1
|
Takagui FH, Viana P, Haerter CAG, Zuanon J, Birindelli JLO, Lui RL, Feldberg E, Margarido VP. Chromosomal analysis of two Acanthodoras species (Doradidae, Siluriformes): Insights into the oldest thorny catfish clade and its karyotype evolution. JOURNAL OF FISH BIOLOGY 2024; 105:1109-1119. [PMID: 39007200 DOI: 10.1111/jfb.15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
The Doradidae fishes constitute one of the most diverse groups of Neotropical freshwater environments. Acanthodoradinae is the oldest lineage and the sister group to all other thorny catfishes, and it includes only the genus Acanthodoras. The diversity of Acanthodoras remains underestimated, and the use of complementary approaches, including genetic studies, is an important step to better characterize this diversity and the relationships among the species within the genus. Therefore, we conducted a comprehensive analysis using conventional cytogenetic techniques and physical mapping of three multigene families (18S and 5S ribosomal DNA [rDNA], U2 small nuclear DNA [snDNA]) and four microsatellite motifs, namely (AC)n, (AT)n, (GA)n, and (GATA)n, in two sympatric species from the Negro River: Acanthodoras cataphractus and Acanthodoras cf. polygrammus. We found significant differences in constitutive heterochromatin (CH) content, distribution of the microsatellite (AT)n, and the number of 5S rDNA and U2 snDNA sites. These differences may result from chromosome rearrangements and repetitive DNA dispersal mechanisms. Furthermore, the characterization of the diploid number (2n) of these Acanthodoras species enables us to propose 2n = 58 chromosomes as the plesiomorphic 2n state in Doradidae based on ancestral state reconstruction. Acanthodoradinae is the oldest lineage of the thorny catfishes, and knowledge about its cytogenetic patterns is crucial for disentangling the karyotype evolution of the whole group. Thus, this study contributes to the understanding of the mechanisms behind chromosome diversification of Doradidae and highlights the importance of Acanthodoradinae in the evolutionary history of thorny catfishes.
Collapse
Affiliation(s)
- Fábio Hiroshi Takagui
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Viana
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Jansen Zuanon
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - José Luís Olivan Birindelli
- Museu de Zoologia, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, Londrina, Brazil
| | - Roberto Laridondo Lui
- Laboratório de Citogenética, Centro de Ciĉncias Biológicas e da Saúde, Cascavel, Brazil
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | |
Collapse
|
2
|
Silva DSD, de Sousa RPC, Vallinoto M, Costa Lima MRD, Costa RAD, Furo IDO, Gomes AJB, Oliveira EHCD. Comparative molecular and conventional cytogenetic analyses of three species of Rhinella (Anura; Bufonidae). PLoS One 2024; 19:e0308785. [PMID: 39146271 PMCID: PMC11326569 DOI: 10.1371/journal.pone.0308785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The genus Rhinella corresponds to a group of anurans characterized by numerous taxonomic and systemic challenges, leading to their organization into species complexes. Cytogenetic data for this genus thus far are limited to the diploid number and chromosome morphology, which remain highly conserved among the species. In this study, we analyse the karyotypes of three species of the genus Rhinella (Rhinella granulosa, Rhinella margaritifera, and Rhinella marina) using both classical (conventional staining and C-banding) and molecular (FISH-fluorescence in situ hybridization with 18S rDNA, telomeric sequences, and microsatellite probes) cytogenetic approaches. The aim of this study is to provide data that can reveal variations in the distribution of repetitive sequences that can contribute to understanding karyotypic diversification in these species. The results revealed a conserved karyotype across the species, with 2n = 22 and FN = 44, with metacentric and submetacentric chromosomes. C-banding revealed heterochromatic blocks in the pericentromeric region for all species, with a proximal block on the long arms of pairs 3 and 6 in R. marina and on the short arms of pairs 4 and 6 in R. margaritifera. Additionally, 18S rDNA probes hybridized to pair 5 in R. granulosa, to pair 7 in R. marina, and to pair 10 in R. margaritifera. Telomeric sequence probes displayed signals exclusively in the distal region of the chromosomes, while microsatellite DNA probes showed species-specific patterns. These findings indicate that despite a conserved karyotypical macrostructure, chromosomal differences exist among the species due to the accumulation of repetitive sequences. This variation may be attributed to chromosome rearrangements or differential accumulation of these sequences, highlighting the dynamic role of repetitive sequences in the chromosomal evolution of Rhinella species. Ultimately, this study emphasizes the importance of the role of repetitive DNAs in chromosomal rearrangements to elucidate the evolutionary mechanisms leading to independent diversification in the distinct phylogenetic groups of Rhinella.
Collapse
Affiliation(s)
- David Santos da Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Marcelo Vallinoto
- Laboratório de Evolução, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Marlon Ramires da Costa Lima
- Laboratório de Biologia Molecular, Evolução e Microbiologia, Instituto Federal do Pará, Abaetetuba, Pará, Brazil
| | - Renato Araújo da Costa
- Laboratório de Biologia Molecular, Evolução e Microbiologia, Instituto Federal do Pará, Abaetetuba, Pará, Brazil
| | - Ivanete de Oliveira Furo
- Laboratório de Reprodução Animal, Universidade Federal Rural da Amazônia, Parauapebas, Pará, Brazil
| | - Anderson José Baia Gomes
- Laboratório de Biologia Molecular, Evolução e Microbiologia, Instituto Federal do Pará, Abaetetuba, Pará, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Faculdade de Ciências Naturais, Instituto de Ciências Exatas Naturais e Exatas, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| |
Collapse
|
3
|
Azambuja M, Nogaroto V, Moreira-Filho O, Vicari MR. U2 and U4 snDNA Comparative Chromosomal Mapping in the Neotropical Fish Genera Apareiodon and Parodon (Characiformes: Parodontidae). Zebrafish 2023; 20:221-228. [PMID: 37797225 DOI: 10.1089/zeb.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Small nuclear DNA (snDNA) are valuable cytogenetic markers for comparative studies in chromosome evolution because different distribution patterns were found among species. Parodontidae, a Neotropical fish family, is known to have female heterogametic sex chromosome systems in some species. The U2 and U4 snDNA sites have been found to be involved in Z and W chromosome differentiation in Apareiodon sp., Apareiodon affinis, and Parodon hilarii. However, few studies have evaluated snDNA sites as propulsors of chromosome diversification among closely related fish species. In this study, we investigated the distribution of U2 and U4 snDNA clusters in the chromosomes of 10 populations/species belonging to Apareiodon and Parodon, aiming to identify chromosomal homeologies or diversification. In situ localization data revealed a submetacentric pair carrying the U2 snDNA site among the populations/species analyzed. Furthermore, all studied species demonstrated homeology in the location of U4 snDNA cluster in the proximal region of metacentric pair 1, besides an additional signal showing up with a divergence in Apareiodon. Comparative chromosomal mapping of U4 snDNA also helped to reinforce the proposal of the ZZ/ZW1W2 sex chromosome system origin in an A. affinis population. According to cytogenetic data, the study corroborates the diversification in Parodontidae paired species with uncertain taxonomy.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
4
|
Santos da Silva K, Glugoski L, Vicari MR, de Souza ACP, Akama A, Pieczarka JC, Nagamachi CY. Mechanisms of Karyotypic Diversification in Ancistrus (Siluriformes, Loricariidae): Inferences from Repetitive Sequence Analysis. Int J Mol Sci 2023; 24:14159. [PMID: 37762461 PMCID: PMC10532334 DOI: 10.3390/ijms241814159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Ancistrus is a highly diverse neotropical fish genus that exhibits extensive chromosomal variability, encompassing karyotypic morphology, diploid chromosome number (2n = 34-54), and the evolution of various types of sex chromosome systems. Robertsonian rearrangements related to unstable chromosomal sites are here described. Here, the karyotypes of two Ancistrus species were comparatively analyzed using classical cytogenetic techniques, in addition to isolation, cloning, sequencing, molecular characterization, and fluorescence in situ hybridization of repetitive sequences (i.e., 18S and 5S rDNA; U1, U2, and U5 snDNA; and telomere sequences). The species analyzed here have different karyotypes: Ancistrus sp. 1 (2n = 38, XX/XY) and Ancistrus cirrhosus (2n = 34, no heteromorphic sex chromosomes). Comparative mapping showed different organizations for the analyzed repetitive sequences: 18S and U1 sequences occurred in a single site in all populations of the analyzed species, while 5S and U2 sequences could occur in single or multiple sites. A sequencing analysis confirmed the identities of the U1, U2, and U5 snDNA sequences. Additionally, a syntenic condition for U2-U5 snDNA was found in Ancistrus. In a comparative analysis, the sequences of rDNA and U snDNA showed inter- and intraspecific chromosomal diversification. The occurrence of Robertsonian rearrangements and other dispersal mechanisms of repetitive sequences are discussed.
