancer, and highly resistant to conventional therapies. Signal transducer and activator of transcription 3 (STAT3) signaling promotes melanoma development and progression, which has been validated as an effective target in melanoma treatment. Natural naphthoquinone shikonin is reported to exert anti-melanoma effects. However, the underlying mechanisms have not been fully elucidated. Purpose This study aims to evaluate the anti-melanoma activities of shikonin and explore the involvement of STAT3 signaling in these effects. Methods Zebrafish tumor model was established to evaluate the anti-human melanoma effects of shikonin in vivo. MTT assay and colony formation assay were employed to investigate the anti-proliferative effects of shikonin on human melanoma A375 and A2058 cells. Flow cytometry was used to analyze cell cycle distribution and apoptosis induction. Wound healing assay and Transwell chamber assay were conducted to examine the cell migratory and invasive abilities. Immunofluorescence assay was used to observe F-actin, Tubulin, and STAT3 localization. Western blotting was used to determine the expression levels of proteins associated with apoptosis and key proteins in the STAT3 signaling pathway. Immunoblotting was performed in DSS cross-linked cells to determine the homo-dimerization of STAT3. Gelatin zymography was employed to evaluate the enzymatic activity of MMP-2 and MMP-9. Transient transfection was used to overexpress STAT3 in cell models. Results Shikonin suppressed melanoma growth in cultured cells and in zebrafish xenograft models. Shikonin induced melanoma cells apoptosis, inhibited cell migration and invasion. Mechanistic study indicated that shikonin inhibited the phosphorylation and homo-dimerization of STAT3, thus reduced its nuclear localization. Further study showed that shikonin decreased the levels of STAT3-targeted genes Mcl-1, Bcl-2, MMP-2, vimentin, and Twist, which are involved in melanoma survival, migration, and invasion. More importantly, overexpression of constitutively active STAT3 partially abolished the anti-proliferative, anti-migratory, and anti-invasive effects of shikonin. Conclusion The anti-melanoma activity of shikonin is at least partially attributed to the inhibition on STAT3 signaling. These findings provide new insights into the anti-melanoma molecular mechanisms of shikonin, suggesting its potential in melanoma treatment.
Collapse
Affiliation(s)
- Hui-Hui Cao
- Traditional Chinese Pharmacological, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dong-Yi Liu
- Traditional Chinese Pharmacological, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ye-Cai Lai
- Guangzhou BaiYunShan Pharmaceutical General Factory, Guangzhou BaiYunShan Pharmaceutical Holdings Co., Ltd., Guangzhou, China
| | - Yu-Yao Chen
- Traditional Chinese Pharmacological, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin-Zhong Yu
- Traditional Chinese Pharmacological, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Meng Shao
- Traditional Chinese Pharmacological, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun-Shan Liu
- Traditional Chinese Pharmacological, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Dong Z, Luo M, Wang L, Yin H, Zhu W, Fu J. MicroRNA-206 Regulation of Skin Pigmentation in Koi Carp ( Cyprinus carpio L.). Front Genet 2020; 11:47. [PMID: 32117457 PMCID: PMC7029398 DOI: 10.3389/fgene.2020.00047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNA molecules that act as crucial roles in plenty of biological processes. However, the molecular and cellular mechanisms of miRNAs to regulate skin color differentiation and pigmentation in fish have not been fully understood. Herein, we revealed that miR-206, a skin-enriched miRNA, regulates melanocortin 1 receptor (Mc1r, a key regulator of melanogenesis) expression by binding to its 3'-untranslated (UTR) region through bioinformatics and luciferase reporter assay in koi carp (Cyprinus carpio L.). The analysis of spatial and temporal expression patterns suggested that miR-206 is a potential regulator in the skin pigmentation process. Then, we silenced it in vivo with an antagomir method. The result showed a substantial increase of Mc1r mRNA expression and protein level, and also its downstream genes: tyrosinase (Tyr) and dopachrome tautomerase (Dct) that encoding key enzymes involved in melanin synthesis. Moreover, we constructed the miRNA-206 sponge lentivirus vector to transfect koi carp melanocytes in vitro, further checked the functions of melanocytes using Cck-8 and Transwell assays. As a result, inhibition of miR-206 significantly up-regulated Mc1r mRNA expression and protein level and accelerated the melanocyte proliferation and migration ability compared with the scrambled-sequence negative control group (miR-NC). Overall, these findings provide the evidence that miR-206 plays a regulatory role in the skin color pigmentation through targeting the Mc1r gene and would facilitate understanding the molecular regulatory mechanisms underlying miRNA-mediated skin color pigmentation in koi carp.
