1
|
Skjeldal FM, Haugen LH, Mateus D, Frei DM, Rødseth AV, Hu X, Bakke O. De novo formation of early endosomes during Rab5-to-Rab7a transition. J Cell Sci 2021; 134:237792. [PMID: 33737317 PMCID: PMC8106955 DOI: 10.1242/jcs.254185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Rab5 and Rab7a are the main determinants of early and late endosomes and are important regulators of endosomal progression. The transport from early endosomes to late endosome seems to be regulated through an endosomal maturation switch, where Rab5 is gradually exchanged by Rab7a on the same endosome. Here, we provide new insight into the mechanism of endosomal maturation, for which we have discovered a stepwise Rab5 detachment, sequentially regulated by Rab7a. The initial detachment of Rab5 is Rab7a independent and demonstrates a diffusion-like first-phase exchange between the cytosol and the endosomal membrane, and a second phase, in which Rab5 converges into specific domains that detach as a Rab5 indigenous endosome. Consequently, we show that early endosomal maturation regulated through the Rab5-to-Rab7a switch induces the formation of new fully functional Rab5-positive early endosomes. Progression through stepwise early endosomal maturation regulates the direction of transport and, concomitantly, the homeostasis of early endosomes. Highlighted Article: A crucial step in endosomal maturation is the exchange of Rab5 with Rab7a, and we show that this two-phase exchange is finalized by the formation of Rab5-positive early endosomes.
Collapse
Affiliation(s)
| | | | - Duarte Mateus
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Dominik M Frei
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Anna Vik Rødseth
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Xian Hu
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
2
|
Margiotta A, Frei DM, Sendstad IH, Janssen L, Neefjes J, Bakke O. Invariant chain regulates endosomal fusion and maturation through an interaction with the SNARE Vti1b. J Cell Sci 2020; 133:jcs244624. [PMID: 32907852 DOI: 10.1242/jcs.244624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
The invariant chain (Ii, also known as CD74) is a multifunctional regulator of adaptive immune responses and is responsible for sorting major histocompatibility complex class I and class II (MHCI and MHCII, respectively) molecules, as well as other Ii-associated molecules, to a specific endosomal pathway. When Ii is expressed, endosomal maturation and proteolytic degradation of proteins are delayed and, in non-antigen presenting cells, the endosomal size increases, but the molecular mechanisms underlying this are not known. We identified that a SNARE, Vti1b, is essential for regulating these Ii-induced effects. Vti1b binds to Ii and is localized at the contact sites of fusing Ii-positive endosomes. Furthermore, truncated Ii lacking the cytoplasmic tail, which is not internalized from the plasma membrane, relocates Vti1b to the plasma membrane. Knockout of Ii in an antigen-presenting cell line was found to speed up endosomal maturation, whereas silencing of Vti1b inhibits the Ii-induced maturation delay. Our results suggest that Ii, by interacting with the SNARE Vti1b in antigen-presenting cells, directs specific Ii-associated SNARE-mediated fusion in the early part of the endosomal pathway that leads to a slower endosomal maturation for efficient antigen processing and MHC antigen loading.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | - Dominik M Frei
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | | | - Lennert Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| |
Collapse
|
3
|
Borg Distefano M, Hofstad Haugen L, Wang Y, Perdreau-Dahl H, Kjos I, Jia D, Morth JP, Neefjes J, Bakke O, Progida C. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci 2018; 131:jcs.216630. [PMID: 30111580 DOI: 10.1242/jcs.216630] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023] Open
Abstract
