1
|
Zulfahmi I, Akbar SA, Perdana AW, Adani KH, Admaja Nasution IA, Ali R, Nasution AW, Nafis B, Sumon KA, Rahman MM. Growth disorders, respiratory distress and skin discoloration in zebrafish (Danio rerio) after chronic exposure to Palm Oil Mill Effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125513. [PMID: 39662577 DOI: 10.1016/j.envpol.2024.125513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Understanding the environmental and health impacts of Palm Oil Mill Effluent (POME) contamination is essential for driving sustainable practices and innovation within the industry. In this study, we elaborated the chronic toxicity of POME on growth disorder, respiratory distress, and skin discoloration of zebrafish (Danio rerio). Zebrafish were exposed to three concentrations of POME (0 mL/L, 0.5 mL/L and 1.0 mL/L) for 28 days. Results revealed that an increase in POME concentration significantly reduced the weight gain, length gain, specific growth rate, specific length rate and oxygen consumption rate of zebrafish. In contrast, the opercular rate increased significantly. Skin discoloration in zebrafish exposed to POME were characterized by reduced red percentage value on the body and tail, increased green and blue percentages on the tail, and decreased brightness values. This result suggests crucial insights for the management and regulation of POME.
Collapse
Affiliation(s)
- Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala , Banda Aceh, 23111, Indonesia.
| | - Said Ali Akbar
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Adli Waliul Perdana
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Khalisah Huwaina Adani
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ihdina Alfi Admaja Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Rizwan Ali
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ayu Wulandari Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Badratun Nafis
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Ackroyd EJ, Heathcote RJP, Ioannou CC. Dynamic colour change in zebrafish ( Danio rerio) across multiple contexts. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241073. [PMID: 39780969 PMCID: PMC11706659 DOI: 10.1098/rsos.241073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Many animals are capable of rapid dynamic colour change, which is particularly well represented in fishes. The proximate mechanisms of dynamic colour change in fishes are well understood; however, less attention has been given to understanding its ecological relevance. In this study, we investigate dynamic colour change in zebrafish (Danio rerio) across multiple contexts, using a protocol to image the colouration of live fish without anaesthesia under standardized conditions. We show that zebrafish respond to different visual environments by darkening their overall colouration in a dark environment and lightening in a light environment. This is consistent with crypsis through background matching as a function of dynamic colour change. Additionally, we find that zebrafish use dynamic colour change to increase the internal contrast of their striped patterning in the presence of conspecifics. We speculate that this may function in social signalling and/or dazzle colouration. We find no effect of a predator stimulus on dynamic colour change. Finally, we discuss the potential for zebrafish to use multiple colouration strategies simultaneously as distance-dependent effects, considering the typical viewing distances of zebrafish and their predators.
Collapse
Affiliation(s)
- Ella J. Ackroyd
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Robert J. P. Heathcote
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Aguilar-Santana FA, Schmitter-Soto JJ, Lucano-Ramírez G, Avila-Poveda OH, Arellano-Martínez M. Morphochromatic spectrum through gonad development stages of the razor surgeonfish, Prionurus laticlavius (Valenciennes, 1846) (Actinopterygii: Acanthuriformes). JOURNAL OF FISH BIOLOGY 2024; 104:1433-1444. [PMID: 38350664 DOI: 10.1111/jfb.15685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Gonad development stages (GDS) are a critical tool that can be easily applied in fisheries to visually discriminate mature from immature organisms and assess their reproductive condition. This study proposes a morphochromatic scale to define gonad development stages for razor surgeonfish (Prionurus laticlavius) based on morphological and structural assessments of the gonad, histologically validated using multivariate dummy matrices modeled through multiple linear regression analyses. Gonads of 271 specimens were photographed prior to preservation to describe their shape, size, color, and turgor for morphochromatic analysis. Later, gonads were processed using standard histological methods. An oocyte growth scale was designed based on oocyte diameter and follicular wall thickness for each stage. In addition, five morphochromatic gonad development stages were histologically validated: immature, developing, spawning capable, regressing, and regenerating. Morphochromatic variations were observed in the last three stages in both sexes. Results show that gonad morphology and structure of P. laticlavius are similar to those of other acanthurids, albeit with some asymmetric and morphological differences, as well as gonad morphochromatic in both sexes. These findings confirm that maturation is species-specific. Also, although not a critical character, gonad colouration was found to play a major role in distinguishing between gonad development stages along with shape, size, vascularity (females), and folds (males). Therefore, gonad colouration should not be entirely overlooked because doing so may lead to errors in determining sexual maturity stages.
Collapse
Affiliation(s)
| | - Juan Jacobo Schmitter-Soto
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur (ECOSUR), Chetumal, Mexico
| | - Gabriela Lucano-Ramírez
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara (UDG), Melaque, Mexico
| | - Omar Hernando Avila-Poveda
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autonoma de Sinaloa (UAS), Mazatlan, Mexico
- Programa de Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologias (CONAHCYT), CDMX, Mexico
| | - Marcial Arellano-Martínez
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional, La Paz, Mexico
| |
Collapse
|
4
|
El-Mansi AA, Rady AM, Ibrahim EH, ElBealy E. Cellular patterning and cyto-architectural organization of the skin of electric catfish (Malapterurus electricus, Siluriformes) with a particular emphasis on its ampullary electroreceptor. ZOOLOGY 2024; 163:126159. [PMID: 38471427 DOI: 10.1016/j.zool.2024.126159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The functional morphology of the skin of Malapteruridae is presumably evolved to cope with a diversified range of ambient physiological, environmental, and behavioral conditions. Herein, we firstly characterized the microstructures and intriguing patterning of the skin of twelve adult electric catfish (Malapterurus electricus, Malapteruridae) using histological, histochemical, immunofluorescent, and ELISA standard methodology. The skin comprises three sequentially-oriented layers: the epidermis, dermis, and hypodermis with a significantly increased thickness of the former. The epidermis contains four types of cells: the surface epithelial cells, mucous cells, granular cells, and club cells. We defined distinctive ampullary electroreceptors in the outer epidermis that possess flask-shaped sensory crypt containing electroreceptor cells together with vertical collagen rods. Dermis and hypodermis are composed of connective tissue; however, the former is much more coarse and dense with comparable reactivity for Masson-Goldner trichrome (MT). Placing our data in the context of the limited body of previous work, we showed subtle changes in the expression of mucin subunits together with cytoskeletal fractions of collagens, myosin, F-actin, keratins, and tubulins. Taken as a whole, our results convincingly showed that the skin of M. electricus shares some structural similarities to other Siluriformes, however, it has some functional modifications that are implicated in protection, defense, and foraging behavior.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Ahmed M Rady
- Biology Dept., Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esam H Ibrahim
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Eman ElBealy
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
5
|
Souto-Neto JA, David DD, Zanetti G, Sua-Cespedes C, Freret-Meurer NV, Moraes MN, de Assis LVM, Castrucci AMDL. Light-specific wavelengths differentially affect the exploration rate, opercular beat, skin color change, opsin transcripts, and the oxi-redox system of the longsnout seahorse Hippocampus reidi. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111551. [PMID: 37972916 DOI: 10.1016/j.cbpa.2023.111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.