Collapse
Affiliation(s)
- Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China.,Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| |
Collapse
|
8
|
Hoeksma J, Misset T, Wever C, Kemmink J, Kruijtzer J, Versluis K, Liskamp RMJ, Boons GJ, Heck AJR, Boekhout T, den Hertog J. A new perspective on fungal metabolites: identification of bioactive compounds from fungi using zebrafish embryogenesis as read-out. Sci Rep 2019; 9:17546. [PMID: 31772307 PMCID: PMC6879544 DOI: 10.1038/s41598-019-54127-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/09/2019] [Indexed: 11/15/2022] Open
Abstract
There is a constant need for new therapeutic compounds. Fungi have proven to be an excellent, but underexplored source for biologically active compounds with therapeutic potential. Here, we combine mycology, embryology and chemistry by testing secondary metabolites from more than 10,000 species of fungi for biological activity using developing zebrafish (Danio rerio) embryos. Zebrafish development is an excellent model for high-throughput screening. Development is rapid, multiple cell types are assessed simultaneously and embryos are available in high numbers. We found that 1,526 fungal strains produced secondary metabolites with biological activity in the zebrafish bioassay. The active compounds from 39 selected fungi were purified by liquid-liquid extraction and preparative HPLC. 34 compounds were identified by a combination of chemical analyses, including LCMS, UV-Vis spectroscopy/ spectrophotometry, high resolution mass spectrometry and NMR. Our results demonstrate that fungi express a wide variety of biologically active compounds, consisting of both known therapeutic compounds as well as relatively unexplored compounds. Understanding their biological activity in zebrafish may provide insight into underlying biological processes as well as mode of action. Together, this information may provide the first step towards lead compound development for therapeutic drug development.
Collapse
Affiliation(s)
- Jelmer Hoeksma
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim Misset
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christie Wever
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan Kemmink
- Utrecht University, Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - John Kruijtzer
- Utrecht University, Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Kees Versluis
- Utrecht University, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Rob M J Liskamp
- Utrecht University, Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Geert Jan Boons
- Utrecht University, Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Albert J R Heck
- Utrecht University, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Institute for Fungal Biodiversity - KNAW, Utrecht, The Netherlands
- Institute of Biodynamics and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
9
|
Hason M, Bartůněk P. Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes (Basel) 2019; 10:genes10110935. [PMID: 31731811 PMCID: PMC6896156 DOI: 10.3390/genes10110935] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
Zebrafish (Danio rerio) is a valuable non-mammalian vertebrate model widely used to study development and disease, including more recently cancer. The evolutionary conservation of cancer-related programs between human and zebrafish is striking and allows extrapolation of research outcomes obtained in fish back to humans. Zebrafish has gained attention as a robust model for cancer research mainly because of its high fecundity, cost-effective maintenance, dynamic visualization of tumor growth in vivo, and the possibility of chemical screening in large numbers of animals at reasonable costs. Novel approaches in modeling tumor growth, such as using transgene electroporation in adult zebrafish, could improve our knowledge about the spatial and temporal control of cancer formation and progression in vivo. Looking at genetic as well as epigenetic alterations could be important to explain the pathogenesis of a disease as complex as cancer. In this review, we highlight classic genetic and transplantation models of cancer in zebrafish as well as provide new insights on advances in cancer modeling. Recent progress in zebrafish xenotransplantation studies and drug screening has shown that zebrafish is a reliable model to study human cancer and could be suitable for evaluating patient-derived xenograft cell invasiveness. Rapid, large-scale evaluation of in vivo drug responses and kinetics in zebrafish could undoubtedly lead to new applications in personalized medicine and combination therapy. For all of the above-mentioned reasons, zebrafish is approaching a future of being a pre-clinical cancer model, alongside the mouse. However, the mouse will continue to be valuable in the last steps of pre-clinical drug screening, mostly because of the highly conserved mammalian genome and biological processes.