Collapse
Affiliation(s)
- Kevin Santos da Silva
- Cytogenetics Laboratory, Center for Advanced Biodiversity Studies Science Institute Biological, Federal University of Pará, Belém 66075-110, Brazil; (K.S.d.S.); (J.C.P.)
| | - Larissa Glugoski
- Fish Cytogenetics Laboratory, Federal University of São Carlos, São Carlos 13565-905, Brazil;
- Laboratory of Chromosome Biology: Structure and Function Department of Structural Biology, Molecular and Genetic, University of Ponta Grossa State, Ponta Grossa 84010-330, Brazil;
| | - Marcelo Ricardo Vicari
- Laboratory of Chromosome Biology: Structure and Function Department of Structural Biology, Molecular and Genetic, University of Ponta Grossa State, Ponta Grossa 84010-330, Brazil;
| | | | - Alberto Akama
- Department of Zoology, Paraense Emilio Goeldi Museum, Belém 66040-170, Brazil;
| | - Julio Cesar Pieczarka
- Cytogenetics Laboratory, Center for Advanced Biodiversity Studies Science Institute Biological, Federal University of Pará, Belém 66075-110, Brazil; (K.S.d.S.); (J.C.P.)
| | - Cleusa Yoshiko Nagamachi
- Cytogenetics Laboratory, Center for Advanced Biodiversity Studies Science Institute Biological, Federal University of Pará, Belém 66075-110, Brazil; (K.S.d.S.); (J.C.P.)
| |
Collapse
|
5
|
Dos Santos CEV, Almeida BRRD, Tavares FDS, Frade LFDS, Cardoso AL, de Sá ALA, Nagamachi CY, de Sousa LM, Pieczarka JC, Noronha RCR. Chromosomal Mapping of the Histone Multigene Family and U2 snRNA in Hypancistrus Species (Siluriformes, Loricariidae) from the Brazilian Amazon. Zebrafish 2023; 20:28-36. [PMID: 36795616 DOI: 10.1089/zeb.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Loricariidae (Siluriformes) comprises ∼1026 species of neotropical fish, being considered the most diverse among the Siluriformes. Studies on repetitive DNA sequences have provided important data on the evolution of the genomes of members of this family, especially of the Hypostominae subfamily. In this study, the chromosomal mapping of the histone multigene family and U2 snRNA was performed in two species belonging to the Hypancistrus genus, Hypancistrus sp. "pão" (2n = 52, 22m + 18sm +12st) and Hypancistrus zebra (2n = 52, 16m + 20sm +16st). The presence of dispersed signals of histones H2A, H2B, H3, and H4 in the karyotype of both species, with each sequence displaying a varied level of accumulation and dispersion of these sequences between them was observed; in addition, U2 snDNA probe only showed positive results in H. zebra, which present this multigene in the terminal region of three chromosomal pairs. The obtained results resemble data already analyzed in the literature, in which the action of transposable elements interfere in the organization of these multigene families, in addition to other evolutionary processes that shape the evolution of the genome, such as circular or ectopic recombination. This study also shows that the dispersion of the multigene histone family is quite complex, and from this, these data serve as a point of discussion for the evolutionary processes that occur in the Hypancistrus karyotype.
Collapse
Affiliation(s)
| | | | - Flávia Dos Santos Tavares
- Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luan Felipe da Silva Frade
- Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Adauto Lima Cardoso
- Laboratório Genômica Integrativa, Departamento de Biologia Funcional e Estrutural, Instituto de Biociências, Universidade Estadual Paulista, Campus Botucatu, São Paulo, Brazil
| | - André Luiz Alves de Sá
- Laboratório de Genética Aplicada, Instituto Socioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Campus Belém, Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Genética Aplicada, Instituto Socioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Campus Belém, Belém, Brazil.,Pesquisador CNPq, Brazil
| | - Leandro Melo de Sousa
- Faculdade de Ciências Biológicas, Universidade Federal do Pará, Campus de Altamira, Altamira, Brazil.,Pesquisador CNPq, Brazil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Genética Aplicada, Instituto Socioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Campus Belém, Belém, Brazil.,Pesquisador CNPq, Brazil
| | - Renata Coelho Rodrigues Noronha
- Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Genética Aplicada, Instituto Socioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Campus Belém, Belém, Brazil.,Pesquisador CNPq, Brazil
| |
Collapse
|
6
|
Corrêa de Sousa RP, Dos Santos JLA, Silva-Oliveira GC, Furo IDO, de Oliveira EHC, Vallinoto M. Characterization of a new cytotype and ocurrence of a B microchromosome in two spot astyanax, Astyanax bimaculatus Linnaeus, 1758 (Characiformes: Characidae). JOURNAL OF FISH BIOLOGY 2023; 102:520-524. [PMID: 36321966 DOI: 10.1111/jfb.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Although Astyanax bimaculatus is the most representative species of the genus in the Amazon region, there are no cytogenetic studies of A. bimaculatus species in Amazon region. Thus, we aimed to analyse the chromosome complements of specimens from this area using classic and molecular cytogenetic approaches. The results revealed the existence of a distinct cytotype and this is the first report of the occurrence of a B microchromosome in the species. Overall, these data indicate that the karyotypic evolution of this species is complex, involving the occurrence of chromosomal rearrangements.