Collapse
Affiliation(s)
- José Araújo Souto-Neto
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Laboratory of Micropollutants, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Cristhian Sua-Cespedes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Maria Nathália Moraes
- Laboratory of Molecular Chronobiology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, United States.
| |
Collapse
|
6
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. PLoS Genet 2023; 19:e1010880. [PMID: 37862332 PMCID: PMC10588866 DOI: 10.1371/journal.pgen.1010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
7
|
Tosetto L, Hart NS, Williamson JE. Dynamic colour change as a signalling tool in bluelined goatfish ( Upeneicthtys lineatus). Ecol Evol 2023; 13:e10328. [PMID: 37636865 PMCID: PMC10450840 DOI: 10.1002/ece3.10328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
Many animal species can rapidly change their body colouration and patterning, but often the ecological drivers of such changes are unknown. Here, we explored dynamic colour change in the bluelined goatfish, Upeneichthys lineatus, a temperate marine teleost species. Upeneichthus lineatus can change in a matter of seconds, from a uniform white colour to display prominent, vertical, dark red stripes. Initial observations suggested that rapid colour change in U. lineatus was associated with feeding and may act as a signal to both conspecifics and heterospecifics that are frequently observed to follow feeding goatfish. Field observations of the colour and behaviour of individual U. lineatus were collected to (1) document the repertoire of behaviours that U. lineatus displays and categorise associated colour patterns; (2) quantify the speed of dynamic colour change; (3) establish the context in which U. lineatus changes colour and pattern; and (4) test whether the behaviour of follower fishes is influenced by colour patterning or specific behaviours of the focal goatfish. We found that U. lineatus changed colouration from white to the red banded pattern in less than 10 s. The key driver of rapid colour change in U. lineatus was feeding, particularly when the fish fed with its head buried in sediment. Conspecific followers were most likely to be white in colour and adopt searching behaviour, regardless of the focal fish colour or behaviour. Other species of follower fish spent significantly more time following U. lineatus that were displaying dark red stripes when searching or eating, implying the red stripes may be an interspecific signalling mechanism. Our findings indicate that rapid colour change in teleost fish may be used for social communication and may provide U. lineatus with increased protection from predation when feeding via a safety-in-numbers approach.
Collapse
Affiliation(s)
- Louise Tosetto
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Nathan S. Hart
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Jane E. Williamson
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
8
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550625. [PMID: 37546953 PMCID: PMC10402103 DOI: 10.1101/2023.07.26.550625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Moyaho A, Salazar-Bautista JL, Beristain-Castillo E, Amira FU. Iridescent scales signal male fighting ability to access females in the jewelled splitfin Xenotoca variata. JOURNAL OF FISH BIOLOGY 2023; 102:794-802. [PMID: 36648014 DOI: 10.1111/jfb.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Jewelled splitfin males (Xenotoca variata) possess multi-colour iridescent scales (speckles) on the flanks. This study tested the hypothesis that the number of speckles could be a good proxy for predicting fighting ability in contests for access to females. The experiments consisted in observing and recording males' agonistic behaviour, courtship displays and mating attempts in mixed-sex groups. The data were analysed and presented based on a Bayesian approach, which revealed that the density (cm-2 ) of speckles was positively correlated with the increase observed in the proportional frequency of attacks. Similarly, the density of speckles was positively associated with the increase observed in the frequency of courtship behaviour and with the frequency of mating attempts. Male-male aggressions drastically diminished (by eightfold) when females were removed from the observation tanks. These results indicate that the number of speckles is a consistent predictor of successful access to females and therefore, speckled males are likely to be able to gain more mating opportunities. This finding highlights the ubiquitous role iridescent colours play in visual signalling.
Collapse
Affiliation(s)
- Alejandro Moyaho
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | - José Luis Salazar-Bautista
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| | | | - Flores-Urbina Amira
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Mexico
| |
Collapse
|
10
|
Svitačová K, Slavík O, Horký P. Pigmentation potentially influences fish welfare in aquaculture. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
11
|
Bacterial Pigments and Their Multifaceted Roles in Contemporary Biotechnology and Pharmacological Applications. Microorganisms 2023; 11:microorganisms11030614. [PMID: 36985186 PMCID: PMC10053885 DOI: 10.3390/microorganisms11030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/05/2023] Open
Abstract
Synthetic dyes and colourants have been the mainstay of the pigment industry for decades. Researchers are eager to find a more environment friendly and non-toxic substitute because these synthetic dyes have a negative impact on the environment and people’s health. Microbial pigments might be an alternative to synthetic pigments. Microbial pigments are categorized as secondary metabolites and are mainly produced due to impaired metabolism under stressful conditions. These pigments have vibrant shades and possess nutritional and therapeutic properties compared to synthetic pigment. Microbial pigments are now widely used within the pharmaceuticals, food, paints, and textile industries. The pharmaceutical industries currently use bacterial pigments as a medicine alternative for cancer and many other bacterial infections. Their growing popularity is a result of their low cost, biodegradable, non-carcinogenic, and environmentally beneficial attributes. This audit article has made an effort to take an in-depth look into the existing uses of bacterial pigments in the food and pharmaceutical industries and project their potential future applications.
Collapse
|
12
|
Clever pest control? The role of cognition in biological pest regulation. Anim Cogn 2023; 26:189-197. [PMID: 36526865 PMCID: PMC9877098 DOI: 10.1007/s10071-022-01731-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Crop pest management is a global challenge. Increases in agricultural intensity due to anthropogenic demands, alongside the need to reduce the reliance on pesticides to minimize environmental harm, have resulted in an urgent need to improve and expand other methods of pest control. One increasingly utilized method is biological pest control, in which natural pest predators are used to regulating crop pests. Current approaches to biological pest regulation assess the importance of a pest controller by examining its ability to maintain pest populations over an extended period. However, this approach lacks efficiency, specificity, and efficacy because it does not take into account crucial factors which determine how predators find, evaluate and remember food sources-the cognitive processes underlying their behavior. This review will investigate the cognitive factors involved in biological pest control and examine how these factors may be manipulated to impact pest behavior and pest controller performance.
Collapse
|
13
|
Vitt S, Bakowski CE, Thünken T. Sex-specific effects of inbreeding on body colouration and physiological colour change in the cichlid fish Pelvicachromis taeniatus. BMC Ecol Evol 2022; 22:124. [PMID: 36316663 PMCID: PMC9623988 DOI: 10.1186/s12862-022-02074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Colour expression is highly variable in animals. In fishes, rapid colour change, i.e. physiological colour change, can be observed in multiple contexts, e.g. in camouflage or communication, and is affected by various factors, such as stress. Pelvicachromis taeniatus is a cichlid fish from West Africa with sexual dichromatism and both sexes being brightly coloured and flexible in ornament expression. In the present study, inbred and outbred P. taeniatus were photographed before and after a stress situation to investigate the stress response regarding colour expression in both sexes. RESULTS The chromaticity and the colour patch size (relative coloured area at the abdomen) were determined at both timepoints and the changes were analysed. Additionally, the coefficients of variation within family groups for the chromaticity (CVchromaticity) and colour patch size (CVarea) were calculated. Chromaticity as well as the extent of colouration increased significantly following handling stress. The change in chromaticity was not significantly different between in- and outbred individuals in females and males. Inbred males showed more intense yellow colouration than outbred males. Independent from inbreeding, the CVchromaticity decreased following the handling stress. The change in CVarea of females and males differed between in- and outbred individuals. In females, the decrease was significantly stronger in inbred individuals and in males the decrease was stronger in the outbred group. CONCLUSION The results show that short-term stress can increase colouration, potentially advertising individual's stress tolerance. Furthermore, this study shows positive inbreeding effects on a sexually selected trait.
Collapse
Affiliation(s)
- Simon Vitt
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Christina E. Bakowski
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Timo Thünken
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
14
|
Winberg S, Sneddon L. Impact of intraspecific variation in teleost fishes: aggression, dominance status and stress physiology. J Exp Biol 2022; 225:278485. [DOI: 10.1242/jeb.169250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Dominance-based social hierarchies are common among teleost fishes. The rank of an animal greatly affects its behaviour, physiology and development. The outcome of fights for social dominance is affected by heritable factors and previous social experience. Divergent stress-coping styles have been demonstrated in a large number of teleosts, and fish displaying a proactive coping style have an advantage in fights for social dominance. Coping style has heritable components, but it appears to be largely determined by environmental factors, especially social experience. Agonistic behaviour is controlled by the brain's social decision-making network, and its monoaminergic systems play important roles in modifying the activity of this neuronal network. In this Review, we discuss the development of dominance hierarchies, how social rank is signalled through visual and chemical cues, and the neurobiological mechanisms controlling or correlating with agonistic behaviour. We also consider the effects of social interactions on the welfare of fish reared in captivity.