Collapse
|
10
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Sarasamma S, Lai YH, Liang ST, Liu K, Hsiao CD. The Power of Fish Models to Elucidate Skin Cancer Pathogenesis and Impact the Discovery of New Therapeutic Opportunities. Int J Mol Sci 2018; 19:E3929. [PMID: 30544544 PMCID: PMC6321611 DOI: 10.3390/ijms19123929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023] Open
Abstract
Animal models play important roles in investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic tools. Despite rapid progress in the understanding of disease mechanisms and technological advancement in drug discovery, negative trial outcomes are the most frequent incidences during a Phase III trial. Skin cancer is a potential life-threatening disease in humans and might be medically futile when tumors metastasize. This explains the low success rate of melanoma therapy amongst other malignancies. In the past decades, a number of skin cancer models in fish that showed a parallel development to the disease in humans have provided important insights into the fundamental biology of skin cancer and future treatment methods. With the diversity and breadth of advanced molecular genetic tools available in fish biology, fish skin cancer models will continue to be refined and expanded to keep pace with the rapid development of skin cancer research. This review begins with a brief introduction of molecular characteristics of skin cancers, followed by an overview of teleost models that have been used in the last decades in melanoma research. Next, we will detail the importance of the zebrafish (Danio rerio) animal model and other emerging fish models including platyfish (Xiphophorus sp.), and medaka (Oryzias latipes) in future cutaneous malignancy studies. The last part of this review provides the recent development and genome editing applications of skin cancer models in zebrafish and the progress in small molecule screening.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Taiwan Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
12
|
Kenyon A, Gavriouchkina D, Zorman J, Chong-Morrison V, Napolitani G, Cerundolo V, Sauka-Spengler T. Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes. Dis Model Mech 2018; 11:dmm030056. [PMID: 29666124 PMCID: PMC5963855 DOI: 10.1242/dmm.030056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
A complex network of inflammatory genes is closely linked to somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. Here, we describe the development of a double binary zebrafish model that enables regulatory programming of the myeloid cells as they respond to oncogene-activated melanocytes to be explored, focussing on the initial phase when cells become the precursors of cancer. A hormone-inducible binary system allows for temporal control of expression of different Ras oncogenes (NRasQ61K, HRasG12V and KRasG12V) in melanocytes, leading to proliferation and changes in morphology of the melanocytes. This model was coupled to binary cell-specific biotagging models allowing in vivo biotinylation and subsequent isolation of macrophage or neutrophil nuclei for regulatory profiling of their active transcriptomes. Nuclear transcriptional profiling of neutrophils, performed as they respond to the earliest precursors of melanoma in vivo, revealed an intricate landscape of regulatory factors that may promote progression to melanoma, including Serpinb1l4, Fgf1, Fgf6, Cathepsin H, Galectin 1 and Galectin 3. The model presented here provides a powerful platform to study the myeloid response to the earliest precursors of melanoma.