Collapse
Affiliation(s)
| | | | | | | | - Edivaldo Herculano Corrêa de Oliveira
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Culturas de Células e Citogenética, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Marcelo Vallinoto
- Laboratório de Evolução, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Brazil
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório associado, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
7
|
Sribenja K, Tanomtong A, Saleetid K, Getlekha N. Chromosomal delineation of repetitive DNAs in the Orange-lined triggerfish, Balistapus undulatus (Tetraodontiformes: Balistidae). THE NUCLEUS 2023. [DOI: 10.1007/s13237-022-00411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
8
|
Santos da Silva K, de Souza ACP, Rodrigues LRR, Pieczarka JC, Nagamachi CY. Chromosomal Diversification in Pseudacanthicus Species (Loricariidae, Hypostominae) Revealed by Comparative Mapping of Repetitive Sequences. Animals (Basel) 2022; 12:ani12192612. [PMID: 36230353 PMCID: PMC9558496 DOI: 10.3390/ani12192612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The fishes of the Loricariidae family have a huge genetic diversity, mainly involving variations in the number and shape of chromosomes. The recognition of the species genus Pseudacanthicus is complex due to the large diversity of forms and limited knowledge of their genetic diversity. In this study, the karyotypes of three Pseudacanthicus species were comparatively analyzed using classical and molecular methods. They presented the same diploid number, but with different compositions of repetitive DNA sequences. Such information can be useful for the recognition of distinct species, in addition to providing important insights into the real biodiversity of this important group of Neotropical fish. Abstract Pseudacanthicus is a genus of Neotropical fish with eight valid species, in addition to numerous lineages not formally identified. It occurs along the Amazon and Tocantins River basins, in Suriname and in the Guiana shield. There are no karyotypic data in the literature for species of this genus. Here, the karyotypes of three Pseudacanthicus species (P. spinosus, P. leopardus and Pseudacanthicus sp.) were comparatively analyzed by classical cytogenetics and fluorescence in situ hybridization using 18S and 5S rDNA probes, U2 snDNA and telomeric sequences. The analyzed species presented 52 chromosomes and KF = 18 m + 34 sm. Constitutive heterochromatin occurred in blocks on a few chromosomes. The 18S rDNA occurred in a single pair; interestingly, P. leopardus presented only one locus of this sequence in its diploid genome. The 5S rDNA sequence occurred in only one pair in P. leopardus, and in multiple sites in Pseudacanthicus sp. and P. spinosus. The snDNA U2 occurred in only one pair in all analyzed species. Telomeric sequences did not show interstitial sites. Although Pseudacanthicus species share the same 2n and KF, repetitive sequence analysis revealed karyotypic diversity among these species. The occurrence of DNA double-strand breaks related to fragile sites, unequal crossing over and transpositions is proposed as the mechanism of karyotypic diversification, suggesting that the conservation of the karyotypic macrostructure is only apparent in this group of fish.
Collapse
Affiliation(s)
- Kevin Santos da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil
| | - Augusto César Paes de Souza
- Laboratório de Estudo da Ictiofauna Amazônica, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Abaetetuba 684400-000, Brazil
| | - Luís Reginaldo Ribeiro Rodrigues
- Laboratório de Genética & Biodiversidade, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém 68040-255, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil
- Correspondence:
| |
Collapse
|
9
|
Schott SCQ, Glugoski L, Azambuja M, Moreira-Filho O, Vicari MR, Nogaroto V. Comparative Cytogenetic and Sequence Analysis of U Small Nuclear RNA Genes in Three Ancistrus Species (Siluriformes: Loricariidae). Zebrafish 2022; 19:200-209. [PMID: 36099209 DOI: 10.1089/zeb.2022.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ancistrus presents a wide karyotypic diversity, resulting from numeric and structural chromosomal rearrangements. It has been proposed that some genome-specific regions containing repetitive units could organize prone-to-break DNA sites in Loricariidae, triggering chromosomal rearrangements such as Robertsonian fusions (Rb fusions), centric fissions, translocations, and inversions. The tandemly repeats of the small nuclear RNAs (snRNAs) gene families are considered good cytogenetic markers for understanding chromosomal remodeling events among closely related species, but these snRNAs have been scarcely analyzed in Ancistrus. This study presented the nucleotide sequencing and comparative in situ location of U snRNA sequences from Ancistrus aguaboensis, Ancistrus cf. multispinis, and Ancistrus sp. (2n = 50, 52, and 50, respectively), aiming to provide information about snRNA clusters in the genome and chromosome evolution in Ancistrus. U snRNA nucleotide sequences of Ancistrus presented identity to orthologous copies and folded their secondary structures correctly. In situ localization and karyotyping of the three Ancistrus species revealed clustered copies of U2 and U5 snRNA gene families to a single chromosome site, one chromosome pair bearing U1 snRNA sequence, and one main locus of U4 snRNA sequence, besides scattered signals along the chromosomes. Previous studies related the participation of the rRNA gene families in centric fusion events, contributing to chromosome rearrangements and karyotype plasticity present in Loricariidae. In this study, homeologies in U snRNA loci chromosomal locations were detected, indicating the occurrence of conserved sites of these gene families in these three Ancistrus species with 2n = 50 or 52 chromosomes.
Collapse
Affiliation(s)
| | - Larissa Glugoski
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Matheus Azambuja
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
10
|
Azambuja M, Orane Schemberger M, Nogaroto V, Moreira-Filho O, Martins C, Ricardo Vicari M. Major and minor U small nuclear RNAs genes characterization in a neotropical fish genome: Chromosomal remodeling and repeat units dispersion in Parodontidae. Gene 2022; 826:146459. [PMID: 35358649 DOI: 10.1016/j.gene.2022.146459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
In association with many proteins, small nuclear RNAs (snRNAs) organize the spliceosomes that play a significant role in processing precursor mRNAs during gene expression. According to snRNAs genic arrangements, two kinds of spliceosomes (major and minor) can be organized into eukaryotic cells. Although in situ localization of U1 and U2 snDNAs have been performed in fish karyotypes, studies with genomic characterization and functionality of U snRNAs integrated into chromosomal changes on Teleostei are still scarce. This study aimed to achieve a genomic characterization of the U snRNAs genes in Apareiodon sp. (2n = 54, ZZ/ZW), apply these data to recognize functional/defective copies, and map chromosomal changes involving snDNAs in Parodontidae species karyotype diversification. Nine snRNA multigene families (U1, U2, U4, U5, U6, U11, U12, U4atac and U6atac) arranged in putatively functional copies in the genome were analyzed. Proximal Sequence Elements (PSE) and TATA-box promoters occurrence, besides an entire transcribed region and conserved secondary structures, qualify them for spliceosome activity. In addition, several defective copies or pseudogenes were identified for the snRNAs that make up the major spliceosome. In situ localization of snDNAs in five species of Parodontidae demonstrated that U1, U2, and U4 snDNAs were involved in chromosomal location changes or units dispersion. The U snRNAs defective/pseudogenes units dispersion could be favored by the probable occurrence of active retrotransposition enzymes in the Apareiodon genome. The U2 and U4 snDNAs sites were involved in independent events in the differentiation of sex chromosomes among Parodontidae lineages. The study characterized U snRNA genes that compose major and minor spliceosomes in the Apareiodon sp. genome and proposes that their defective copies trigger chromosome differentiation and diversification events in Parodontidae.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil.
| | - Michelle Orane Schemberger
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil.