Collapse
Affiliation(s)
- Svante Winberg
- Uppsala University 1 Behavioural Neuroendocrinology, Department of Medical Cell Biology , , 751 23 Uppsala , Sweden
| | - Lynne Sneddon
- University of Gothenburg 2 Department of Biological and Environmental Sciences , , PO Box: 463, 405 31 Gothenburg , Sweden
| |
Collapse
|
15
|
Hayashi K, Tachihara K, Reimer JD, Laudet V. Colour patterns influence symbiosis and competition in the anemonefish-host anemone symbiosis system. Proc Biol Sci 2022; 289:20221576. [PMID: 36196541 PMCID: PMC9532990 DOI: 10.1098/rspb.2022.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Colour patterns in fish are often used as an important medium for communication. Anemonefish, characterized by specific patterns of white bars, inhabit host anemones and defend the area around an anemone as their territory. The host anemone is used not only by the anemonefish, but also by other fish species that use anemones as temporary shelters. Anemonefish may be able to identify potential competitors by their colour patterns. We first examined the colour patterns of fish using host anemones inhabited by Amphiprion ocellaris as shelter and compared them with the patterns of fish using surrounding scleractinian corals. There were no fish with bars sheltering in host anemones, although many fish with bars were found in surrounding corals. Next, two fish models, one with white bars and the other with white stripes on a black background, were presented to an A. ocellaris colony. The duration of aggressive behaviour towards the bar model was significantly longer than that towards the stripe model. We conclude that differences in aggressive behaviour by the anemonefish possibly select the colour patterns of cohabiting fish. This study indicates that colour patterns may influence not only intraspecific interactions but also interspecific interactions in coral reef ecosystems.
Collapse
Affiliation(s)
- Kina Hayashi
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Katsunori Tachihara
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - James Davis Reimer
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi I-Lan 262, Taiwan
| |
Collapse
|
16
|
Guerrera AG, Daniel MJ, Hughes KA. Black and orange coloration predict success during male–male competition in the guppy. Behav Ecol 2022. [DOI: 10.1093/beheco/arac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Investigating how intrasexual competition and intersexual mate choice act within a system is crucial to understanding the maintenance and diversity of sexually-dimorphic traits. These two processes can act in concert by selecting for the same trait, or in opposition by selecting for different extremes of the same trait; they can also act on different traits, potentially increasing trait complexity. We asked whether male–male competition and female mate choice act on the same male traits using Trinidadian guppies, which exhibit sexual size dimorphism and male-limited color patterns consisting of different colors arranged along the body and fins. We used behavioral assays to assess the relationship between color and competitive success and then compared our results to the plethora of data on female choice and color in our study population. Males initiated more contests if they were larger than their competitor. Males won contests more often if they had more black coloration than their competitor, and the effect of black was stronger when males had less orange than their competitor. Additionally, males won more often if they had either more structural color (iridescence) and more orange, or less structural color and less orange than their competitor, suggesting multiple combinations of color traits predict success. Females from our study population exhibit a strong preference for more orange coloration. Thus, traits favored in male contests differ from those favored by intersexual selection in this population. These results suggest that inter- and intrasexual selection, when acting concurrently, can promote increased complexity of sexually selected traits.
Collapse
Affiliation(s)
- Alexa G Guerrera
- Department of Biological Science, Florida State University , Tallahassee, FL , USA
| | - M J Daniel
- Department of Biological Science, Florida State University , Tallahassee, FL , USA
- Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON , Canada
| | - K A Hughes
- Department of Biological Science, Florida State University , Tallahassee, FL , USA
| |
Collapse
|
17
|
Bidaye RG, Al‐Jufaili SM, Charmpila EA, Jawad L, Vukić J, Reichenbacher B. Possible links between phenotypic variability, habitats and connectivity in the killifish
Aphaniops stoliczkanus
in Northeast Oman. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Riya G. Bidaye
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology Ludwig‐Maximilians‐Universität München Munich Germany
| | - Saud M. Al‐Jufaili
- Department of Marine Science and Fisheries Sultan Qaboos University Muscat Sultanate of Oman
| | - Eleni A. Charmpila
- Department of Ecology, Faculty of Science Charles University Prague Czech Republic
| | - Laith Jawad
- School of Environmental and Animal Sciences Unitec Institute of Technology Auckland New Zealand
| | - Jasna Vukić
- Department of Ecology, Faculty of Science Charles University Prague Czech Republic
| | - Bettina Reichenbacher
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology Ludwig‐Maximilians‐Universität München Munich Germany
- GeoBio‐Center, Ludwig‐Maximilians‐Universität München Munich Germany
| |
Collapse
|
18
|
Rekha R, Nimsi K, Manjusha K, Sirajudheen T. Marine yeast Rhodotorula paludigena VA 242 a pigment enhancing feed additive for the Ornamental Fish Koi Carp. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Reichmann F, Pilic J, Trajanoski S, Norton WHJ. Transcriptomic underpinnings of high and low mirror aggression zebrafish behaviours. BMC Biol 2022; 20:97. [PMID: 35501893 PMCID: PMC9059464 DOI: 10.1186/s12915-022-01298-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aggression is an adaptive behaviour that animals use to protect offspring, defend themselves and obtain resources. Zebrafish, like many other animals, are not able to recognize themselves in the mirror and typically respond to their own reflection with aggression. However, mirror aggression is not an all-or-nothing phenomenon, with some individuals displaying high levels of aggression against their mirror image, while others show none at all. In the current work, we have investigated the genetic basis of mirror aggression by using a classic forward genetics approach - selective breeding for high and low mirror aggression zebrafish (HAZ and LAZ). Results We characterized AB wild-type zebrafish for their response to the mirror image. Both aggressive and non-aggressive fish were inbred over several generations. We found that HAZ were on average more aggressive than the corresponding LAZ across generations and that the most aggressive adult HAZ were less anxious than the least aggressive adult LAZ after prolonged selective breeding. RNAseq analysis of these fish revealed that hundreds of protein-encoding genes with important diverse biological functions such as arsenic metabolism (as3mt), cell migration (arl4ab), immune system activity (ptgr1), actin cytoskeletal remodelling (wdr1), corticogenesis (dgcr2), protein dephosphorylation (ublcp1), sialic acid metabolism (st6galnac3) and ketone body metabolism (aacs) were differentially expressed between HAZ and LAZ, suggesting a strong genetic contribution to this phenotype. DAVID pathway analysis showed that a number of diverse pathways are enriched in HAZ over LAZ including pathways related to immune function, oxidation-reduction processes and cell signalling. In addition, weighted gene co-expression network analysis (WGCNA) identified 12 modules of highly correlated genes that were significantly associated with aggression duration and/or experimental group. Conclusions The current study shows that selective breeding based of the mirror aggression phenotype induces strong, heritable changes in behaviour and gene expression within the brain of zebrafish suggesting a strong genetic basis for this behaviour. Our transcriptomic analysis of fish selectively bred for high and low levels of mirror aggression revealed specific transcriptomic signatures induced by selective breeding and mirror aggression and thus provides a large and novel resource of candidate genes for future study. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01298-z.