Collapse
Affiliation(s)
- Amy Kenyon
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Daria Gavriouchkina
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Jernej Zorman
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Giorgio Napolitani
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Vincenzo Cerundolo
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
13
|
Agalou A, Thrapsianiotis M, Angelis A, Papakyriakou A, Skaltsounis AL, Aligiannis N, Beis D. Identification of Novel Melanin Synthesis Inhibitors From Crataegus pycnoloba Using an in Vivo Zebrafish Phenotypic Assay. Front Pharmacol 2018; 9:265. [PMID: 29632489 PMCID: PMC5879087 DOI: 10.3389/fphar.2018.00265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Zebrafish has emerged as a powerful model organism for high throughput drug screening. Several morphological criteria, transgenic lines and in situ expression screens have been developed to identify novel bioactive compounds and their mechanism of action. Here, we used the inhibition of melanogenesis during early zebrafish embryo development to identify natural compounds that block melanogenesis. We identified an extract from the Greek hawthorn Crataegus pycnoloba as a potent inhibitor of melanin synthesis and used activity based subfractionation to identify active subfractions and eventually three single compounds of the same family (dibenzofurans). These compounds show reversible inhibition of melanin synthesis and do not act via inhibition of tyrosinase. We also showed that they do not interfere with neural crest differentiation or migration. We identified via in silico modeling that the compounds can bind to the aryl hydrocarbon receptor (AHR) and verified activation of the Ahr signaling pathway showing the induction of the expression of target genes.
Collapse
Affiliation(s)
- Adamantia Agalou
- Zebrafish Disease Model Lab, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Michael Thrapsianiotis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Dimitris Beis
- Zebrafish Disease Model Lab, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
14
|
van Rooijen E, Fazio M, Zon LI. From fish bowl to bedside: The power of zebrafish to unravel melanoma pathogenesis and discover new therapeutics. Pigment Cell Melanoma Res 2017; 30:402-412. [PMID: 28379616 PMCID: PMC6038924 DOI: 10.1111/pcmr.12592] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Melanoma is the most aggressive and deadliest form of skin cancer. A detailed knowledge of the cellular, molecular, and genetic events underlying melanoma progression is highly relevant to diagnosis, prognosis and risk stratification, and the development of new therapies. In the last decade, zebrafish have emerged as a valuable model system for the study of melanoma. Pathway conservation, coupled with the availability of robust genetic, transgenic, and chemical tools, has made the zebrafish a powerful model for identifying novel disease genes, visualizing cancer initiation, interrogating tumor-microenvironment interactions, and discovering new therapeutics that regulate melanocyte and melanoma development. In this review, we will give an overview of these studies, and highlight recent advancements that will help unravel melanoma pathogenesis and impact human disease.
Collapse
Affiliation(s)
- Ellen van Rooijen
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Maurizio Fazio
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- PhD program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Dang M, Henderson RE, Garraway LA, Zon LI. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies. Dis Model Mech 2016; 9:811-20. [PMID: 27482819 PMCID: PMC4958307 DOI: 10.1242/dmm.024166] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/28/2016] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are a major model for chemical genetics, and most studies use embryos when investigating small molecules that cause interesting phenotypes or that can rescue disease models. Limited studies have dosed adults with small molecules by means of water-borne exposure or injection techniques. Challenges in the form of drug delivery-related trauma and anesthesia-related toxicity have excluded the adult zebrafish from long-term drug efficacy studies. Here, we introduce a novel anesthetic combination of MS-222 and isoflurane to an oral gavage technique for a non-toxic, non-invasive and long-term drug administration platform. As a proof of principle, we established drug efficacy of the FDA-approved BRAFV600E inhibitor, Vemurafenib, in adult zebrafish harboring BRAFV600E melanoma tumors. In the model, adult casper zebrafish intraperitoneally transplanted with a zebrafish melanoma cell line (ZMEL1) and exposed to daily sub-lethal dosing at 100 mg/kg of Vemurafenib for 2 weeks via oral gavage resulted in an average 65% decrease in tumor burden and a 15% mortality rate. In contrast, Vemurafenib-resistant ZMEL1 cell lines, generated in culture from low-dose drug exposure for 4 months, did not respond to the oral gavage treatment regimen. Similarly, this drug treatment regimen can be applied for treatment of primary melanoma tumors in the zebrafish. Taken together, we developed an effective long-term drug treatment system that will allow the adult zebrafish to be used to identify more effective anti-melanoma combination therapies and opens up possibilities for treating adult models of other diseases. Summary: We have developed the first long-term drug delivery system in the adult zebrafish using oral gavage, and offer a foundation for future preclinical studies of cancer therapeutics in adult zebrafish.