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, 18618-689 Botucatu, São Paulo, Brazil.
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil; Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
11
|
Contributions to Trachelyopterus (Siluriformes: Auchenipteridae) species diagnosis by cytotaxonomic autapomorphies: from U2 snRNA chromosome polymorphism to rDNA and histone gene synteny. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Classical and molecular cytogenetics of Markiana nigripinnis (Pisces - Characiformes) from brazilian Pantanal: a comparative analysis with cytotaxonomic contributions. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Santos da Silva K, de Souza ACP, Pety AM, Noronha RCR, Vicari MR, Pieczarka JC, Nagamachi CY. Comparative Cytogenetics Analysis Among Peckoltia Species (Siluriformes, Loricariidae): Insights on Karyotype Evolution and Biogeography in the Amazon Region. Front Genet 2021; 12:779464. [PMID: 34777486 PMCID: PMC8581261 DOI: 10.3389/fgene.2021.779464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Peckoltia is widely distributed genus in the Amazon and Orinoco basins and the Guiana Shield, containing 18 valid species, and distinct morphotypes still needing description in the scientific literature due to its great taxonomic complexity. This study performed a comparative chromosomal analysis of two undescribed Peckoltia species (Peckoltia sp. 3 Jarumã and Peckoltia sp. 4 Caripetuba) from the Brazilian Amazon using conventional chromosome bands methods and in situ localization of the repetitive DNA (5S and 18S rRNA and U1 snRNA genes and telomeric sequences). Both species presented 2n = 52 but differed in their karyotype formula, probably due to inversions or translocations. The nucleolus organizer regions (NORs) showed distal location on a probably homeologous submetacentric pair in both species, besides an extra signal in a subtelocentric chromosome in Peckoltia sp. 4 Caripetuba. Heterochromatin occurred in large blocks, with different distributions in the species. The mapping of the 18S and 5S rDNA, and U1 snDNA showed differences in locations and number of sites. No interstitial telomeric sites were detected using the (TTAGGG)n probes. Despite 2n conservationism in Peckoltia species, the results showed variation in karyotype formulas, chromosomal bands, and locations of repetitive sites, demonstrating great chromosomal diversity. A proposal for Peckoltia karyotype evolution was inferred in this study based on the diversity of location and number of chromosomal markers analyzed. A comparative analysis with other Peckoltia karyotypes described in the literature, their biogeography patterns, and molecular phylogeny led to the hypothesis that the derived karyotype was raised in the left bank of the Amazon River.
Collapse
Affiliation(s)
- Kevin Santos da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| | - Augusto Cesar Paes de Souza
- Laboratório de Estudos da Ictiofauna da Amazônia, Instituto Federal de Educação Ciência e Tecnologia Do Pará, Abaetetuba, Brazil
| | - Ananda Marques Pety
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| | - Marcelo Ricardo Vicari
- Laboratório de Biologia Cromossômica, Estrutura e Função, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| |
Collapse
|
14
|
Yano CF, Sember A, Kretschmer R, Bertollo LAC, Ezaz T, Hatanaka T, Liehr T, Ráb P, Al-Rikabi A, Viana PF, Feldberg E, de Oliveira EA, Toma GA, de Bello Cioffi M. Against the mainstream: exceptional evolutionary stability of ZW sex chromosomes across the fish families Triportheidae and Gasteropelecidae (Teleostei: Characiformes). Chromosome Res 2021; 29:391-416. [PMID: 34694531 DOI: 10.1007/s10577-021-09674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Libechov, 277 21, Czech Republic.
| | - Rafael Kretschmer
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Libechov, 277 21, Czech Republic
| | - Ahmed Al-Rikabi
- Jena University Hospital, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Patrik Ferreira Viana
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petropolis, Manaus, AM, Brazil
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petropolis, Manaus, AM, Brazil
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| |
Collapse
|
15
|
Soares LB, Paim FG, Ramos LP, Foresti F, Oliveira C. Molecular cytogenetic analysis and the establishment of a cell culture in the fish species Hollandichthys multifasciatus (Eigenmann & Norris, 1900) (Characiformes, Characidae). Genet Mol Biol 2021; 44:e20200260. [PMID: 33877256 PMCID: PMC8056886 DOI: 10.1590/1678-4685-gmb-2020-0260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/07/2021] [Indexed: 11/22/2022] Open
Abstract
Hollandichthys is a fish genus of the family Characidae that
was until recently considered to be monotypic, with cytogenetic, morphological,
and molecular data being restricted to a few local populations. In the present
study, the karyotype of a population of Hollandichthys
multifasciatus was analyzed using classical and molecular
cytogenetic approaches for the investigation of potential markers that could
provide new perspectives on the cytotaxonomy. H. multifasciatus
presented a diploid number of 2n=50 chromosomes and a karyotype formula of
8m+10sm+32st. A single pair of chromosomes presented Ag-NORs signals, which
coincided with the 18S rDNA sites visualized by FISH, whilst the 5S rDNA
sequences were mapped in two chromosome pairs. The distribution of the U snRNA
genes was mapped on the Hollandichthys chromosomes for the
first time, with the probes revealing the presence of the U1 snDNA on the
chromosomes of pair 20, U2 on pairs 6 and 19, U4 on pair 16, and U6 on the
chromosomes of pair 11. The results of the present study indicated karyotypic
differences in comparison with the other populations of H.
multifasciatus studied previously, reinforcing the need for further
research to identify isolated populations or the potential existence of cryptic
Hollandichthys species.
Collapse
Affiliation(s)
- Letícia Batista Soares
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Fabilene Gomes Paim
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Lucas Peres Ramos
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| |
Collapse
|
16
|
de Sousa RPC, Silva-Oliveira GC, Furo IO, de Oliveira-Filho AB, de Brito CDB, Rabelo L, Guimarães-Costa A, de Oliveira EHC, Vallinoto M. The role of the chromosomal rearrangements in the evolution and speciation of Elopiformes fishes (Teleostei; Elopomorpha). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Dulz TA, Azambuja M, Nascimento VD, Lorscheider CA, Noleto RB, Moreira-Filho O, Nogaroto V, Diniz D, Affonso PRADM, Vicari MR. Karyotypic Diversification in Two Megaleporinus Species (Characiformes, Anostomidae) Inferred from In Situ Localization of Repetitive DNA Sequences. Zebrafish 2020; 17:333-341. [PMID: 32990531 DOI: 10.1089/zeb.2020.1918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anostomidae species have conserved diploid numbers (2n = 54), although comparative cytogenetic studies have demonstrated chromosomal rearrangements occurrence among them, especially in repetitive DNA rich regions. The location and distribution of ribosomal DNA (rDNA) and small nuclear RNAs (snRNAs) multigene families are highly dynamic in the genomes of several organisms. In this study, we in situ located the rDNA and snRNA sites in two populations of Megaleporinus obtusidens and a sample of Megaleporinus reinhardti to infer their chromosomal changes in the evolutionary lineages. Both species of Megaleporinus shared 2n = 54 chromosomes with the presence of ZZ/ZW sex chromosome system, but they diverged in relationship to the location of 5S and 45S rDNAs as well as the distribution of snRNAs sites. The characterization of the analyzed sequences revealed the presence of complete rDNA and snRNAs sequences as well as snRNAs containing transposable elements (TEs) and microsatellite repeats. After chromosomal mapping, the sequences encompassing TEs proved to be dispersed through autosomes and accumulated on sex chromosomes. The data demonstrate that intra- and interspecific chromosomal changes occurred involving the multigene family's sites in Megaleporinus karyotypes. Furthermore, we detected TE-like sequences in the differentiation of sex chromosome systems in M. obtusidens and M. reinhardti.