Collapse
Affiliation(s)
- Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| | - Johannes Pilic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK. .,Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
20
|
Rossi V, Unitt R, McNamara M, Zorzin R, Carnevale G. Skin patterning and internal anatomy in a fossil moonfish from the Eocene Bolca Lagerstätte illuminate the ecology of ancient reef fish communities. PALAEONTOLOGY 2022; 65:e12600. [PMID: 35915728 PMCID: PMC9324815 DOI: 10.1111/pala.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Colour patterning in extant animals can be used as a reliable indicator of their biology and, in extant fish, can inform on feeding strategy. Fossil fish with preserved colour patterns may thus illuminate the evolution of fish behaviour and community structure, but are understudied. Here we report preserved melanin-based integumentary colour patterning and internal anatomy of the fossil moonfish Mene rhombea (Menidae) from the Bolca Lagerstätte (Eocene (Ypresian), north-east Italy). The melanosome-based longitudinal stripes of M. rhombea differ from the dorsal rows of black spots in its extant relative M. maculata, suggesting that the ecology of moonfish has changed during the Cenozoic. Extant moonfish are coastal schooling fish that feed on benthic invertebrates, but the longitudinal stripes and stomach contents with fish remains in M. rhombea suggest unstructured open marine ecologies and a piscivorous diet. The localized distribution of extant moonfish species in the Indo-Pacific Ocean may reflect, at least in part, tectonically-driven reorganization of global oceanographic patterns during the Cenozoic. It is likely that shifts in habitat and colour patterning genes promoted colour pattern evolution in the menid lineage.
Collapse
Affiliation(s)
- Valentina Rossi
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Museo di Scienze Naturali dell’Alto AdigeBolzano39100Italy
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Richard Unitt
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Maria McNamara
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Roberto Zorzin
- Sezione di Geologia e PaleontologiaMuseo Civico di Storia Naturale di VeronaLungadige Porta Vittoria 937129VeronaItaly
| | - Giorgio Carnevale
- Dipartimento di Scienze della TerraUniversità degli Studi di TorinoVia Valperga Caluso 3510125TorinoItaly
| |
Collapse
|
21
|
Systematic identification of candidate genes associated with aggressive behavior: A neurogenetic approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Slavík O, Horký P, Valchářová T, Pfauserová N, Velíšek J. Comparative study of stress responses, laterality and familiarity recognition between albino and pigmented fish. ZOOLOGY 2021; 150:125982. [PMID: 34896758 DOI: 10.1016/j.zool.2021.125982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 01/19/2023]
Abstract
Oculocutaneous albinism is the result of a combination of homozygous recessive mutations that block the synthesis of the tyrosine and melatonin hormones. This disability is associated with physiological limitations, e.g., visual impairment expressed by lower visual acuity and movement perception, and eventually leads to acrophobia and/or photophobia, suggesting a potentially higher stress level associated with the behavioral responses of individuals with albinism to external stimuli compared to their pigmented conspecifics. However, in fish, differences in behavioral and/or physiological responses and stress levels between these phenotypes have been poorly documented. While acoustic perception of albino individuals is well known, the use of olfactory sensors for social communication, e.g., for the preference for familiar conspecifics, remains poorly understood. We performed two laboratory experiments with albino and pigmented European catfish Silurus glanis to observe: i) their behavioral and physiological responses to short-term stress induced by a combination of air exposure and novel environmental stressors and ii) their ability to use odor keys to recognize of familiar conspecifics and the influence of lateralization on this preference. In response to stress stimuli, albino fish showed higher movement activities and ventilatory frequencies and more often changed their swimming directions compared to their pigmented conspecifics. Blood plasma analysis showed significantly higher values of stress-, deprivation-, and emotional arousal-associated substances, e.g., glucose and lactate, as well as of substances released during intensive muscle activity of hyperventilation and tissue hypoxia, e.g., hemoglobin, mean corpuscular hemoglobin, erythrocytes, and neutrophil granulocytes. A preference test between environments with and without scented water showed the preference by both albino and pigmented catfish for environments with scent of familiar conspecifics, and both groups of fish displayed left-side lateralization associated with the observation of conspecifics and group coordination. The results tended to show higher physiological and behavioral responses of albinos to stress stimuli compared to the responses of their pigmented conspecifics, but the uses of olfactory sensors and lateralization were not differentiated between the two groups.
Collapse
Affiliation(s)
- Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 21, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 21, Czech Republic
| | - Tereza Valchářová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 21, Czech Republic
| | - Nikola Pfauserová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 21, Czech Republic
| | - Josef Velíšek
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
23
|
McCluskey BM, Liang Y, Lewis VM, Patterson LB, Parichy DM. Pigment pattern morphospace of Danio fishes: evolutionary diversification and mutational effects. Biol Open 2021; 10:271991. [PMID: 34463758 PMCID: PMC8487636 DOI: 10.1242/bio.058814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Molecular and cellular mechanisms underlying variation in adult form remain largely unknown. Adult pigment patterns of fishes in the genus Danio, which includes zebrafish, Danio rerio, consist of horizontal stripes, vertical bars, spots and uniform patterns, and provide an outstanding opportunity to identify causes of species level variation in a neural crest derived trait. Understanding pigment pattern variation requires quantitative approaches to assess phenotypes, yet such methods have been mostly lacking for pigment patterns. We introduce metrics derived from information theory that describe patterns and pattern variation in Danio fishes. We find that these metrics used singly and in multivariate combinations are suitable for distinguishing general pattern types, and can reveal even subtle phenotypic differences attributable to mutations. Our study provides new tools for analyzing pigment pattern in Danio and potentially other groups, and sets the stage for future analyses of pattern morphospace and its mechanistic underpinnings. Summary: A multidimensional morphospace for pigment patterns yields quantitative insights into the evolution and genetics of diverse pigment patterns across zebrafish and related species.
Collapse
Affiliation(s)
| | - Yipeng Liang
- Department of Biology, University of Virginia, Charlottesville, USA
| | - Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, USA
| | | | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, USA.,Biology Department, Rhode Island College, Providence, USA.,Department of Cell Biology, University of Virginia, Charlottesville, USA
| |
Collapse
|
24
|
Zhang S, Tian H, Sun Y, Li X, Wang W, Ru S. Brightened body coloration in female guppies (Poecilia reticulata) serves as an in vivo biomarker for environmental androgens: The example of 17β-trenbolone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112698. [PMID: 34450427 DOI: 10.1016/j.ecoenv.2021.112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In vivo testing systems for environmental androgens are scarce. The aim of this study was to evaluate the potential of male-specific brightened body coloration in female guppies (Poecilia reticulata) to serve as an in vivo biomarker of environmental androgens using 17β-trenbolone as an example. The high bioaccumulation of 17β-trenbolone in the skin of female guppies suggests that it is a potential target tissue of environmental androgens. The coloration index, pigment cell ultrastructure, pigment levels, sexual attractiveness, and reproductive capability of female guppies were analyzed following 28 days of exposure to 20 ng/L, 200 ng/L, and 2000 ng/L 17β-trenbolone. Increases in the coloration index caused by 17β-trenbolone exposure were attributable to increased pteridine and melanin levels. Decreases in the sexual attractiveness, number of offspring, and survival rate of offspring suggested that the changes in body coloration translated into adverse outcomes. Finally, mRNA sequencing indicated that 17β-trenbolone increased pteridine levels by activating genomic effects of androgen receptor on xanthine dehydrogenase and increased melanin levels by exerting non-genomic effects targeting microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 that were mediated by mitogen-activated protein kinase and calcium signaling pathways. We have derived a robust adverse outcome pathway of environmental androgens, and our findings suggest that indicators at different biological levels related to brightened body coloration in female guppies can serve as less-invasive or noninvasive in vivo biomarkers of short-term exposure to environmental androgens.