Collapse
Affiliation(s)
- Michelle Dang
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA Howard Hughes Medical Institute, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02138, USA
| | - Rachel E Henderson
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Levi A Garraway
- Harvard Medical School, Boston, MA 02138, USA Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA Howard Hughes Medical Institute, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
16
|
Volkening A, Sandstede B. Modelling stripe formation in zebrafish: an agent-based approach. J R Soc Interface 2015; 12:20150812. [PMID: 26538560 PMCID: PMC4685853 DOI: 10.1098/rsif.2015.0812] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/13/2015] [Indexed: 11/12/2022] Open
Abstract
Zebrafish have distinctive black stripes and yellow interstripes that form owing to the interaction of different pigment cells. We present a two-population agent-based model for the development and regeneration of these stripes and interstripes informed by recent experimental results. Our model describes stripe pattern formation, laser ablation and mutations. We find that fish growth shortens the necessary scale for long-range interactions and that iridophores, a third type of pigment cell, help align stripes and interstripes.
Collapse
Affiliation(s)
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| |
Collapse
|
17
|
Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 2014; 37:264-78. [PMID: 24726051 DOI: 10.1016/j.tins.2014.02.011] [Citation(s) in RCA: 455] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/23/2023]
Abstract
The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Oliver Braubach
- Center for Functional Connectomics, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul, 136791, Republic of Korea
| | - Jan Spitsbergen
- Department of Microbiology, Oregon State University, Nash Hall 220 Corvallis, OR 97331, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, N Mississauga, Ontario L5L 1C6, Canada
| | - Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
18
|
Mathias JR, Zhang Z, Saxena MT, Mumm JS. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish 2014; 11:85-97. [PMID: 24428354 DOI: 10.1089/zeb.2013.0937] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.
Collapse
|
19
|
Pei DS, Strauss PR. Zebrafish as a model system to study DNA damage and repair. Mutat Res 2013; 743-744:151-159. [PMID: 23211879 DOI: 10.1016/j.mrfmmm.2012.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 05/20/2023]
Abstract
Zebrafish (Danio rerio) have become a popular vertebrate model to study embryological development, because of unique advantages not found in other model systems. Zebrafish share many gene functions with other vertebrates including humans, making zebrafish a useful system for studying cancer etiology. However, systematic studies of DNA damage and repair pathways using adult or embryonic zebrafish have not been extensively reported. The zebrafish genome contains nearly all the genes involved in different DNA repair pathways in eukaryotes, including direct reversal (DR), mismatch repair (MMR) nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR), non-homologous end joining (NHEJ) and translesion synthesis (TLS). It also includes the genes of the p53-mediated damage recognition pathway. Therefore, zebrafish provide an ideal model for gaining fundamental insights into mechanisms of DNA damage and repair, especially during embryological development. This review introduces recent work on different DNA damage and repair studies in zebrafish, with special emphasis on the role of BER in zebrafish early embryological development. AP endonuclease 1 (Apex1), a critical protein in the BER pathway, not only regulates BER but also controls cyclic AMP response binding protein (Creb1), which itself regulates ∼25% of eukaryotic coding sequences. In addition, Apex1 indirectly regulates levels of p53. As these findings also occur in murine B cells, they illustrate the usefulness of the zebrafish system in elucidating fundamental mechanisms.
