1
|
Vinoth S, Selvaraj V, Venkatasubramanian H, Santhakumar K. A Simple Blood Vessel Imaging Protocol for Live Zebrafish Larva. Zebrafish 2022; 19:177-180. [DOI: 10.1089/zeb.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- S. Vinoth
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Velanganni Selvaraj
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Hemagowri Venkatasubramanian
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
2
|
Tantry MSA, Harini VS, Santhakumar K. Simple and High-Throughput Rheotaxis Behavioral Assay for Zebrafish Larva. Zebrafish 2022; 19:114-118. [PMID: 35666213 DOI: 10.1089/zeb.2021.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish (Danio rerio) is used as a model for studying sensorineural hearing loss. The damage to the hair cells can be assessed by scoring rheotaxis behavior in zebrafish. In this study, we newly designed a rheotaxis behavioral assay protocol capable of quantifying rheotaxis behavior in zebrafish larvae. We chemically induced ototoxicity in the larvae using copper sulfate, a well-known ototoxin, and determined rheotaxis at different flow velocities. The simple, cost-effective, and high-throughput rheotaxis assay system can provide great insights into drug development and other behavioral studies.
Collapse
Affiliation(s)
| | - V S Harini
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
3
|
Karunakaran KB, Thiyagaraj A, Santhakumar K. Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:6. [PMID: 35212831 PMCID: PMC8881542 DOI: 10.1007/s13659-022-00332-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors increase the retention of acetylcholine (ACh) in synapses. Although they alleviate cognitive deficits in Alzheimer's disease, their limited benefits warrant investigations of plant extracts with similar properties. We studied the anti-AChE activity of Convolvulus pluricaulis (CP) in a zebrafish model of cognitive impairment induced by scopolamine (SCOP). CP is a perennial herb with anti-amnesiac and anxiolytic properties. It contains alkaloid, anthocyanin, coumarin, flavonoid, phytosterol and triterpenoid components. Isoxazole (ISOX) was used as a positive control for AChE inhibition. CP-treated 168 hpf larvae showed a similar pattern of AChE inhibition (in the myelencephalon and somites) as that of ISOX-treated larvae. CP was superior to ISOX as evidenced by the retention of avoidance response behavior in adult zebrafish. Molecular docking studies indicated that ISOX binds Ser203 of the catalytic triad on the human AChE. The active components of CP-scopoletin and kaempferol-were bound by His447 of the catalytic triad, the anionic subsite of the catalytic center, and the peripheral anionic site. This suggested the ability of CP to mediate both competitive and non-competitive modes of inhibition. Surprisingly, SCOP showed AChE inhibition in larvae, possibly mediated via the choline-binding sites. CP + SCOP induced a concentration-dependent increase in AChE inhibition and ACh depletion. Abnormal motor responses were observed with ISOX, CP, ISOX + SCOP, and CP + SCOP, indicative of undesirable effects on the peripheral cholinergic system. Our study proposes the examination of CP, SCOP, and CP + SCOP as potential AChE inhibitors for their ability to modulate cognitive deficits.
Collapse
Affiliation(s)
| | - Anand Thiyagaraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| |
Collapse
|
4
|
Tomasello DL, Sive H. Noninvasive Multielectrode Array for Brain and Spinal Cord Local Field Potential Recordings from Live Zebrafish Larvae. Zebrafish 2020; 17:271-277. [PMID: 32758083 PMCID: PMC7455471 DOI: 10.1089/zeb.2020.1874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Zebrafish are an important and expanding experimental system for brain research. We describe a noninvasive electrophysiology technique that can be used in living larvae to measure spontaneous activity in the brain and spinal cord simultaneously. This easy-to-use method uses a commercially available multielectrode array to detect local field potential parameters, and allows for relative coordinated (network) measurements of activity. We demonstrate sensitivity of this system by measuring activity in larvae treated with the antiepileptic drug valproic acid. Valproic acid decreased larval movement and startle response, and decreased spontaneous brain activity. Spinal cord activity did not change after treatment, suggesting valproic acid primarily affects brain function. The observed differences in brain activity, but not spinal cord activity, after valproic acid treatment indicates that brain activity differences are not a secondary effect of decreased startle response and movement. We provide a step-by-step protocol for experiments presented that a novice could easily follow. This electrophysiological method will be useful to the zebrafish neuroscience community.