Collapse
Affiliation(s)
- Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| | - Yang Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| |
Collapse
|
25
|
Corney RH, Haley AL, Weir LK. Flexibility of nuptial colouration in a unique ecotype of threespine stickleback (Gasterosteus aculeatus). CAN J ZOOL 2021. [DOI: 10.1139/cjz-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuptial colouration in animals may serve as a signal of competitor and (or) mate quality during breeding. In many temperate fishes, nuptial colouration develops during discrete breeding seasons and is a target of sexual selection. We examine nuptial colouration and behaviour of a unique ecotype of threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758), wherein males turn from dull brown-grey to pearlescent white during the breeding season. The main goal of this work was to determine the relative role of white colouration in intersexual competition and mate choice. In a combination of field and laboratory work, we found that males are brightest white when engaging in courtship activities in the presence of a female; this indicates that white colouration may be primarily related to enhancing signalling during mate attraction. White colouration intensity increased as the breeding season progressed and may be related to an influx of conspecifics. Colour change from cryptic grey to bright white occurred rapidly (<90 s) and may be deployed to enhance behavioural signals. We conclude that bright white colouration in the white ecotype is a potential signal of mate quality and may have evolved from a previously existing capacity for colour plasticity in common threespine stickleback.
Collapse
Affiliation(s)
- Rachel H. Corney
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Anne L. Haley
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Laura K. Weir
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| |
Collapse
|
26
|
Chen S, Haehnle B, Van der Laan X, Kuehne AJC, Botiz I, Stavrinou PN, Stingelin N. Understanding hierarchical spheres-in-grating assembly for bio-inspired colouration. MATERIALS HORIZONS 2021; 8:2230-2237. [PMID: 34846427 DOI: 10.1039/d1mh00358e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vivid iridescent response from particular butterflies is as an excellent example of how micro-engineered hierarchical architectures that combine physical structures and pigmentary inclusions create unique colouration. To date, however, detailed knowledge is missing to replicate such sophisticated structures in a robust, reliable manner. Here, we deliver spheres-in-grating assemblies with colouration effects as found in nature, exploiting embossed polymer gratings and self-assembled light-absorbing micro-spheres.
Collapse
Affiliation(s)
- Shengyang Chen
- Department of Materials and Centre of Plastic Electronics, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes. Proc Natl Acad Sci U S A 2021; 118:2101634118. [PMID: 34031155 DOI: 10.1073/pnas.2101634118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.
Collapse
|
28
|
John L, Rick IP, Vitt S, Thünken T. Body coloration as a dynamic signal during intrasexual communication in a cichlid fish. BMC ZOOL 2021; 6:9. [PMID: 37170176 PMCID: PMC10127425 DOI: 10.1186/s40850-021-00075-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Intrasexual competition over access to resources can lead to aggression between individuals. Because overt aggression, i.e. fights, can be costly for contestants, the communication of aggressive motivation prior to engagement in a physical fight is often mediated by conventional signals. Animals of various taxa, including fishes, display visual signals such as body coloration that can dynamically be adjusted depending on the individual’s motivation. Male individuals of the West African cichlid Pelvicachromis taeniatus express a yellow body coloration displayed during courtship but also in an intrasexual competition context.
Results
Within-individual variation in male yellow body coloration, as quantified with standardized digital photography and representation in a CIELab color space, was examined in a mating context by exposing males to a female and in a competitive intrasexual context, i.e. in a dyadic contest. Additionally, spectrometric reflectance measurements were taken to obtain color representations in a physiological color space based on spectral sensitivities of our model species. Exposure to females did not significantly affect male color expression. However, analysis of body coloration revealed a change in within-individual color intensity and colored area after interaction with a male competitor. In dominant males, extension of coloration was positively correlated with restrained aggression, i.e. displays, which in turn explained dominance established between the two contestants.
Conclusion
Body coloration in male P. taeniatus is a dynamic signal that is used in concert with display behavior in communication during intrasexual competition.
Collapse
|
29
|
A complex genetic architecture in zebrafish relatives Danio quagga and D. kyathit underlies development of stripes and spots. PLoS Genet 2021; 17:e1009364. [PMID: 33901178 PMCID: PMC8102007 DOI: 10.1371/journal.pgen.1009364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D. quagga and D. kyathit, with stripes and spots, respectively, to understand how natural genetic variation impacts phenotypes at cellular and organismal levels. We first show that D. quagga and D. kyathit phenotypes resemble those of wild-type D. rerio and several single locus mutants of D. rerio, respectively, in a morphospace defined by pattern variation along dorsoventral and anteroposterior axes. We then identify differences in patterning at the cellular level between D. quagga and D. kyathit by repeated daily imaging during pattern development and quantitative comparisons of adult phenotypes, revealing that patterns are similar initially but diverge ontogenetically. To assess the genetic architecture of these differences, we employ reduced-representation sequencing of second-generation hybrids. Despite the similarity of D. quagga to D. rerio, and D. kyathit to some D. rerio mutants, our analyses reveal a complex genetic basis for differences between D. quagga and D. kyathit, with several quantitative trait loci contributing to variation in overall pattern and cellular phenotypes, epistatic interactions between loci, and abundant segregating variation within species. Our findings provide a window into the evolutionary genetics of pattern-forming mechanisms in Danio and highlight the complexity of differences that can arise even between sister species. Further studies of natural genetic diversity underlying pattern variation in D. quagga and D. kyathit should provide insights complementary to those from zebrafish mutant phenotypes and more distant species comparisons. Pigment patterns of fishes are diverse and function in a wide range of behaviors. Common pattern themes include stripes and spots, exemplified by the closely related minnows Danio quagga and D. kyathit, respectively. We show that these patterns arise late in development owing to alterations in the development and arrangements of pigment cells. In the closely related model organism zebrafish (D. rerio) single genes can switch the pattern from stripes to spots. Yet, we show that pattern differences between D. quagga and D. kyathit have a more complex genetic basis, depending on multiple genes and interactions between these genes. Our findings illustrate the importance of characterizing naturally occurring genetic variants, in addition to laboratory induced mutations, for a more complete understanding of pigment pattern development and evolution.