Collapse
Affiliation(s)
- De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China; Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Phyllis R Strauss
- Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Avci P, Sadasivam M, Gupta A, De Melo WC, Huang YY, Yin R, Chandran R, Kumar R, Otufowora A, Nyame T, Hamblin MR. Animal models of skin disease for drug discovery. Expert Opin Drug Discov 2013; 8:331-55. [PMID: 23293893 DOI: 10.1517/17460441.2013.761202] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. AREAS COVERED In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. EXPERT OPINION Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia.
Collapse
Affiliation(s)
- Pinar Avci
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Department of Dermatology, Boston MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Does melanoma begin in a melanocyte stem cell? J Skin Cancer 2012; 2012:571087. [PMID: 23316368 PMCID: PMC3536063 DOI: 10.1155/2012/571087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022] Open
Abstract
What is the cellular origin of melanoma? What role do melanocyte stem cells (MSC) and other melanocyte precursors play in the development of melanoma? Are MSCs and other latent melanocyte precursors more susceptible to solar radiation? These and many other questions can be very effectively addressed using the zebrafish model. Zebrafish have a robust regenerative capability, permitting the study of how MSCs are regulated and recruited at specific times and places to generate the pigment pattern following fin amputation or melanocyte ablation. They can be used to determine the effects of environmental radiation on the proliferation, survival, repair, and differentiation of MSCs. Our lab is using zebrafish to investigate how UVA- (320-400 nm) and UVB- (290-320 nm) induced damage to MSCs may contribute to the development of melanoma. A review is given of MSCs in zebrafish as well as experimental techniques and drugs for manipulating MSC populations. These techniques can be used to design experiments to help answer many questions regarding the role of MSCs or melanocyte precursors in the formation of melanoma stem cells and tumors following exposure to UVA/UVB radiation.
Collapse
|
22
|
Abstract
For decades, the advancement of cancer research has relied on in vivo models for examining key processes in cancer pathogenesis, including neoplastic transformation, progression, and response to therapy. These studies, which have traditionally relied on rodent models, have engendered a vast body of scientific literature. Recently, experimental cancer researchers have embraced many new and alternative model systems, including the zebrafish ( Danio rerio). The general benefits of the zebrafish model for laboratory investigation, such as cost, size, fecundity, and generation time, were quickly superseded by the discovery that zebrafish are amenable to a wide range of investigative techniques, many of which are difficult or impossible to perform in mammalian models. These advantages, coupled with the finding that many aspects of carcinogenesis are conserved in zebrafish as compared with humans, have firmly established a unique niche for the zebrafish model in comparative cancer research. This article introduces methods for generating cancer models in zebrafish and reviews a range of models that have been developed for specific cancer types.
Collapse
Affiliation(s)
- H. R. Shive
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Kim JH, Kim DH, Kim JH, Lee SG, Kim HS, Park HC, Kim IH. Recovery of pigmentation following selective photothermolysis in adult zebrafish skin: clinical implications for laser toning treatment of melasma. J COSMET LASER THER 2012; 14:277-85. [DOI: 10.3109/14764172.2012.738908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Schartl M, Kneitz S, Wilde B, Wagner T, Henkel CV, Spaink HP, Meierjohann S. Conserved expression signatures between medaka and human pigment cell tumors. PLoS One 2012; 7:e37880. [PMID: 22693581 PMCID: PMC3365055 DOI: 10.1371/journal.pone.0037880] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/25/2012] [Indexed: 11/19/2022] Open
Abstract
