1
|
Burggren W, Abramova R, Bautista NM, Fritsche Danielson R, Dubansky B, Gupta A, Hansson K, Iyer N, Jagadeeswaran P, Jennbacken K, Rydén-Markinhutha K, Patel V, Raman R, Trivedi H, Vazquez Roman K, Williams S, Wang QD. A larval zebrafish model of cardiac physiological recovery following cardiac arrest and myocardial hypoxic damage. Biol Open 2024; 13:bio060230. [PMID: 39263862 DOI: 10.1242/bio.060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/22/2024] [Indexed: 09/13/2024] Open
Abstract
Contemporary cardiac injury models in zebrafish larvae include cryoinjury, laser ablation, pharmacological treatment and cardiac dysfunction mutations. Although effective in damaging cardiomyocytes, these models lack the important element of myocardial hypoxia, which induces critical molecular cascades within cardiac muscle. We have developed a novel, tractable, high throughput in vivo model of hypoxia-induced cardiac damage that can subsequently be used in screening cardioactive drugs and testing recovery therapies. Our potentially more realistic model for studying cardiac arrest and recovery involves larval zebrafish (Danio rerio) acutely exposed to severe hypoxia (PO2=5-7 mmHg). Such exposure induces loss of mobility quickly followed by cardiac arrest occurring within 120 min in 5 days post fertilization (dpf) and within 40 min at 10 dpf. Approximately 90% of 5 dpf larvae survive acute hypoxic exposure, but survival fell to 30% by 10 dpf. Upon return to air-saturated water, only a subset of larvae resumed heartbeat, occurring within 4 min (5 dpf) and 6-8 min (8-10 dpf). Heart rate, stroke volume and cardiac output in control larvae before hypoxic exposure were 188±5 bpm, 0.20±0.001 nL and 35.5±2.2 nL/min (n=35), respectively. After briefly falling to zero upon severe hypoxic exposure, heart rate returned to control values by 24 h of recovery. However, reflecting the severe cardiac damage induced by the hypoxic episode, stroke volume and cardiac output remained depressed by ∼50% from control values at 24 h of recovery, and full restoration of cardiac function ultimately required 72 h post-cardiac arrest. Immunohistological staining showed co-localization of Troponin C (identifying cardiomyocytes) and Capase-3 (identifying cellular apoptosis). As an alternative to models employing mechanical or pharmacological damage to the developing myocardium, the highly reproducible cardiac effects of acute hypoxia-induced cardiac arrest in the larval zebrafish represent an alternative, potentially more realistic model that mimics the cellular and molecular consequences of an infarction for studying cardiac tissue hypoxia injury and recovery of function.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Abramova
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Fritsche Danielson
- SVP and head of Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Ben Dubansky
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Avi Gupta
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Kenny Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Neha Iyer
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Pudur Jagadeeswaran
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Katarina Rydén-Markinhutha
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Vishal Patel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Revathi Raman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Hersh Trivedi
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karem Vazquez Roman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Steven Williams
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| |
Collapse
|
2
|
Machikhin A, Guryleva A, Chakraborty A, Khokhlov D, Selyukov A, Shuman L, Bukova V, Efremova E, Rudenko E, Burlakov A. Microscopic photoplethysmography-based evaluation of cardiotoxicity in whitefish larvae induced by acute exposure to cadmium and phenol. JOURNAL OF BIOPHOTONICS 2024:e202400111. [PMID: 39031962 DOI: 10.1002/jbio.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Toxic environmental pollutants pose a health risk for both humans and animals. Accumulation of industrial contaminants in freshwater fish may become a significant threat to biodiversity. Comprehensive monitoring of the impact of environmental stressors on fish functional systems is important and use of non-invasive tools that can detect the presence of these toxicants in vivo is desirable. The blood circulatory system, by virtue of its sensitivity to the external stimuli, could be an informative indicator of chemical exposure. In this study, microscopic photoplethysmography-based approach was used to investigate the cardiac activity in broad whitefish larvae (Coregonus nasus) under acute exposure to cadmium and phenol. We identified contamination-induced abnormalities in the rhythms of the ventricle and atrium. Our results allow introducing additional endpoints to evaluate the cardiac dysfunction in fish larvae and contribute to the non-invasive evaluation of the toxic effects of industrial pollutants on bioaccumulation and aquatic life.