Collapse
Affiliation(s)
- Thais Aparecida Dulz
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual do Paraná, União da Vitória, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Rafael Bueno Noleto
- Departamento de Ciências Biológicas, Universidade Estadual do Paraná, União da Vitória, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Débora Diniz
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil
| | | | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil.,Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
18
|
Malimpensa GDC, Traldi JB, Martinez JDF, Deon G, Azambuja M, Nogaroto V, Vicari MR, Moreira-Filho O. Chromosomal Diversification in Two Species of Pimelodus (Siluriformes: Pimelodidae): Comparative Cytogenetic Mapping of Multigene Families. Zebrafish 2020; 17:278-286. [DOI: 10.1089/zeb.2020.1892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
| | | | | | - Geize Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
19
|
Sember A, Pelikánová Š, de Bello Cioffi M, Šlechtová V, Hatanaka T, Do Doan H, Knytl M, Ráb P. Taxonomic Diversity Not Associated with Gross Karyotype Differentiation: The Case of Bighead Carps, Genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae). Genes (Basel) 2020; 11:E479. [PMID: 32354012 PMCID: PMC7291238 DOI: 10.3390/genes11050479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
The bighead carps of the genus Hypophthalmichthys (H. molitrix and H. nobilis) are important aquaculture species. They were subjected to extensive multidisciplinary research, but with cytogenetics confined to conventional protocols only. Here, we employed Giemsa-/C-/CMA3- stainings and chromosomal mapping of multigene families and telomeric repeats. Both species shared (i) a diploid chromosome number 2n = 48 and the karyotype structure, (ii) low amount of constitutive heterochromatin, (iii) the absence of interstitial telomeric sites (ITSs), (iv) a single pair of 5S rDNA loci adjacent to one major rDNA cluster, and (v) a single pair of co-localized U1/U2 snDNA tandem repeats. Both species, on the other hand, differed in (i) the presence/absence of remarkable interstitial block of constitutive heterochromatin on the largest acrocentric pair 11 and (ii) the number of major (CMA3-positive) rDNA sites. Additionally, we applied here, for the first time, the conventional cytogenetics in H. harmandi, a species considered extinct in the wild and/or extensively cross-hybridized with H. molitrix. Its 2n and karyotype description match those found in the previous two species, while silver staining showed differences in distribution of major rDNA. The bighead carps thus represent another case of taxonomic diversity not associated with gross karyotype differentiation, where 2n and karyotype structure cannot help in distinguishing between genomes of closely related species. On the other hand, we demonstrated that two cytogenetic characters (distribution of constitutive heterochromatin and major rDNA) may be useful for diagnosis of pure species. The universality of these markers must be further verified by analyzing other pure populations of bighead carps.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277-21 Liběchov, Czech Republic
| | - Šárka Pelikánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277-21 Liběchov, Czech Republic
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, São Carlos 13565-905, Brazil
| | - Vendula Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277-21 Liběchov, Czech Republic
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, São Carlos 13565-905, Brazil
| | - Hiep Do Doan
- Research Institute of Aquaculture No. 1, Dinh Bang, Tu Son, Bac Ninh 16000, Vietnam
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 2-128-43 Prague, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277-21 Liběchov, Czech Republic
| |
Collapse
|
20
|
Piscor D, Paiz LM, Baumgärtner L, Cerqueira FJ, Fernandes CA, Lui RL, Parise-Maltempi PP, Margarido VP. Chromosomal mapping of repetitive sequences in Hyphessobrycon eques (Characiformes, Characidae): a special case of the spreading of 5S rDNA clusters in a genome. Genetica 2020; 148:25-32. [PMID: 31997050 DOI: 10.1007/s10709-020-00086-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 01/23/2023]
Abstract
Cytogenetic data showed a variation in diploid chromosome number in the genus Hyphessobrycon ranging from 2n = 46 to 52, and studies involving repetitive DNA sequences are scarce in representatives of this genus. The purpose of this paper was the chromosomal mapping of repetitive sequences (rDNA, histone genes, U snDNA and microsatellites) and investigation of the amplification of 5S rDNA clusters in the Hyphessobrycon eques genome. Two H. eques populations displayed 2n = 52 chromosomes, with the acrocentric pair No. 24 bearing Ag-NORs corresponding with CMA3+/DAPI-. FISH with a 18S rDNA probe identified the NORs on the short (p) arms of the acrocentric pairs Nos. 22 and 24. The 5S rDNA probe visualized signals on almost all chromosomes in genomes of individuals from both populations (40 signals); FISH with H3 histone probe identified two chromosome pairs, with the pericentromeric location of signals; FISH with a U2 snDNA probe identified one chromosome pair bearing signals, on the interstitial chromosomal region. The mononucleotide (A), dinucleotide (CA) and tetranucleotide (GATA) repeats were observed on the centromeric/pericentromeric and/or terminal positions of all chromosomes, while the trinucleotide (CAG) repeat showed signals on few chromosomes. Molecular analysis of 5S rDNA and non-transcribed spacers (NTS) showed microsatellites (GATA and A repeats) and a fragment of retrotransposon (SINE3/5S-Sauria) inside the sequences. This study expanded the available cytogenetic data for H. eques and demonstrated to the dispersion of the 5S rDNA sequences on almost all chromosomes.
Collapse
Affiliation(s)
- Diovani Piscor
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil. .,Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, MS, ZIP: 79980-000, Brazil.
| | - Leonardo Marcel Paiz
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Lucas Baumgärtner
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Fiorindo José Cerqueira
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Carlos Alexandre Fernandes
- Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, MS, ZIP: 79980-000, Brazil
| | - Roberto Laridondo Lui
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Av. 24A, 1515, Rio Claro, SP, ZIP: 13506-900, Brazil
| | - Vladimir Pavan Margarido
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| |
Collapse
|
21
|
Oliveira EAD, Sassi FDMC, Perez MF, Bertollo LAC, Ráb P, Ezaz T, Hatanaka T, Viana PF, Feldberg E, Oliveira EHCD, Cioffi MDB. Comparative cytogenetic survey of the giant bonytongue Arapaima fish (Osteoglossiformes: Arapaimidae), across different Amazonian and Tocantins/Araguaia River basins. NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-2020-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The South American giant fishes of the genus Arapaima, commonly known as pirarucu, are one of the most iconic among Osteoglossiformes. Previously cytogenetic studies have identified their karyotype characteristics; however, characterization of cytotaxonomic differentiation across their distribution range remains unknown. In this study, we compared chromosomal characteristics using conventional and molecular cytogenetic protocols in pirarucu populations from the Amazon and Tocantins-Araguaia river basins to verify if there is differentiation among representatives of this genus. Our data revealed that individuals from all populations present the same diploid chromosome number 2n=56 and karyotype composed of 14 pairs of meta- to submetacentric and 14 pairs of subtelo- to acrocentric chromosomes. The minor and major rDNA sites are in separate chromosomal pairs, in which major rDNA sites corresponds to large heterochromatic blocks. Comparative genomic hybridizations (CGH) showed that the genome of these populations shared a great portion of repetitive elements, due to a lack of substantial specific signals. Our comparative cytogenetic data analysis of pirarucu suggested that, although significant genetic differences occur among populations, their general karyotype patterns remain conserved.