Aberrations in gene expression are a hallmark of cancer cells. Differential tumor-specific transcript levels of single genes or whole sets of genes may be critical for the neoplastic phenotype and important for therapeutic considerations or useful as biomarkers. As an approach to filter out such relevant expression differences from the plethora of changes noted in global expression profiling studies, we searched for changes of gene expression levels that are conserved. Transcriptomes from massive parallel sequencing of different types of melanoma from medaka were generated and compared to microarray datasets from zebrafish and human melanoma. This revealed molecular conservation at various levels between fish models and human tumors providing a useful strategy for identifying expression signatures strongly associated with disease phenotypes and uncovering new melanoma molecules.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiological Chemistry I, Biocenter, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Extrafollicular dermal melanocyte stem cells and melanoma. Stem Cells Int 2012; 2012:407079. [PMID: 22666269 PMCID: PMC3359770 DOI: 10.1155/2012/407079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/13/2012] [Indexed: 12/27/2022] Open
Abstract
Recent studies suggest that extrafollicular dermal melanocyte stem cells (MSCs) persist after birth in the superficial nerve sheath of peripheral nerves and give rise to migratory melanocyte precursors when replacements for epidermal melanocytes are needed on the basal epidermal layer of the skin. If a damaged MSC or melanocyte precursor can be shown to be the primary origin of melanoma, targeted identification and eradication of it by antibody-based therapies will be the best method to treat melanoma and a very effective way to prevent its recurrence. Transcription factors and signaling pathways involved in MSC self-renewal, expansion and differentiation are reviewed. A model is presented to show how the detrimental effects of long-term UVA/UVB radiation on DNA and repair mechanisms in MSCs convert them to melanoma stem cells. Zebrafish have many advantages for investigating the role of MSCs in the development of melanoma. The signaling pathways regulating the development of MSCs in zebrafish are very similar to those found in humans and mice. The ability to easily manipulate the MSC population makes zebrafish an excellent model for studying how damage to MSCs may lead to melanoma.
Collapse
|
26
|
Colanesi S, Taylor KL, Temperley ND, Lundegaard PR, Liu D, North TE, Ishizaki H, Kelsh RN, Patton EE. Small molecule screening identifies targetable zebrafish pigmentation pathways. Pigment Cell Melanoma Res 2012; 25:131-43. [PMID: 22252091 DOI: 10.1111/j.1755-148x.2012.00977.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investigate the effects of a few of these compounds in further detail. We identified and confirmed 57 compounds that altered pigment cell patterning, number, survival, or differentiation. Additional tissue targets and toxicity of small molecules are also discussed. Given that the majority of cell types, including pigment cells, are conserved between zebrafish and other vertebrates, we present these chemicals as molecular tools to study developmental processes of pigment cells in living animals and emphasize the value of zebrafish as an in vivo system for testing the on- and off-target activities of clinically active drugs.
Collapse
Affiliation(s)
- Sarah Colanesi
- Developmental Biology Programme, Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Budi EH, Patterson LB, Parichy DM. Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation. PLoS Genet 2011; 7:e1002044. [PMID: 21625562 PMCID: PMC3098192 DOI: 10.1371/journal.pgen.1002044] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/18/2011] [Indexed: 01/17/2023] Open
Abstract
The pigment cells of vertebrates serve a variety of functions and generate a
stunning variety of patterns. These cells are also implicated in human
pathologies including melanoma. Whereas the events of pigment cell development
have been studied extensively in the embryo, much less is known about
morphogenesis and differentiation of these cells during post-embryonic stages.
Previous studies of zebrafish revealed genetically distinct populations of
embryonic and adult melanophores, the ectotherm homologue of amniote
melanocytes. Here, we use molecular markers, vital labeling, time-lapse imaging,
mutational analyses, and transgenesis to identify peripheral nerves as a niche
for precursors to adult melanophores that subsequently migrate to the skin to
form the adult pigment pattern. We further identify genetic requirements for
establishing, maintaining, and recruiting precursors to the adult melanophore
lineage and demonstrate novel compensatory behaviors during pattern regulation
in mutant backgrounds. Finally, we show that distinct populations of latent
precursors having differential regenerative capabilities persist into the adult.