Rab GTPases are key regulators of intracellular trafficking, and cycle between a GTP-bound active state and a GDP-bound inactive state. This cycle is regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several efforts have been made in connecting the correct GEFs and GAPs to their specific Rab. Here, we aimed to identify GAPs for Rab7b, the small GTPase involved in transport from late endosomes to the trans-Golgi. An siRNA screen targeting proteins containing TBC domains critical for Rab GAPs was performed and coupled to a phenotypic read-out that visualized the distribution of Rab7b. Silencing of TBC1D5 provided the strongest phenotype and this protein was subsequently validated in various in vitro and cell-based assays. TBC1D5 localizes to Rab7b-positive vesicles, interacts with Rab7b and has GAP activity towards Rab7b in vitro, which is further increased by retromer proteins. Similarly to the constitutively active mutant of Rab7b, inactivation of TBC1D5 also reduces the number of CI-MPR- and sortilin-positive vesicles. Together, the results show that TBC1D5 is a GAP for Rab7b in the control of endosomal transport to the trans-Golgi.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Harmonie Perdreau-Dahl
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jens Preben Morth
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, 2300 RC Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
4
|
Endosomal binding kinetics of Eps15 and Hrs specifically regulate the degradation of RTKs. Sci Rep 2017; 7:17962. [PMID: 29269784 PMCID: PMC5740074 DOI: 10.1038/s41598-017-17320-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/25/2017] [Indexed: 01/25/2023] Open
Abstract
Activation of EGF-R and PDGF-R triggers autophosphorylation and the recruitment of Eps15 and Hrs. These two endosomal proteins are important for specific receptor sorting. Hrs is recruiting ubiquitinated receptors to early endosomes to further facilitate degradation through the ESCRT complex. Upon receptor activation Hrs becomes phosphorylated and is relocated to the cytosol, important for receptor degradation. In this work we have studied the endosomal binding dynamics of Eps15 and Hrs upon EGF-R and PDGF-R stimulation. By analysing the fluorescence intensity on single endosomes after ligand stimulation we measured a time-specific decrease in the endosomal fluorescence level of Eps15-GFP and Hrs-YFP. Through FRAP experiments we could further register a specific change in the endosomal-membrane to cytosol binding properties of Eps15-GFP and Hrs-YFP. This specific change in membrane fractions proved to be a redistribution of the immobile fraction, which was not shown for the phosphorylation deficient mutants. We here describe a mechanism that can explain the previously observed relocation of Hrs from the endosomes to cytosol after EGF stimulation and show that Eps15 follows a similar mechanism. Moreover, this specific redistribution of the endosomal protein binding dynamics proved to be of major importance for receptor degradation.
Collapse
|
5
|
Niazy N, Temme S, Bocuk D, Giesen C, König A, Temme N, Ziegfeld A, Gregers TF, Bakke O, Lang T, Eis-Hübinger AM, Koch N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B. FASEB J 2017; 31:1650-1667. [PMID: 28119397 DOI: 10.1096/fj.201600521r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/01/2017] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus (HSV)-encoded glycoprotein B (gB) is the most abundant protein in the viral envelope and promotes fusion of the virus with the cellular membrane. In the present study, we found that gB impacts on the major histocompatibility complex (MHC)-II pathway of antigen presentation by fostering homotypic fusion of early endosomes and trapping MHC-II molecules in these altered endosomes. By using an overexpression approach, we demonstrated that transient expression of gB induces giant vesicles of early endosomal origin, which contained Rab5, early endosomal antigen 1 (EEA1), and large amounts of MHC-II molecules [human leukocyte antigen (HLA)-DR, and HLA-DM], but no CD63. In HSV-1-infected and stably transfected cell lines that expressed lower amounts of gB, giant endosomes were not observed, but strongly increased amounts of HLA-DR and HLA-DM were found in EEA1+ early endosomes. We used these giant vesicles as a model system and revealed that gB interacts with Rab5 and EEA1, and that gB-induced homotypic fusion of early endosomes to giant endosomes requires phosphatidylinositol 3-phosphate, the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and the cytosolic gB sequence 889YTQVPN894 We conclude that gB expression alters trafficking of molecules of the HLA-II processing pathway, which leads to increased retention of MHC-II molecules in early endosomal compartments, thereby intercepting antigen presentation.-Niazy, N., Temme, S., Bocuk, D., Giesen, C., König, A., Temme, N., Ziegfeld, A., Gregers, T. F., Bakke, O., Lang, T., Eis-Hübinger, A. M., Koch, N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B.