Collapse
Affiliation(s)
- Ezequiel A. de Oliveira
- Universidade Federal de São Carlos, Brazil; Secretaria de Estado de Educação de Mato Grosso, Brazil
| | | | | | | | - Petr Ráb
- Czech Academy of Sciences, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
22
|
Toma GA, de Moraes RLR, Sassi FDMC, Bertollo LAC, de Oliveira EA, Rab P, Sember A, Liehr T, Hatanaka T, Viana PF, Marinho MMF, Feldberg E, Cioffi MDB. Cytogenetics of the small-sized fish, Copeina guttata (Characiformes, Lebiasinidae): Novel insights into the karyotype differentiation of the family. PLoS One 2019; 14:e0226746. [PMID: 31856256 PMCID: PMC6922430 DOI: 10.1371/journal.pone.0226746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022] Open
Abstract
Lebiasinidae is a small fish family composed by miniature to small-sized fishes with few cytogenetic data (most of them limited to descriptions of diploid chromosome numbers), thus preventing any evolutionary comparative studies at the chromosomal level. In the present study, we are providing, the first cytogenetic data for the red spotted tetra, Copeina guttata, including the standard karyotype, C-banding, repetitive DNA mapping by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH), providing chromosomal patterns and novel insights into the karyotype differentiation of the family. Males and females share diploid chromosome number 2n = 42 and karyotype composed of 2 metacentric (m), 4 submetacentric (sm) and 36 subtelocentric to acrocentric (st-a) chromosomes. Blocks of constitutive heterochromatin were observed in the centromeric and interstitial regions of several chromosomes, in addition to a remarkably large distal block, heteromorphic in size, which fully corresponded with the 18S rDNA sites in the fourth chromosomal pair. This overlap was confirmed by 5S/18S rDNA dual-color FISH. On the other hand, 5S rDNA clusters were situated in the long and short arms of the 2nd and 15th pairs, respectively. No sex-linked karyotype differences were revealed by male/female CGH experiments. The genomic probes from other two lebiasinid species, Lebiasina melanoguttata and Pyrrhulina brevis, showed positive hybridization signals only in the NOR region in the genome of C. guttata. We demonstrated that karyotype diversification in lebiasinids was accompanied by a series of structural and numeric chromosome rearrangements of different types, including particularly fusions and fissions.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Renata Luiza Rosa de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Ezequiel Aguiar de Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Secretaria de Estado de Educação de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
23
|
Sousa RPCD, Furo IDO, O'Brien PCM, Oliveira-Filho AB, Vallinoto M, de Oliveira EH, Silva-Oliveira GC. Genomic Organization of the Repetitive Sequences in Centropomus undecimalis (Perciformes, Centropomidae): Implications for Hybridization and Aquaculture Programs. Zebrafish 2019; 16:415-420. [PMID: 31188085 DOI: 10.1089/zeb.2018.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The family Centropomidae includes a number of fish species of high commercial value. One of these species, Centropomus undecimalis, is a target of artisanal, industrial, and sports fisheries and has also considerable potential for captive breeding, which has led to its inclusion in several aquaculture programs. While the biology and ecology of C. undecimalis are relatively well documented, few karyological data are available on this species, and they are still scarce for other centropomids. The few chromosomal data available on this family indicate a conserved karyotype 2n = 48, but it is unclear whether the chromosome microstructure is also conserved. In this study, new cytogenetic data are presented on C. undecimalis from the Amazon coastal zone, including C-banding, Ag-NOR, in situ hybridization with repetitive DNA probes (5S and 18S ribosomal genes), and telomeric (TTAGGG)n sequences. The diploid number of the species was 2n = 48, with heterochromatic blocks in the centromeric and pericentromeric regions, as well as distal signals; the nucleolus organizer regions (NORs) were associated with the heterochromatic region. The 18S and 5S recombinant DNA (rDNA) clusters were located in the distal region of chromosome pairs 1 and 11, respectively. The similarities of the karyotype macrostructure found among the centropomid species reinforce their exceptional chromosomal stability. However, the presence of heterochromatic blocks and location of NORs suggest the occurrence of structural rearrangements, which indicates that evolutionary dynamics at the microstructural level in this group may be relatively complex and should be evaluated carefully in any study that targets the production of hybrids for aquaculture.
Collapse
Affiliation(s)
- Rodrigo P C de Sousa
- 1Faculty of Natural Sciences, Institute of Coastal Studies, Federal University of Pará. Bragança PA, Brazil
| | - Ivanete de O Furo
- 2Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará. Belém PA, Brazil.,3Tissue Culture Laboratory, Environment Section, Evandro Chagas Institute, Ananindeua PA, Brazil
| | | | - Aldemir B Oliveira-Filho
- 1Faculty of Natural Sciences, Institute of Coastal Studies, Federal University of Pará. Bragança PA, Brazil
| | - Marcelo Vallinoto
- 1Faculty of Natural Sciences, Institute of Coastal Studies, Federal University of Pará. Bragança PA, Brazil.,5Associated Laboratory, Center for Research in Biodiversity and Genetic Resources, Agrarian Campus of Vairão, University of Porto, Vairão, Portugal
| | - Edivaldo H de Oliveira
- 2Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará. Belém PA, Brazil.,3Tissue Culture Laboratory, Environment Section, Evandro Chagas Institute, Ananindeua PA, Brazil
| | - Gláucia C Silva-Oliveira
- 1Faculty of Natural Sciences, Institute of Coastal Studies, Federal University of Pará. Bragança PA, Brazil
| |
Collapse
|
24
|
Usso MC, Santos ARD, Gouveia JG, Frantine-Silva W, Araya-Jaime C, Oliveira MLMD, Foresti F, Giuliano-Caetano L, Dias AL. Genetic and Chromosomal Differentiation of Rhamdia quelen (Siluriformes, Heptapteridae) Revealed by Repetitive Molecular Markers and DNA Barcoding. Zebrafish 2018; 16:87-97. [PMID: 30227086 DOI: 10.1089/zeb.2018.1576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rhamdia quelen, a species of Heptapteridae, is considered to be a complex because of taxonomic and phylogenetic inconsistencies. Determining the physical location of repetitive DNA sequences on the chromosomes and the DNA barcode might increase our understanding of these inconsistencies within different groups of fish. To this end, we analyzed R. quelen populations from two river basins in Brazil, Paraguay and Parana, using DNA barcoding and different chromosomal markers, including U2 snDNA, which has never been analyzed for any Rhamdia species. Cytochrome c oxidase I gene sequence analysis revealed a significant differentiation among populations from the Miranda and Quexada rivers, with genetic distances compatible to those found among different species in neotropical fishes. Our results, in general, revealed a conservative chromosomal evolution in R. quelen and a differential distribution of some markers, such as 5S rDNA and U2 snDNA, in different populations. We suggest that R. quelen must undergo a major revision in its morphological, genetic, and cytogenetic molecular and taxonomic structure to elucidate possible operational taxonomic units.