Collapse
|
30
|
Camargo-dos-Santos B, Gonçalves BB, Bellot MS, Guermandi II, Barki A, Giaquinto PC. Water turbidity–induced alterations in coloration and courtship behavior of male guppies (Poecilia reticulata). Acta Ethol 2021. [DOI: 10.1007/s10211-021-00369-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Parichy DM. Evolution of pigment cells and patterns: recent insights from teleost fishes. Curr Opin Genet Dev 2021; 69:88-96. [PMID: 33743392 DOI: 10.1016/j.gde.2021.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Skin pigment patterns of vertebrates are stunningly diverse, and nowhere more so than in teleost fishes. Several species, including relatives of zebrafish, recently evolved cichlid fishes of East Africa, clownfishes, deep sea fishes, and others are providing insights into pigment pattern evolution. This overview describes recent advances in understanding periodic patterns, like stripes and spots, the loss of patterns, and the role of cell-type diversification in generating pigmentation phenotypes. Advances in this area are being facilitated by the application of modern methods of gene editing, genomics, computational analysis, and other approaches to non-traditional model organisms having interesting pigmentary phenotypes. Several topics worthy of future attention are outlined as well.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
32
|
Romero-Diaz C, Campos SM, Herrmann MA, Soini HA, Novotny MV, Hews DK, Martins EP. Composition and compound proportions affect the response to complex chemical signals in a spiny lizard. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02987-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Vissio PG, Darias MJ, Di Yorio MP, Pérez Sirkin DI, Delgadin TH. Fish skin pigmentation in aquaculture: The influence of rearing conditions and its neuroendocrine regulation. Gen Comp Endocrinol 2021; 301:113662. [PMID: 33220300 DOI: 10.1016/j.ygcen.2020.113662] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Skin pigmentation pattern is a species-specific characteristic that depends on the number and the spatial combination of several types of chromatophores. This feature can change during life, for example in the metamorphosis or reproductive cycle, or as a response to biotic and/or abiotic environmental cues (nutrition, UV incidence, surrounding luminosity, and social interactions). Fish skin pigmentation is one of the most important quality criteria dictating the market value of both aquaculture and ornamental species because it serves as an external signal to infer its welfare and the culture conditions used. For that reason, several studies have been conducted aiming to understand the mechanisms underlying fish pigmentation as well as the influence exerted by rearing conditions. In this context, the present review focuses on the current knowledge on endocrine regulation of fish pigmentation as well as on the aquaculture conditions affecting skin coloration. Available information on Iberoamerican fish species cultured is presented.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Tomás H Delgadin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
34
|
Trigo S, Gomes ACR, Cardoso SC, Teixeira M, Cardoso GC, Soares MC. Cleaner blues: Condition-dependent colour and cleaner fish service quality. Behav Processes 2020; 181:104246. [DOI: 10.1016/j.beproc.2020.104246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/14/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
|
35
|
Body-generated hydrodynamic flows influence male–male contests and female mate choice in a freshwater fish. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Wang W, Ru S, Wang L, Wei S, Zhang J, Qin J, Liu R, Zhang X. Bisphenol S exposure alters behavioral parameters in adult zebrafish and offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140448. [PMID: 32610242 DOI: 10.1016/j.scitotenv.2020.140448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The environmental emission of bisphenol S (BPS), which is globally utilized in the manufacturing of polycarbonates, epoxy resin and thermal paper, has affected the aquatic ecosystem. Thus, effects of BPS exposure on the fitness of aquatic animals have been noted. Here, adult male and female zebrafish were used as aquatic model organisms and separately exposed to environmentally relevant doses of BPS (0, 1, 10 and 100 μg/L) for 14 days. The results showed that BPS changed the body pigment of zebrafish and slowed the maturation of oocytes in the ovary, resulting in a significant decrease in the shoaling behavior of adult zebrafish and the attraction of BPS-treated females during the mating process. Furthermore, in the subgeneration of adult zebrafish exposed to BPS for 7 days, survival behaviors, such as locomotor, phototaxis and feeding behaviors, deviated from normal behaviors. After exposing the adult zebrafish to BPS for an additional 7 days, the above described survival behaviors and light adaptation were disrupted in offspring. Our data, based on intergenerational behavioral studies, demonstrate that BPS affects the behaviors of aquatic animals and the ability of offspring to feed and avoid predators, possibly jeopardizing the survival of aquatic animals.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liangliang Wang
- Institute of Biomedical Research (YC), Yunnan University, Kunming 650091, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
37
|
Molecular Plasticity in Animal Pigmentation: Emerging Processes Underlying Color Changes. Integr Comp Biol 2020; 60:1531-1543. [DOI: 10.1093/icb/icaa142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis
Animal coloration has been rigorously studied and has provided morphological implications for fitness with influences over social behavior, predator–prey interactions, and sexual selection. In vertebrates, its study has developed our understanding across diverse fields ranging from behavior to molecular biology. In the search for underlying molecular mechanisms, many have taken advantage of pedigree-based and genome-wide association screens to reveal the genetic architecture responsible for pattern variation that occurs in early development. However, genetic differences do not provide a full picture of the dynamic changes in coloration that are most prevalent across vertebrates at the molecular level. Changes in coloration that occur in adulthood via phenotypic plasticity rely on various social, visual, and dietary cues independent of genetic variation. Here, I will review the contributions of pigment cell biology to animal color changes and recent studies describing their molecular underpinnings and function. In this regard, conserved epigenetic processes such as DNA methylation play a role in lending plasticity to gene regulation as it relates to chromatophore function. Lastly, I will present African cichlids as emerging models for the study of pigmentation and molecular plasticity for animal color changes. I posit that these processes, in a dialog with environmental stimuli, are important regulators of variation and the selective advantages that accompany a change in coloration for vertebrate animals.
Collapse
|
38
|
Cho K, Ryu CS, Jeong S, Kim Y. Potential adverse effect of tyrosinase inhibitors on teleosts:A review. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108655. [PMID: 31678677 DOI: 10.1016/j.cbpc.2019.108655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/19/2023]
Abstract
Coloration plays a crucial role in the social communication and survival of organisms. Multidisciplinary studies have been conducted to elucidate the correlation between coloration and melanin biosynthesis (referred as melanogenesis). The multi-copper enzyme tyrosinase catalyzes the first two steps of melanogenesis for coloration in teleosts. Due to the increasing demand of tyrosinase inhibitors for the production of skin whitening cosmetics, hypopigmentation pharmaceuticals, and anti-browning agents, a large number of natural and synthetic inhibitors have been developed over the past few decades. Although a number of previous studies have focused on human use and toxicity, such as the increased cytotoxic effects of ROS-generating compounds, their ecotoxicological impacts on aquatic organisms are still poorly understood. Hence, the focus of the present review is to describe the role of coloration in teleosts as well as potential ecotoxicological effects elicited by exposure to tyrosinase inhibitors. Furthermore, this review introduces our recently registered adverse outcome pathway (AOP) related to tyrosinase inhibition and population decline in teleosts.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea; Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
| | - Seongho Jeong
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany.
| |
Collapse
|
39
|
Generation of a white-albino phenotype from cobalt blue and yellow-albino rainbow trout (Oncorhynchus mykiss): Inheritance pattern and chromatophores analysis. PLoS One 2020. [PMID: 31986190 DOI: 10.1371/journal.pone.0214034.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Albinism is the most common color variation described in fish and is characterized by a white or yellow phenotype according to the species. In rainbow trout Oncorhynchus mykiss, aside from yellow-albino phenotypes, cobalt blue variants with autosomal, recessive inheritance have also been reported. In this study, we investigated the inheritance pattern and chromatophores distribution/abundance of cobalt blue trouts obtained from a local fish farm. Based on crosses with wild-type and dominant yellow-albino lines, we could infer that cobalt blue are dominant over wild-type and co-dominant in relation to yellow-albino phenotype, resulting in a fourth phenotype: the white-albino. Analysis of chromatophores revealed that cobalt blue trouts present melanophores, as the wild-type, and a reduced number of xanthophores. As regards to the white-albino phenotype, they were not only devoid of melanophores but also presented a reduced number of xanthophores. Cobalt blue and white-albino trouts also presented reduced body weight and a smaller pituitary gland compared to wild-type and yellow-albino phenotypes. The transcription levels of tshb and trh were up regulated in cobalt blue compared to wild type, suggesting the involvement of thyroid hormone in the expression of blue color. These phenotypes represent useful models for research on body pigmentation in salmonids and on the mechanisms behind endocrine control of color patterning.