Collapse
Affiliation(s)
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Selvaraj V, Venkatasubramanian H, Ilango K, Santhakumar K. A simple method to study motor and non-motor behaviors in adult zebrafish. J Neurosci Methods 2019; 320:16-25. [DOI: 10.1016/j.jneumeth.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/19/2019] [Accepted: 03/09/2019] [Indexed: 11/15/2022]
|
6
|
Franco-Restrepo JE, Forero DA, Vargas RA. A Review of Freely Available, Open-Source Software for the Automated Analysis of the Behavior of Adult Zebrafish. Zebrafish 2019; 16:223-232. [PMID: 30625048 DOI: 10.1089/zeb.2018.1662] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The analysis of behavior in animal models is an important objective in many research fields, including neuroscience, psychology, toxicology, and neuropsychopharmacology. Animal models have been used for many years, and several behavioral paradigms, such as locomotor activity, social interactions, and cognitive behavior, have been studied in animal models to correlate the behaviors with pharmacological or environmental interventions and with molecular, biochemical, and physiological findings. We reviewed the literature looking for open-source, freely available software to analyze animal behavior and found 12 freely available programs: ToxTrack, EthoWatcher, Mouse Behavior Tracker, Mouse Move, JAABA, wrMTrck, AnimalTracker, idTracker, Ctrax, Mousetracker, VideoHacking, and Cowlog, which were developed with different programs, work on different platforms, and have particular types of inputs and outputs and analysis capabilities. We reviewed some examples of their use, tested some of them, and provided several recommendations for the future development of programs for the automated analysis of behavior in animal models. In conclusion, we show freely available software for the automated analysis of behavior in animal models such as adult zebrafish and provide information for researchers and students looking for quick, easy-to-implement, and inexpensive behavior analysis alternatives.
Collapse
Affiliation(s)
- Juan E Franco-Restrepo
- 1 Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,2 PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Diego A Forero
- 1 Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,2 PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Rafael A Vargas
- 1 Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,2 PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
7
|
Villa S, Di Nica V, Pescatore T, Bellamoli F, Miari F, Finizio A, Lencioni V. Comparison of the behavioural effects of pharmaceuticals and pesticides on Diamesa zernyi larvae (Chironomidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:130-139. [PMID: 29554561 DOI: 10.1016/j.envpol.2018.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 05/20/2023]
Abstract
Several studies have indicated the presence of contaminants in Alpine aquatic ecosystems. Even if measured concentrations are far below those that cause acute effects, continuous exposure to sub-lethal concentrations may have detrimental effects on the aquatic species present in these remote environments. This may lead to a cascade of indirect effects at higher levels of the ecological hierarchy (i.e., the community). To improve the determination of ecologically relevant risk endpoints, behavioural alterations in organisms due to pollutants are increasingly studied in ecotoxicology. In fact, behaviour links physiological function with ecological processes, and can be very sensitive to environmental stimuli and chemical exposure. This is the first study on behavioural alteration in a wild population of an Alpine species. In the present study, a video tracking system was standardized and subsequently used to identify contaminant-induced behavioural alterations in Diamesa zernyi larvae (Diptera, Chironomidae). Diamesa zernyi larvae, collected in an Italian Alpine stream (Rio Presena, Trentino Region), were acclimated for 24 h and successively exposed to several aquatic contaminants (pesticides: chlorpyrifos, metolachlor, boscalid, captan; pharmaceuticals: ibuprofen, furosemide, trimethoprim) at concentrations corresponding to their Lowest Observed Effect Concentration (LOEC). After 24, 48, 72, and 96 h of exposure, changes in the distance moved, the average speed, and the frequency of body bends were taken to reflect contaminant- and time-dependent effects on larval behaviour. In general, metolachlor, captan, and trimethoprim tended to reduce all the endpoints under consideration, whereas chlorpyrifos, boscalid, ibuprofen, and furosemide seemed to increase the distances moved by the larvae. This could be related to the different mechanisms of action of the investigated chemicals. Independently of the contaminant, after 72 h a general slowing down of all the behavioural activities occurred. Finally, we propose a behavioural stress indicator to compare the overall behavioural effects induced by the various contaminants.
Collapse
Affiliation(s)
- Sara Villa
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Tanita Pescatore
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy
| | - Francesco Bellamoli
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy
| | - Francesco Miari
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy
| | - Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy.
| |
Collapse
|