Collapse
Affiliation(s)
- Alexander Machikhin
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Guryleva
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Anirban Chakraborty
- Department of Molecular Genetics & Cancer, Nitte University Centre for Science Education & Research, Nitte (Deemed to be University), Mangalore, India
| | - Demid Khokhlov
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | | | - Leonid Shuman
- Tyumen State University, Laboratory AquaBioSafe, Tyumen, Russia
| | - Valeriya Bukova
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | | | | | - Alexander Burlakov
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Zhang L, Yang M, Wang Z, Fan D, Shen F, Zou X, Zhang X, Hu S, Hu B, Hu X. Sevoflurane postconditioning ameliorates cerebral hypoxia/reoxygenation injury in zebrafish involving the Akt/GSK-3β pathway activation and the microtubule-associated protein 2 promotion. Biomed Pharmacother 2024; 175:116693. [PMID: 38701566 DOI: 10.1016/j.biopha.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Sevoflurane postconditioning has been shown to provide neuroprotection against cerebral hypoxia-ischemia injury, but the mechanisms remain elusive. Microtubule-associated protein 2 (MAP2) is implicated in early neuronal hypoxia-ischemia injury. This study aimed to investigate whether the neuroprotective effects of sevoflurane postconditioning are related to the Akt/GSK-3β pathway and its downstream target MAP2 in zebrafish hypoxia/reoxygenation (H/R) model. Sevoflurane postconditioning or GSK-3β inhibitor TDZD-8 were used to treat H/R zebrafish. The cerebral infarction, neuronal apoptosis, and mitochondrial changes were evaluated using TTC staining, TUNEL staining, and transmission electron microscopy, respectively. The distribution of MAP2 in the brain was determined by immunofluorescence imaging. The levels of Akt, p-Akt, GSK-3β, p-GSK-3β, and MAP2 proteins were evaluated by Western blotting. The neurobehavioral recovery of zebrafish was assessed based on optokinetic response behavior. Our results indicated that sevoflurane postconditioning and TDZD-8 significantly reduced the cerebral infarction area, suppressed cell apoptosis, and improved mitochondrial integrity in zebrafish subjected to H/R. Furthermore, sevoflurane postconditioning and TDZD-8 elevated the ratios of p-Akt/Akt and p-GSK-3β/GSK-3β. However, the neuroprotective effect of sevoflurane postconditioning was effectively abolished upon suppression of MAP2 expression. In conclusion, sevoflurane postconditioning ameliorated cerebral H/R injury and facilitated the restoration of neurobehavioral function through the activation of Akt/GSK-3β pathway and promotion of MAP2 expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province 230061, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Mengsi Yang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province 230061, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zongyi Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, China
| | - Dinggang Fan
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, China
| | - Fang Shen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, China
| | - Xuezhu Zou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province 230061, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xiaoyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province 230061, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Su Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province 230061, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, China.