Collapse
|
40
|
Hattori RS, Yoshinaga TT, Butzge AJ, Hattori-Ihara S, Tsukamoto RY, Takahashi NS, Tabata YA. Generation of a white-albino phenotype from cobalt blue and yellow-albino rainbow trout (Oncorhynchus mykiss): Inheritance pattern and chromatophores analysis. PLoS One 2020; 15:e0214034. [PMID: 31986190 PMCID: PMC6984684 DOI: 10.1371/journal.pone.0214034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Albinism is the most common color variation described in fish and is characterized by a white or yellow phenotype according to the species. In rainbow trout Oncorhynchus mykiss, aside from yellow-albino phenotypes, cobalt blue variants with autosomal, recessive inheritance have also been reported. In this study, we investigated the inheritance pattern and chromatophores distribution/abundance of cobalt blue trouts obtained from a local fish farm. Based on crosses with wild-type and dominant yellow-albino lines, we could infer that cobalt blue are dominant over wild-type and co-dominant in relation to yellow-albino phenotype, resulting in a fourth phenotype: the white-albino. Analysis of chromatophores revealed that cobalt blue trouts present melanophores, as the wild-type, and a reduced number of xanthophores. As regards to the white-albino phenotype, they were not only devoid of melanophores but also presented a reduced number of xanthophores. Cobalt blue and white-albino trouts also presented reduced body weight and a smaller pituitary gland compared to wild-type and yellow-albino phenotypes. The transcription levels of tshb and trh were up regulated in cobalt blue compared to wild type, suggesting the involvement of thyroid hormone in the expression of blue color. These phenotypes represent useful models for research on body pigmentation in salmonids and on the mechanisms behind endocrine control of color patterning.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Salmonid Experimental Station at Campos do Jordão, Unidade de Pesquisa e Desenvolvimento-Campos do Jordão, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, São Paulo, Brazil
- * E-mail:
| | - Tulio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Arno Juliano Butzge
- Graduate Program in Biological Sciences (Genetics), Institute of Biosciences of Botucatu - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Shoko Hattori-Ihara
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Neuza Sumico Takahashi
- Sao Paulo Fisheries Institute, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, Sao Paulo, Brazil
| | - Yara Aiko Tabata
- Salmonid Experimental Station at Campos do Jordão, Unidade de Pesquisa e Desenvolvimento-Campos do Jordão, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, São Paulo, Brazil
| |
Collapse
|
41
|
Male characteristics as predictors of genital color and display variation in vervet monkeys. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-019-2787-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
In the animal kingdom, conspicuous colors are often used for inter- and intra-sexual communication. Even though primates are the most colorful mammalian taxon, many questions, including what potential information color signals communicate to social partners, are not fully understood. Vervet monkeys (Chlorocebus pygerythrus) are ideal to examine the covariates of color signals. Males have multi-colored genitals, which they present during distinctive male-male interactions, known as the “Red-White-and-Blue” (RWB) display, but the genitals are also visible across a variety of other contexts, and it is unclear what this color display signals to recipients. We recorded genital color presentations and standardized digital photos of male genitals (N = 405 photos) over one mating season for 20 adult males in three groups at the Samara Private Game Reserve, South Africa. We combined these with data on male characteristics (dominance, age, tenure length, injuries, and fecal glucocorticoid metabolite concentrations). Using visual modeling methods, we measured single colors (red, white, blue) but also the contrasts between colors. We assessed the frequency of the RWB genital display and male variation in genital coloration and linked this to male characteristics. Our data suggest that the number of genital displays increased with male dominance. However, none of the variables investigated explained the inter- and intra-individual variation in male genital coloration. These results suggest that the frequency of the RWB genital display, but not its color value, is related to dominance, providing valuable insights on covariation in color signals and their display in primates.
Significance statement
Conspicuous colors in animals often communicate individual quality to mates and rivals. By investigating vervet monkeys, a primate species in which males present their colorful genitals within several behavioral displays, we aim to identify the covariates of such colorful signals and their behavioral display. Using visual modeling methods for the color analysis and combining behavioral display data and color data with male characteristics, we found that high-ranking males displayed their colorful genitals more frequently than lower-ranking ones. In contrast, color variation was not influenced by male dominance, age, tenure length, or health. Our results can serve as a basis for future investigations on the function of colorful signals and behavioral displays, such as a badge of status or mate choice in primates.
Collapse
|
42
|
Patterson LB, Parichy DM. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form. Annu Rev Genet 2019; 53:505-530. [DOI: 10.1146/annurev-genet-112618-043741] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate pigment patterns are diverse and fascinating adult traits that allow animals to recognize conspecifics, attract mates, and avoid predators. Pigment patterns in fish are among the most amenable traits for studying the cellular basis of adult form, as the cells that produce diverse patterns are readily visible in the skin during development. The genetic basis of pigment pattern development has been most studied in the zebrafish, Danio rerio. Zebrafish adults have alternating dark and light horizontal stripes, resulting from the precise arrangement of three main classes of pigment cells: black melanophores, yellow xanthophores, and iridescent iridophores. The coordination of adult pigment cell lineage specification and differentiation with specific cellular interactions and morphogenetic behaviors is necessary for stripe development. Besides providing a nice example of pattern formation responsible for an adult trait of zebrafish, stripe-forming mechanisms also provide a conceptual framework for posing testable hypotheses about pattern diversification more broadly. Here, we summarize what is known about lineages and molecular interactions required for pattern formation in zebrafish, we review some of what is known about pattern diversification in Danio, and we speculate on how patterns in more distant teleosts may have evolved to produce a stunningly diverse array of patterns in nature.
Collapse
Affiliation(s)
| | - David M. Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
43
|
Hosseini S, Simianer H, Tetens J, Brenig B, Herzog S, Sharifi AR. Efficient phenotypic sex classification of zebrafish using machine learning methods. Ecol Evol 2019; 9:13332-13343. [PMID: 31871648 PMCID: PMC6912926 DOI: 10.1002/ece3.5788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Sex determination in zebrafish by manual approaches according to current guidelines relies on human observation. These guidelines for sex recognition have proven to be subjective and highly labor-intensive. To address this problem, we present a methodology to automatically classify the phenotypic sex using two machine learning methods: Deep Convolutional Neural Networks (DCNNs) based on the whole fish appearance and Support Vector Machine (SVM) based on caudal fin coloration. Machine learning techniques in sex classification provide potential efficiency with the advantage of automatization and robustness in the prediction process. Furthermore, since developmental plasticity can be influenced by environmental conditions, we have investigated the impact of elevated water temperature during embryogenesis on sex and sex-related differences in color intensity of adult zebrafish. The estimated color intensity based on SVM was then applied to detect the association between coloration and body weight and length. Phenotypic sex classifications using machine learning methods resulted in a high degree of association with the real sex in nontreated animals. In temperature-induced animals, DCNNs reached a performance of 100%, whereas 20% of males were misclassified using SVM due to a lower color intensity. Furthermore, a positive association between color intensity and body weight and length was observed in males. Our study demonstrates that high ambient temperature leads to a lower color intensity in male animals and a positive association of male caudal fin coloration with body weight and length, which appears to play a significant role in sexual attraction. The software developed for sex classification in this study is readily applicable to other species with sex-linked visible phenotypic differences.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
| | - Henner Simianer
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
| | - Jens Tetens
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
| | - Bertram Brenig
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
- Institute of Veterinary MedicineUniversity of GoettingenGoettingenGermany
| | - Sebastian Herzog
- Max Planck Institute for Dynamics and Self‐OrganizationGoettingenGermany
- Department for Computational Neuroscience3rd Physics Institute‐BiophysicsUniversity of GoettingenGoettingenGermany
| | - Ahmad Reza Sharifi
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
| |
Collapse
|
44
|
Wojan EM, Carreiro NC, Clendenen DA, Neldner HM, Castillo C, Bertram SM, Kolluru GR. The effects of commonly used anaesthetics on colour measurements across body regions in the poeciliid fish, Girardinus metallicus. JOURNAL OF FISH BIOLOGY 2019; 95:1320-1330. [PMID: 31515796 DOI: 10.1111/jfb.14138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The effects of common anaesthetics on the hue, saturation and brightness measurements of the poeciliid fish Girardinus metallicus were investigated in two experiments. For both experiments the coloration of four body regions was measured from digital images of the same males obtained under three conditions: (1) control (in a water-filled chamber); (2) anaesthetised with MS-222; and (3) anaesthetised with eugenol (clove oil). In experiment 1 anaesthetised fish were photographed out of water. In experiment 2 all photographs were taken in a water-filled chamber. Anaesthetics altered coloration in both experiments. In the more methodologically consistent experiment 2 we found significantly different hue, increased saturation and decreased brightness in anaesthetic v. control conditions, consistent with darkening caused by the anaesthetics. The body regions differed in coloration consistent with countershading but did not differentially change in response to anaesthesia. These findings suggest that photographing fish in a water-filled chamber without anaesthetic is preferable for obtaining digital images for colour analysis and that multiple body regions of fish should be measured when assessing coloration patterns meaningful in behavioural contexts, to account for the gradients caused by countershading. We are encouraged that some researchers employ such methods already and caution against using anaesthetics except when absolutely necessary for immobilisation.