Collapse
Affiliation(s)
- Mariana Campaner Usso
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Angélica Rossotti Dos Santos
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Juceli Gonzalez Gouveia
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Wilson Frantine-Silva
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Cristian Araya-Jaime
- 2 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | | | - Fausto Foresti
- 2 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Lucia Giuliano-Caetano
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Ana Lúcia Dias
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
25
|
Hatanaka T, de Oliveira EA, Ráb P, Yano CF, Bertollo LAC, Ezaz T, Jegede OOI, Liehr T, Olaleye VF, de Bello Cioffi M. First chromosomal analysis in Gymnarchus niloticus (Gymnarchidae: Osteoglossiformes): insights into the karyotype evolution of this ancient fish order. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Ezequiel A de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Secretaria de Estado de Educação de Mato Grosso – SEDUC-MT, Cuiabá, MT, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Cassia F Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Canberra, ACT, Australia
| | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - Victor F Olaleye
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
26
|
Malimpensa GC, Traldi JB, Toyama D, Henrique-Silva F, Vicari MR, Moreira-Filho O. Chromosomal Mapping of Repeat DNA in Bergiaria westermanni (Pimelodidae, Siluriformes): Localization of 45S rDNA in B Chromosomes. Cytogenet Genome Res 2018; 154:99-106. [PMID: 29635248 DOI: 10.1159/000487652] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
The occurrence of repetitive DNA in autosomes and B chromosomes of Bergiaria westermanni was examined using conventional and molecular cytogenetic techniques. This species exhibited 2n = 56 chromosomes, with intra- and interindividual variation in the number of heterochromatic B chromosomes (from 0 to 4). The 5S rDNA was localized in pairs 1 and 5, and histone probes (H1, H3, and H4) and U2 small nuclear RNA were syntenic with 5S rDNA in pair 5. Histone sequences were also located in chromosome pair 14. The (GATA)n sequence was dispersed throughout the autosomes and B chromosomes, with clusters (microsatellite accumulation) in some chromosome regions. The telomeric probe revealed no signs of chromosomal rearrangements in the genome of B. westermanni. The 45S rDNA sites were detected in the terminal region of pair 27; these sites corresponded to a GC-rich heterochromatin block. In addition, 3 of the 4 B chromosomes also contained 45S rDNA copies. Silver nitrate staining in interphase nuclei provided indirect evidence of the expression of these rRNA genes in B chromosomes, indicating the probable origin of these elements. This report shows plasticity in the chromosomal localization of repeat DNA in B. westermanni and features a discussion of genomic diversification.
Collapse
Affiliation(s)
- Geovana C Malimpensa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Sember A, Bohlen J, Šlechtová V, Altmanová M, Pelikánová Š, Ráb P. Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae). PLoS One 2018; 13:e0195054. [PMID: 29590207 PMCID: PMC5874072 DOI: 10.1371/journal.pone.0195054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Polyploidization has played an important role in the evolution of vertebrates, particularly at the base of Teleostei-an enormously successful ray-finned fish group with additional genome doublings on lower taxonomic levels. The investigation of post-polyploid genome dynamics might provide important clues about the evolution and ecology of respective species and can help to decipher the role of polyploidy per se on speciation. Few studies have attempted to investigate the dynamics of repetitive DNA sequences in the post-polyploid genome using molecular cytogenetic tools in fishes, though recent efforts demonstrated their usefulness. The demonstrably monophyletic freshwater loach family Botiidae, branching to evolutionary diploid and tetraploid lineages separated >25 Mya, offers a suited model group for comparing the long-term repetitive DNA evolution. For this, we integrated phylogenetic analyses with cytogenetical survey involving Giemsa- and Chromomycin A3 (CMA3)/DAPI stainings and fluorescence in situ hybridization with 5S/45S rDNA, U2 snDNA and telomeric probes in representative sample of 12 botiid species. The karyotypes of all diploids were composed of 2n = 50 chromosomes, while majority of tetraploids had 2n = 4x = 100, with only subtle interspecific karyotype differences. The exceptional karyotype of Botia dario (2n = 4x = 96) suggested centric fusions behind the 2n reduction. Variable patterns of FISH signals revealed cases of intraspecific polymorphisms, rDNA amplification, variable degree of correspondence with CMA3+ sites and almost no phylogenetic signal. In tetraploids, either additivity or loci gain/loss was recorded. Despite absence of classical interstitial telomeric sites, large blocks of interspersed rDNA/telomeric regions were found in diploids only. We uncovered different molecular drives of studied repetitive DNA classes within botiid genomes as well as the advanced stage of the re-diploidization process in tetraploids. Our results may contribute to link genomic approach with molecular cytogenetic analyses in addressing the origin and mechanism of this polyploidization event.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Jörg Bohlen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Vendula Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Šárka Pelikánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| |
Collapse
|
28
|
Piscor D, Fernandes CA, Parise-Maltempi PP. Conserved number of U2 snDNA sites in Piabina argentea, Piabarchus stramineus and two Bryconamericus species (Characidae, Stevardiinae). NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20170066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The chromosomal location of 5S rRNA and U2 snRNA genes of Piabina argentea, Piabarchus stramineus and two Bryconamericus species from two different Brazilian river basins were investigated, in order to contribute to the understanding of evolutionary characteristics of these repetitive DNAs in the subfamily Stevardiinae. The diploid chromosome number was 2n = 52 for Bryconamericus cf. iheringii, Bryconamericus turiuba, Piabarchus stramineus and Piabina argentea. The 5S rDNA clusters were located on one chromosome pair in P. stramineus and B. cf. iheringii, and on two pairs in B. turiuba and P. argentea. The U2 snDNA clusters were located on the one pair in all species. Two-color FISH experiments showed that the co-localization between 5S rDNA and U2 snDNA in P. stramineus can represent a marker for this species. Thus, the present study demonstrated that the number of U2 snDNA clusters observed for the four species was conserved, but particular characteristics can be found in the genome of each species.