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province 230061, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Xiao Y, Wang R, Kong S, Zhao T, Situ Y, Nie H. Comparison of Protective Effect of Tri-circulator and Coenzyme Q10 on Myocardial Injury and the Mechanism Study by Zebrafish Model. Cardiovasc Toxicol 2024; 24:258-265. [PMID: 38316695 DOI: 10.1007/s12012-024-09828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Tri-Circulator (TC) is a product comprising coenzyme Q10 (CoQ10), Salvia miltiorrhiza, and Panax notoginseng. Individually, each of these constituents has demonstrated protective effects on myocardial injury. The purpose of this study is to evaluate the protective efficacy of TC on heart function and compare the differential effects between CoQ10 and TC. Two myocardial injury models of zebrafish, the hypoxia-reoxygenation model (H/R) and the isoproterenol (ISO, a β-receptor agonist) model, were used in this experiment. The zebrafish subjects were divided into 4 groups: control, H/R, TC, and CoQ10. Heart rate, stroke volume (SV), cardiac output (CO), ejection fraction (EF), fractional area change (FAC), and pericardial height were monitored to assess changes in heart function. The gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was studied as markers of injury/stress. TC significantly suppresses elevated heart rate induced by H/R and prevents the decrease of heart rate induced by ISO. It alleviates the pericardial infusion induced by ISO, whereas CoQ10 does not possess a similar effect. Both TC and CoQ10 significantly inhibit the decline in SV, CO, EF, and FAC induced by H/R and ISO, and suppress the expression of ANP and BNP in cardiomyocytes induced by ISO. It is noteworthy that TC demonstrates a more pronounced effect on EF, FAC, ANP, and BNP gene expression compared to CoQ10. Both TC and CoQ10 have a protective effect on myocardial injury of zebrafish. However, TC exhibits a greater efficacy compared to CoQ10 alone in mitigating myocardial injury.
Collapse
Affiliation(s)
- Yuan Xiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Ranjing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shang Kong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Tingting Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yongli Situ
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Huang S, Cai J, Ma L, Zhang Q, Sun Y, Zhang Q, Qin L. Effects of grafting on chemical constituents, toxicological properties, antithrombotic activity, and myocardial infarction protection of styrax secreted from the trunk of Liquidambar orientalis Mill. PLoS One 2024; 19:e0289894. [PMID: 38181063 PMCID: PMC10769069 DOI: 10.1371/journal.pone.0289894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 01/07/2024] Open
Abstract
Styrax, the balsam refined from the trunk of Liquidambar orientalis Mill. has a variety of applications in the perfumery and medical industry, especially for use in traditional Chinese medicine. However, the resources of styrax are in shortage due to being endangered of this plant. Grafting can improve the adaptability of plants to unfavorable environmental conditions. We tried to graft the L. orientalis Mill. on L. formosana Hance which was widely distributed in Jiangsu and Zhejiang provinces of China in an attempt to obtain styrax from grafted L. orientalis Mill. (grafted styrax, SG). Whether SG can become an alternative application of commercially available styrax (SC) need be further investigated. The components of SG were analyzed by GC-MS, and the results showed that the chromatograms of SG, SC, and styrax standard (SS) were consistent. The ration of 12 major chemical components based peak area in SG, SC, and SS were 93.95%, 94.24%, and 95.86% respectively. The assessment of toxicity, antithrombotic activity, and myocardial infarction protection of SG and SC was evaluated by using the zebrafish model, the results showed that SG and SC have the similar toxicological properties as evidenced by acute toxicity test, developmental toxicity and teratogenicity, and long-term toxicity test. Both SG and SC significantly decreased the thrombosis and increased blood flow velocity of zebrafish induced by adrenaline hydrochloride, inhibited myocardial apoptosis, myocardial infarction and myocardial inflammation in zebrafish induced by isoproterenol hydrochloride. Moreover, SG had an obvious improvement effect on cardiac output, while SC has no effect. Collectively, SG is similar to SC in chemical composition, toxicological properties, antithrombotic activity, and myocardial infarction protection effects, and may be used as a substitute for styrax to reduce the collection for wild L. orientalis Mill. and increase the available styrax resources.