These findings provide a foundation for future studies of post-embryonic pigment
cell precursors in development, evolution, and neoplasia. Understanding the biology of post-embryonic stem and progenitor cells is of both
basic and translational importance. To identify mechanisms by which stem and
progenitor cells are established, maintained, and recruited to particular fates,
we are using the zebrafish adult pigment pattern. Previous work showed that
embryonic and adult pigment cells have different genetic requirements, but
little is known about the molecular or proliferative phenotypes of precursors to
adult pigment cells or where these precursors reside during post-embryonic
development. We show here that post-embryonic pigment cell precursors are
associated with peripheral nerves and that these cells migrate to the skin
during the larval-to-adult transformation when the adult pigment pattern forms.
We also define morphogenetic and differentiative roles for several genes in
promoting these events. Finally, we demonstrate that latent precursor pools
persist into the adult and that different pools have different capacities for
supplying new pigment cells in the context of pattern regeneration. Our study
sets the stage for future analyses to identify additional common and essential
features of pigment stem cell biology.
Collapse
Affiliation(s)
- Erine H. Budi
- Department of Biology, University of
Washington, Seattle, Washington, United States of America
- Graduate Program in Molecular and Cellular
Biology, University of Washington, Seattle, Washington, United States of
America
| | - Larissa B. Patterson
- Department of Biology, University of
Washington, Seattle, Washington, United States of America
- Graduate Program in Biology, University of
Washington, Seattle, Washington, United States of America
| | - David M. Parichy
- Department of Biology, University of
Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kabli S, He S, Spaink HP, Hurlstone A, Jagalska ES, De Groot HJM, Alia A. In vivo magnetic resonance imaging to detect malignant melanoma in adult zebrafish. Zebrafish 2010; 7:143-8. [PMID: 20515295 DOI: 10.1089/zeb.2009.0649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Zebrafish cancer models are fast gaining ground in cancer research. Most tumors in zebrafish develop late in life, when fish are no longer transparent, limiting in vivo optical imaging methods. Thus, noninvasive imaging to track tumor in adult zebrafish remains challenging. In this study, we applied magnetic resonance microimaging (microMRI) to track spontaneous melanomas in stable transgenic zebrafish models expressing an RAS oncoprotein and lacking P53 (mitf:Ras::mitf:GFP X p53(-/-)). Tumors in live adult zebrafish were observed at various locations using a T(2)-weighted fast spin echo sequence at 9.4 T. Further, live imaging of tumors at ultrahigh field (17.6 T) revealed significant tumor heterogeneity. This heterogeneity was also confirmed by the significant differences in transverse relaxation time, T(2) measured in various regions of tumor. To our knowledge, this is the first report demonstrating the application of microMRI to detect the locations, invasion status, and characteristics of internal melanomas in zebrafish and suggesting that noninvasive microMRI can be applied for longitudinal studies to track tumor development and real-time assessment of therapeutic effects in zebrafish tumor models.
Collapse
Affiliation(s)
- Samira Kabli
- SSNMR, Gorlaeus Laboratoria, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Subcellular Selective Photothermolysis of Melanosomes in Adult Zebrafish Skin Following 1064-nm Q-Switched Nd:YAG Laser Irradiation. J Invest Dermatol 2010; 130:2333-5. [DOI: 10.1038/jid.2010.129] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Abstract
Zebrafish models have significantly contributed to our understanding of vertebrate development and, more recently, human disease. The growing number of genetic tools available in zebrafish research has resulted in the identification of many genes involved in developmental and disease processes. In particular, studies in the zebrafish have clarified roles of the p53 tumor suppressor in the formation of specific tumor types, as well as roles of p53 family members during embryonic development. The zebrafish has also been instrumental in identifying novel mechanisms of p53 regulation and highlighting the importance of these mechanisms in vivo. This article will summarize how zebrafish models have been used to reveal numerous, important aspects of p53 function.
Collapse
|
31
|
Rakers S, Gebert M, Uppalapati S, Meyer W, Maderson P, Sell AF, Kruse C, Paus R. ‘Fish matters’: the relevance of fish skin biology to investigative dermatology. Exp Dermatol 2010; 19:313-24. [DOI: 10.1111/j.1600-0625.2009.01059.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|