Collapse
Affiliation(s)
- Diovani Piscor
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | | | |
Collapse
|
29
|
Carvalho PC, de Oliveira EA, Bertollo LAC, Yano CF, Oliveira C, Decru E, Jegede OI, Hatanaka T, Liehr T, Al-Rikabi ABH, Cioffi MDB. First Chromosomal Analysis in Hepsetidae (Actinopterygii, Characiformes): Insights into Relationship between African and Neotropical Fish Groups. Front Genet 2017; 8:203. [PMID: 29312435 PMCID: PMC5733008 DOI: 10.3389/fgene.2017.00203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 01/27/2023] Open
Abstract
Hepsetidae is a small fish family with only the genus Hepsetus, with six described species distributed throughout the South, Central and Western regions of Africa, showing a close relationship with the Alestidae and some Neotropical fish families. However, no cytogenetic information is available for both Hepsetidae and Alestidae species, thus preventing any evolutionary comparative studies at the chromosomal level. In the present study, we are providing new cytogenetic data for Hepsetus odoe, including the standard karyotype, C-banding, repetitive DNAs mapping, comparative genomic hybridization (CGH) and whole chromosome painting (WCP), providing chromosomal patterns and subsidies for comparative cytogenetics with other characiform families. Both males and females H. odoe have 2n = 58 chromosomes (10m + 28sm + 20st/a), with most of the C-band positive heterochromatin localized in the centromeric and subtelomeric regions. Only one pair of chromosomes bears proximal 5S rDNA sites in the short arms, contrasting with the 18S rDNA sequences which are located in the terminal regions of four chromosome pairs. Clear interstitial hybridization signals are evidenced for the U1 and U2 snDNA probes, but in only one and two chromosome pairs, respectively. Microsatellite motifs are widely distributed in the karyotype, with exception for the (CGG)10, (GAA)10 and (GAG)10 probes, which highlight conspicuous interstitial signals on an unique pair of chromosomes. Comparative data from conventional and molecular cytogenetics, including CGH and WCP experiments, indicate that H. odoe and some Erythrinidae species, particularly Erythrinus erythrinus, share similar chromosomal sequences suggesting some relatedness among them, although bearing genomic specificities in view of their divergent evolutionary histories.
Collapse
Affiliation(s)
- Pedro C Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Ezequiel A de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.,Secretaria de Estado de Educação de Mato Grosso (Seduc-MT), Cuiabá, Brazil
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Cassia F Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Eva Decru
- Section Vertebrates, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Oladele I Jegede
- Department of Fisheries and Aquaculture, Adamawa State University, Mubi, Nigeria
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | | | - Marcelo de B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
30
|
Liehr T, Buleu O, Karamysheva T, Bugrov A, Rubtsov N. New Insights into Phasmatodea Chromosomes. Genes (Basel) 2017; 8:genes8110327. [PMID: 29149047 PMCID: PMC5704240 DOI: 10.3390/genes8110327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Currently, approximately 3000 species of stick insects are known; however, chromosome numbers, which range between 21 and 88, are known for only a few of these insects. Also, centromere banding staining (C-banding) patterns were described for fewer than 10 species, and fluorescence in situ hybridization (FISH) was applied exclusively in two Leptynia species. Interestingly, 10–25% of stick insects (Phasmatodea) are obligatory or facultative parthenogenetic. As clonal and/or bisexual reproduction can affect chromosomal evolution, stick insect karyotypes need to be studied more intensely. Chromosome preparation from embryos of five Phasmatodea species (Medauroidea extradentata, Sungaya inexpectata, Sipyloidea sipylus, Phaenopharos khaoyaiensis, and Peruphasma schultei) from four families were studied here by C-banding and FISH applying ribosomal deoxyribonucleic acid (rDNA) and telomeric repeat probes. For three species, data on chromosome numbers and structure were obtained here for the first time, i.e., S. inexpectata, P. khaoyaiensis, and P. schultei. Large C-positive regions enriched with rDNA were identified in all five studied, distantly related species. Some of these C-positive blocks were enriched for telomeric repeats, as well. Chromosomal evolution of stick insects is characterized by variations in chromosome numbers as well as transposition and amplification of repetitive DNA sequences. Here, the first steps were made towards identification of individual chromosomes in Phasmatodea.
Collapse
Affiliation(s)
- Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Olesya Buleu
- Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Tatyana Karamysheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Alexander Bugrov
- Novosibirsk State University, 630090 Novosibirsk, Russia.
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Nikolai Rubtsov
- Novosibirsk State University, 630090 Novosibirsk, Russia.
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| |
Collapse
|
31
|
Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes. Genes (Basel) 2017; 8:genes8100258. [PMID: 28981468 PMCID: PMC5664108 DOI: 10.3390/genes8100258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022] Open
Abstract
Fishes exhibit the greatest diversity of species among vertebrates, offering a number of relevant models for genetic and evolutionary studies. The investigation of sex chromosome differentiation is a very active and striking research area of fish cytogenetics, as fishes represent one of the most vital model groups. Neotropical fish species show an amazing variety of sex chromosome systems, where different stages of differentiation can be found, ranging from homomorphic to highly differentiated sex chromosomes. Here, we draw attention on the impact of recent developments in molecular cytogenetic analyses that helped to elucidate many unknown questions about fish sex chromosome evolution, using excellent characiform models occurring in the Neotropical region, namely the Erythrinidae family and the Triportheus genus. While in Erythrinidae distinct XY and/or multiple XY-derived sex chromosome systems have independently evolved at least four different times, representatives of Triportheus show an opposite scenario, i.e., highly conserved ZZ/ZW system with a monophyletic origin. In both cases, recent molecular approaches, such as mapping of repetitive DNA classes, comparative genomic hybridization (CGH), and whole chromosome painting (WCP), allowed us to unmask several new features linked to the molecular composition and differentiation processes of sex chromosomes in fishes.
Collapse
|
32
|
Araya-Jaime C, Mateussi NTB, Utsunomia R, Costa-Silva GJ, Oliveira C, Foresti F. ZZ/Z0: The New System of Sex Chromosomes in Eigenmannia aff. trilineata (Teleostei: Gymnotiformes: Sternopygidae) Characterized by Molecular Cytogenetics and DNA Barcoding. Zebrafish 2017; 14:464-470. [DOI: 10.1089/zeb.2017.1422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Cristian Araya-Jaime
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Nadayca T. Bonani Mateussi
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Ricardo Utsunomia
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Guilherme J. Costa-Silva
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Claudio Oliveira
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Fausto Foresti
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
33
|
Yano CF, Bertollo LAC, Ezaz T, Trifonov V, Sember A, Liehr T, Cioffi MB. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity (Edinb) 2016; 118:276-283. [PMID: 28000659 DOI: 10.1038/hdy.2016.83] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/24/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
The main objectives of this study were to test: (1) whether the W-chromosome differentiation matches to species' evolutionary divergence (phylogenetic concordance) and (2) whether sex chromosomes share a common ancestor within a congeneric group. The monophyletic genus Triportheus (Characiformes, Triportheidae) was the model group for this study. All species in this genus so far analyzed have ZW sex chromosome system, where the Z is always the largest chromosome of the karyotype, whereas the W chromosome is highly variable ranging from almost homomorphic to highly heteromorphic. We applied conventional and molecular cytogenetic approaches including C-banding, ribosomal DNA mapping, comparative genomic hybridization (CGH) and cross-species whole chromosome painting (WCP) to test our questions. We developed Z- and W-chromosome paints from T. auritus for cross-species WCP and performed CGH in a representative species (T. signatus) to decipher level of homologies and rates of differentiation of W chromosomes. Our study revealed that the ZW sex chromosome system had a common origin, showing highly conserved Z chromosomes and remarkably divergent W chromosomes. Notably, the W chromosomes have evolved to different shapes and sequence contents within ~15-25 Myr of divergence time. Such differentiation highlights a dynamic process of W-chromosome evolution within congeneric species of Triportheus.
Collapse
Affiliation(s)
- C F Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - L A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - T Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - V Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - A Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - T Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - M B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|