Collapse
Affiliation(s)
- Shen Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Sree Kumar H, Wisner AS, Refsnider JM, Martyniuk CJ, Zubcevic J. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front Physiol 2023; 14:1186645. [PMID: 37324381 PMCID: PMC10267477 DOI: 10.3389/fphys.2023.1186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Zebrafish (Danio rerio) have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices. We present advantages and current limitations in zebrafish microbiome research and discuss the use of zebrafish in identification of microbial enterotypes in health and disease. We also highlight the versatility of zebrafish studies to further explore the function of human conditions relevant to gut dysbiosis and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
- Department of Neuroscience and Neurological Disorders, University of Toledo, Toledo, OH, United States
| | - Alexander S. Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, OH, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
7
|
Wang YH, Long HP, Zhang SX, Liu J, Zhao HQ, Yi J, Linga J. Network pharmacology-based and pharmacological evaluation of the effects of Curcumae Radix on cerebral ischemia–Reperfusion injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.370154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
8
|
Exploring Myocardial Ischemia-Reperfusion Injury Mechanism of Cinnamon by Network Pharmacology, Molecular Docking, and Experiment Validation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:1066057. [PMID: 36873789 PMCID: PMC9981296 DOI: 10.1155/2023/1066057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a common complication of acute myocardial infarction that seriously endangers human health. Cinnamon, a traditional Chinese medicine, has been used to counteract MIRI as it has been shown to possess anti-inflammatory and antioxidant properties. To investigate the mechanisms of action of cinnamon in the treatment of MIRI, a deep learning-based network pharmacology method was established to predict potential active compounds and targets. The results of the network pharmacology showed that oleic acid, palmitic acid, beta-sitosterol, eugenol, taxifolin, and cinnamaldehyde were the main active compounds, and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), interleukin (IL)-7, and hypoxia-inducible factor 1 (HIF-1) are promising signaling pathways. Further molecular docking tests revealed that these active compounds and targets exhibited good binding abilities. Finally, experimental validation using a zebrafish model demonstrated that taxifolin, the active compound of cinnamon, has a potential protective effect against MIRI.
Collapse
|
9
|
Kong S, Zhou D, Fan Q, Zhao T, Ren C, Nie H. Salviae miltiorrhizae Liguspyragine Hydrochloride and Glucose Injection Protects against Myocardial Ischemia-Reperfusion Injury and Heart Failure. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7809485. [PMID: 35813430 PMCID: PMC9259341 DOI: 10.1155/2022/7809485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/02/2022]
Abstract
Purpose Myocardial ischemia-reperfusion (MIR) injury is a common stimulus for cardiac diseases like cardiac arrhythmias and heart failure and may cause high mortality rates. Salviae miltiorrhizae liguspyragine hydrochloride and glucose injection (SGI) has been widely used to treat myocardial and cerebral infarctions in China even though its pharmacological mechanisms are not completely clear. Methods The protective effect and mechanism of SGI on MIR injury and heart failure were investigated through the H9c2 cell model induced by hypoxia/reoxygenation (H/R) and rapamycin, zebrafish model induced by H/R and isoprenaline, and rat MIR model. Results SGI significantly reduced the infarct size and alleviated the impairment of cardiac functions in the MIR rat model and H/R zebrafish model and promoted cell viability of cardiomyocyte-like H9c2 cells under H/R condition. Consistently, SGI significantly downregulated the serum level of biomarkers for cardiac damage and attenuated the oxidative damage in the MIR and H/R models. We also found that SGI could downregulate the increased autophagy level in those MIR and H/R models since autophagy can contribute to the injurious effects of ischemia-reperfusion in the heart, suggesting that SGI may alleviate MIR injury via regulating the autophagy pathway. In addition, we demonstrated that SGI also played a protective role in the isoproterenol-induced zebrafish heart failure model, and SGI significantly downregulated the increased autophagy and SP1/GATA4 pathways. Conclusion SGI may exert anti-MIR and heart failure by inhibiting activated autophagy and the SP1/GATA4 pathway.