Collapse
Affiliation(s)
- Erin M Wojan
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Nalana C Carreiro
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - David A Clendenen
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Heather M Neldner
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Crystal Castillo
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Susan M Bertram
- Biology Department, Carleton University, Ottawa, Ontario, Canada
| | - Gita R Kolluru
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
45
|
Powers MJ, Hill GE, Weaver RJ. An experimental test of mate choice for red carotenoid coloration in the marine copepod
Tigriopus californicus. Ethology 2019. [DOI: 10.1111/eth.12976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Geoffrey E. Hill
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Ryan J. Weaver
- Department of Biological Sciences Auburn University Auburn AL USA
- Department of Integrative Biology University of Texas Austin TX USA
| |
Collapse
|
46
|
Escobar-Camacho D, Taylor MA, Cheney KL, Green NF, Marshall NJ, Carleton KL. Color discrimination thresholds in a cichlid fish: Metriaclima benetos. J Exp Biol 2019; 222:jeb201160. [PMID: 31399486 PMCID: PMC6765173 DOI: 10.1242/jeb.201160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/05/2019] [Indexed: 01/31/2023]
Abstract
Color vision is essential for animals as it allows them to detect, recognize and discriminate between colored objects. Studies analyzing color vision require an integrative approach, combining behavioral experiments, physiological models and quantitative analyses of photoreceptor stimulation. Here, we demonstrate, for the first time, the limits of chromatic discrimination in Metriaclima benetos, a rock-dwelling cichlid from Lake Malawi, using behavioral experiments and visual modeling. Fish were trained to discriminate between colored stimuli. Color discrimination thresholds were quantified by testing fish chromatic discrimination between the rewarded stimulus and distracter stimuli that varied in chromatic distance (ΔS). This was done under fluorescent lights alone and with additional violet lights. Our results provide two main outcomes. First, cichlid color discrimination thresholds correspond with predictions from the receptor noise limited (RNL) model but only if we assume a Weber fraction higher than the typical value of 5%. Second, cichlids may exhibit limited color constancy under certain lighting conditions as most individuals failed to discriminate colors when violet light was added. We further used the color discrimination thresholds obtained from these experiments to model color discrimination of actual fish colors and backgrounds under natural lighting for Lake Malawi. We found that, for M. benetos, blue is most chromatically contrasting against yellows and space-light, which might be important for discriminating male nuptial colorations and detecting males against the background. This study highlights the importance of lab-based behavioral experiments in understanding color vision and in parameterizing the assumptions of the RNL vision model for different species.
Collapse
Affiliation(s)
| | - Michaela A Taylor
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Santostefano F, Fanson KV, Endler JA, Biro PA. Behavioral, energetic, and color trait integration in male guppies: testing the melanocortin hypothesis. Behav Ecol 2019. [DOI: 10.1093/beheco/arz109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Individuals of the same population differ consistently from each other in the average expression of behavioral and physiological traits. Often, such traits are integrated and thus correlated with each other. However, the underlying proximate mechanisms generating and maintaining this among-individual covariation are still poorly understood. The melanocortin hypothesis suggests that the melanocortin pathways can have pleiotropic effects linking the expression of melanin-based coloration with physiological and behavioral traits. In the present study, we test this hypothesis in adult male guppies (Poecilia reticulata), by estimating among individual correlations between behaviors (activity, feeding, boldness, display, and chase during courtship), stress response (peak metabolic rate), and coloration (black spot, fuzzy black, and orange). The lack of correlation of any behavior or metabolism with black coloration indicates that the melanocortin hypothesis is not supported in this species. However, we observed covariation among coloration traits, as well as among behavioral traits. Our findings suggest that, although there appear to be constraints within sets of related traits, coloration, physiology, and behaviors can potentially evolve as independent modules in response to selection in this species.
Collapse
Affiliation(s)
- Francesca Santostefano
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, Victoria, Australia
- Département des Sciences Biologiques, Université du Québec à Montréal, Pavillon des sciences biologiques, du Président-Kennedy, Montréal, Canada
| | - Kerry V Fanson
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, Victoria, Australia
| | - John A Endler
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, Victoria, Australia
| | - Peter A Biro
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, Victoria, Australia
| |
Collapse
|
48
|
Pawluk RJ, Garcia de Leaniz C, Cable J, Tiddeman B, Consuegra S. Colour plasticity in response to social context and parasitic infection in a self-fertilizing fish. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181418. [PMID: 31417688 PMCID: PMC6689574 DOI: 10.1098/rsos.181418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
Many animal species rely on changes in body coloration to signal social dominance, mating readiness and health status to conspecifics, which can in turn influence reproductive success, social dynamics and pathogen avoidance in natural populations. Such colour changes are thought to be controlled by genetic and environmental conditions, but their relative importance is difficult to measure in natural populations, where individual genetic variability complicates data interpretation. Here, we studied shifts in melanin-related body coloration in response to social context and parasitic infection in two naturally inbred lines of a self-fertilizing fish to disentangle the relative roles of genetic background and individual variation. We found that social context and parasitic infection had a significant effect on body coloration that varied between genetic lines, suggesting the existence of genotype by environment interactions. In addition, individual variation was also important for some of the colour attributes. We suggest that the genetic background drives colour plasticity and that this can maintain phenotypic variation in inbred lines, an adaptive mechanism that may be particularly important when genetic diversity is low.
Collapse
Affiliation(s)
| | | | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Bernard Tiddeman
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3FL, UK
| | | |
Collapse
|
49
|
Lewis VM, Saunders LM, Larson TA, Bain EJ, Sturiale SL, Gur D, Chowdhury S, Flynn JD, Allen MC, Deheyn DD, Lee JC, Simon JA, Lippincott-Schwartz J, Raible DW, Parichy DM. Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores. Proc Natl Acad Sci U S A 2019; 116:11806-11811. [PMID: 31138706 PMCID: PMC6575160 DOI: 10.1073/pnas.1901021116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells-leucophores-one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow-orange xanthophore or xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type-specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, and we showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.
Collapse
Affiliation(s)
- Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, VA 22903
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Lauren M Saunders
- Department of Biology, University of Virginia, Charlottesville, VA 22903
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
| | - Tracy A Larson
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Emily J Bain
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | | | - Dvir Gur
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Sarwat Chowdhury
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jessica D Flynn
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael C Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Jennifer C Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | | | - David W Raible
- Department of Biology, University of Washington, Seattle, WA 98195
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA 22903;
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
50
|
Cattelan S, Griggio M. Within-shoal phenotypic homogeneity affects shoaling preference in a killifish. Biol Lett 2019; 14:rsbl.2018.0293. [PMID: 30089660 DOI: 10.1098/rsbl.2018.0293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Anti-predator benefits associated with living in groups are multiple and taxonomically widespread. In fish shoals, individuals can exploit the confusion effect, whereby predators struggle to target a single individual among several individuals. Theory predicts that the confusion effect could be aided by homogeneity in appearance; thus, individuals should group by phenotypic characteristics, contributing to generating high within-shoal phenotypic homogeneity. While assortments by body size have been extensively documented, almost nothing is known about whether within-shoal homogeneity in body pigmentation affects shoaling preference. To investigate this issue, we used the Mediterranean killifish, Aphanius fasciatus, a shoaling species characterized by conspicuous vertical bars on body sides. Individual females were given a choice between two novel shoals characterized by either a high or low degree of homogeneity in the number of bars. As predicted, individual females preferentially associated with the shoal showing the higher phenotypic homogeneity. Our data demonstrated that fish might associate with the shoal that maximizes phenotypic homogeneity in body pigmentation, irrespective of their own phenotype.
Collapse
Affiliation(s)
| | - Matteo Griggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|