Collapse
Affiliation(s)
- Naima Niazy
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Sebastian Temme
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany;
| | - Derya Bocuk
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Carmen Giesen
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Angelika König
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Nadine Temme
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Angelique Ziegfeld
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Thorsten Lang
- Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | | | - Norbert Koch
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Schröder B, Saftig P. Intramembrane proteolysis within lysosomes. Ageing Res Rev 2016; 32:51-64. [PMID: 27143694 DOI: 10.1016/j.arr.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022]
Abstract
Regulated intramembrane proteolysis is of pivotal importance in a diverse set of developmental and physiological processes. Altered intramembrane substrate turnover may be associated with neurodegeneration, cancer and impaired immune function. In this review we will focus on the intramembrane proteases which have been localized in the lysosomal membrane. Members of the γ-secretase complex and γ-secretase activity are found in the lysosomal membrane and are discussed to contribute to intracellular amyloid β production. Mutant or deficient γ-secretase may cause disturbed lysosomal function. The signal peptide peptidase-like (SPPL) protease 2a is a lysosomal membrane component and cleaves CD74, the invariant chain of the MHC II complex, as well as FasL, TNF, ITM2B and TMEM106, type II transmembrane proteins involved in the regulation of immunity and neurodegeneration. Therefore, it can be concluded, that not only proteolysis within the lysosomal lumen but also within lysosomal membranes regulates important cellular functions and contributes essentially to proteostasis of membrane proteins what may become increasingly compromised in the aged individual.
Collapse
|
7
|
Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem J 2016; 473:1405-22. [DOI: 10.1042/bcj20160156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Intramembrane proteolysis of CD74 by SPPL2a is essential for B- and dendritic cells. We show that CD74 is proteolysed in the luminal third of the transmembrane segment and identify determinants within its transmembrane and luminal membrane-proximal domain facilitating this cleavage.
Collapse
|
8
|
Schröder B. The multifaceted roles of the invariant chain CD74--More than just a chaperone. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1269-81. [PMID: 27033518 DOI: 10.1016/j.bbamcr.2016.03.026] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/13/2023]
Abstract
The invariant chain (CD74) is well known for its essential role in antigen presentation by mediating assembly and subcellular trafficking of the MHCII complex. Beyond this, CD74 has also been implicated in a number of processes independent of MHCII. These include the regulation of endosomal trafficking, cell migration and cellular signalling as surface receptor of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF). In several forms of cancer, CD74 is up-regulated and associated with enhanced proliferation and metastatic potential. In this review, an overview of the diverse biological functions of the CD74 protein is provided with a particular focus on how these may be regulated. In particular, proteolysis of CD74 will be discussed as a central mechanism to control the actions of this important protein at different levels.
Collapse
Affiliation(s)
- Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, D-24118 Kiel, Germany.
| |
Collapse
|
9
|
Kucera A, Borg Distefano M, Berg-Larsen A, Skjeldal F, Repnik U, Bakke O, Progida C. Spatiotemporal Resolution of Rab9 and CI-MPR Dynamics in the Endocytic Pathway. Traffic 2016; 17:211-29. [PMID: 26663757 DOI: 10.1111/tra.12357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition.