Collapse
Affiliation(s)
- Shang Kong
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dan Zhou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qinghong Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tingting Zhao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunguang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Li S, Zhu J, Pan L, Wan P, Qin Q, Luo D, Pan W, Wei Y, Xu Y, Shang L, Ye X. Potential protective effect of hesperidin on hypoxia/reoxygenation-induced hepatocyte injury. Exp Ther Med 2021; 22:764. [PMID: 34035861 PMCID: PMC8135133 DOI: 10.3892/etm.2021.10196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hesperidin (HDN) has been reported to have hydrogen radical- and hydrogen peroxide-removal activities and to serve an antioxidant role in biological systems. However, whether HDN protects hepatocytes (HCs) against hypoxia/reoxygenation (H/R)-induced injury remains unknown. The present study aimed to explore the role of HDN in H/R-induced injury. HCs were isolated and cultured under H/R conditions with or without HDN treatment. HC damage was markedly induced under H/R, as indicated by cell viability, supernatant lactate dehydrogenase levels and alanine aminotransferase levels; however, HDN treatment significantly reversed HC injury. Oxidative stress markers (malondialdehyde, superoxide dismutase, glutathioneand reactive oxygen species) were increased markedly during H/R in HCs; however, this effect was significantly attenuated after exposure to HDN. Compared with those of the control group, the mRNA expression levels of IL-6 and TNF-α in HCs and the concentrations of IL-6 and TNF-α in the supernatants increased significantly following H/R, and HDN significantly ameliorated these effects. Western blotting demonstrated that microtubule-associated protein 1 light chain 3α (MAP1LC3A, also known as LC3) and Beclin-1 protein expression levels increased, while sequestosome 1 levels decreased during H/R following exposure to HDN. The number of GFP-LC3 puncta in HCs following exposure to HDN was increased compared with that observed in HCs without HDN exposure under the H/R conditions after bafilomycin A1 treatment. In summary, the present study demonstrated that HDN attenuated HC oxidative stress and inflammatory responses while enhancing autophagy during H/R. HDN may have a potential protective effect on HCs during H/R-induced injury.
Collapse
Affiliation(s)
- Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ling Pan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Peiqi Wan
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quanlin Qin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Daqing Luo
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenhui Pan
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuqing Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yansong Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Echeazarra L, Hortigón-Vinagre MP, Casis O, Gallego M. Adult and Developing Zebrafish as Suitable Models for Cardiac Electrophysiology and Pathology in Research and Industry. Front Physiol 2021; 11:607860. [PMID: 33519514 PMCID: PMC7838705 DOI: 10.3389/fphys.2020.607860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
The electrophysiological behavior of the zebrafish heart is very similar to that of the human heart. In fact, most of the genes that codify the channels and regulatory proteins required for human cardiac function have their orthologs in the zebrafish. The high fecundity, small size, and easy handling make the zebrafish embryos/larvae an interesting candidate to perform whole animal experiments within a plate, offering a reliable and low-cost alternative to replace rodents and larger mammals for the study of cardiac physiology and pathology. The employment of zebrafish embryos/larvae has widened from basic science to industry, being of particular interest for pharmacology studies, since the zebrafish embryo/larva is able to recapitulate a complete and integrated view of cardiac physiology, missed in cell culture. As in the human heart, IKr is the dominant repolarizing current and it is functional as early as 48 h post fertilization. Finally, genome editing techniques such as CRISPR/Cas9 facilitate the humanization of zebrafish embryos/larvae. These techniques allow one to replace zebrafish genes by their human orthologs, making humanized zebrafish embryos/larvae the most promising in vitro model, since it allows the recreation of human-organ-like environment, which is especially necessary in cardiac studies due to the implication of dynamic factors, electrical communication, and the paracrine signals in cardiac function.
Collapse
Affiliation(s)
- Leyre Echeazarra
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maria Pura Hortigón-Vinagre
- Departamento de Bioquímica y Biología Molecular y Genética>, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mónica Gallego
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|