Collapse
Affiliation(s)
- Ana Kucera
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Axel Berg-Larsen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Current address: Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Frode Skjeldal
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Pei G, Schnettger L, Bronietzki M, Repnik U, Griffiths G, Gutierrez MG. Interferon-γ-inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages. Mol Biol Cell 2015; 26:3061-70. [PMID: 26157167 PMCID: PMC4551319 DOI: 10.1091/mbc.e14-11-1547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
IFN-γ is able to modulate endosome dynamics in myelocytic cells, but the molecular mechanisms behind this process remain to be elucidated. Rab20 is identified as part of the molecular machinery that links immune activation and control of endocytic function in macrophages. Little is known about the molecular players that regulate changes in the endocytic pathway during immune activation. Here we investigate the role of Rab20 in the endocytic pathway during activation of macrophages. Rab20 is associated with endocytic structures, but the function of this Rab GTPase in the endocytic pathway remains poorly characterized. We find that in macrophages, Rab20 expression and endosomal association significantly increase after interferon-γ (IFN-γ) treatment. Moreover, IFN-γ and Rab20 expression induce a dramatic enlargement of endosomes. These enlarged endosomes are the result of homotypic fusion promoted by Rab20 expression. The expression of Rab20 or the dominant-negative mutant Rab20T19N does not affect transferrin or dextran 70 kDa uptake. However, knockdown of Rab20 accelerates epidermal growth factor (EGF) trafficking to LAMP-2–positive compartments and EGF receptor degradation. Thus this work defines a function for Rab20 in the endocytic pathway during immune activation of macrophages.
Collapse
Affiliation(s)
- Gang Pei
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Laura Schnettger
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Marc Bronietzki
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | | |
Collapse
|
11
|
Hüttl S, Kläsener K, Schweizer M, Schneppenheim J, Oberg HH, Kabelitz D, Reth M, Saftig P, Schröder B. Processing of CD74 by the Intramembrane Protease SPPL2a Is Critical for B Cell Receptor Signaling in Transitional B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:1548-63. [PMID: 26157172 DOI: 10.4049/jimmunol.1403171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/09/2015] [Indexed: 12/16/2022]
Abstract
The invariant chain (CD74), a chaperone in MHC class II-mediated Ag presentation, is sequentially processed by different endosomal proteases. We reported recently that clearance of the final membrane-bound N-terminal fragment (NTF) of CD74 is mediated by the intramembrane protease signal peptide peptidase-like (SPPL)2a, a process critical for B cell development. In mice, SPPL2a deficiency provokes the accumulation of this NTF in endocytic vesicles, which leads to a B cell maturation arrest at the transitional 1 stage. To define the underlying mechanism, we analyzed the impact of SPPL2a deficiency on signaling pathways involved in B cell homeostasis. We demonstrate that tonic as well as BCR-induced activation of the PI3K/Akt pathway is massively compromised in SPPL2a(-/-) B cells and identify this as major cause of the B cell maturation defect in these mice. Altered BCR trafficking induces a reduction of surface IgM in SPPL2a-deficient B cells, leading to a diminished signal transmission via the BCR and the tyrosine kinase Syk. We provide evidence that in SPPL2a(-/-) mice impaired BCR signaling is to a great extent provoked by the accumulating CD74 NTF, which can interact with the BCR and Syk, and that impaired PI3K/Akt signaling and reduced surface IgM are not directly linked processes. In line with disturbances in PI3K/Akt signaling, SPPL2a(-/-) B cells show a dysregulation of the transcription factor FOXO1, causing elevated transcription of proapoptotic genes. We conclude that SPPL2a-mediated processing of CD74 NTF is indispensable to maintain appropriate levels of tonic BCR signaling to promote B cell maturation.
Collapse
Affiliation(s)
- Susann Hüttl
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | - Kathrin Kläsener
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany; Institute for Biology III, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Max Planck Institute for Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Janna Schneppenheim
- Institute of Anatomy, Christian Albrechts University of Kiel, D-24118 Kiel, Germany; and
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian Albrechts University of Kiel, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian Albrechts University of Kiel, D-24105 Kiel, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany; Institute for Biology III, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Max Planck Institute for Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Paul Saftig
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany;
| |
Collapse
|
12
|
The human-specific invariant chain isoform Iip35 modulates Iip33 trafficking and function. Immunol Cell Biol 2014; 92:791-8. [PMID: 24983457 DOI: 10.1038/icb.2014.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/12/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
The invariant chain (Ii) is a multifunctional protein, which has an essential role in the assembly and transport of major histocompatibility complex class II (MHC II) molecules. From a single gene, Ii is synthesized as four different isoforms: Iip33, Iip35, Iip41 and Iip43. Iip35 and Iip43 are specific to humans, and are formed due to an upstream alternative translation site, resulting in an N-terminal extension of 16 amino acids. This extension harbors a strong endoplasmic reticulum (ER) retention motif. Consequently, Iip35 or Iip43 expressed alone are retained in the ER, whereas Iip33 and Iip41 rapidly traffic to the endosomal pathway. Endogenously expressed, the four isoforms form mixed heterotrimers in the ER; however, mainly due to the absence of the Iip35/p43 isoforms in mice, little is known about how they influence general Ii function. In this study, we have co-expressed Iip33 and Iip35 in human cells with and without MHC II to gain a better understanding of how Iip35 isoform influences the cellular properties of Iip33. We find that Iip35 significantly affects the properties of Iip33. In the presence of Iip35, the transport of Iip33 out of the ER is delayed, its half-life is dramatically prolonged and its ability to induce enlarged endosomes and delayed endosomal maturation is abrogated.
Collapse
|
13
|
Wälchli S, Kumari S, Fallang LE, Sand KMK, Yang W, Landsverk OJB, Bakke O, Olweus J, Gregers TF. Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytotoxic T-cell activation. Eur J Immunol 2013; 44:774-84. [PMID: 24293164 DOI: 10.1002/eji.201343671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/13/2013] [Accepted: 11/25/2013] [Indexed: 11/09/2022]
Abstract
Protective T-cell responses depend on efficient presentation of antigen (Ag) in the context of major histocompatibility complex class I (MHCI) and class II (MHCII) molecules. Invariant chain (Ii) serves as a chaperone for MHCII molecules and mediates trafficking to the endosomal pathway. The genetic exchange of the class II-associated Ii peptide (CLIP) with antigenic peptides has proven efficient for loading of MHCII and activation of specific CD4(+) T cells. Here, we investigated if Ii could similarly activate human CD8(+) T cells when used as a vehicle for cytotoxic T-cell (CTL) epitopes. The results show that wild type Ii, and Ii in which CLIP was replaced by known CTL epitopes from the cancer targets MART-1 or CD20, coprecipitated with HLA-A*02:01 and mediated colocalization in the endosomal pathway. Furthermore, HLA-A*02:01-positive cells expressing CLIP-replaced Ii efficiently activated Ag-specific CD8(+) T cells in a TAP- and proteasome-independent manner. Finally, dendritic cells transfected with mRNA encoding IiMART-1 or IiCD20 primed naïve CD8(+) T cells. The results show that Ii carrying antigenic peptides in the CLIP region can promote efficient presentation of the epitopes to CTLs independently of the classical MHCI peptide loading machinery, facilitating novel vaccination strategies against cancer.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fortin JS, Cloutier M, Thibodeau J. Exposing the Specific Roles of the Invariant Chain Isoforms in Shaping the MHC Class II Peptidome. Front Immunol 2013; 4:443. [PMID: 24379812 PMCID: PMC3861868 DOI: 10.3389/fimmu.2013.00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022] Open
Abstract
The peptide repertoire (peptidome) associated with MHC class II molecules (MHCIIs) is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii) chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common properties but also some non-redundant roles. Another layer of complexity arises from the fact that Ii heterotrimerizes, a characteristic that has the potential to affect the maturation of associated MHCIIs in many different ways, depending on the isoform combinations. Here, we emphasize the peptide editing properties of Ii and discuss the impact of the various isoforms on the MHCII peptidome.
Collapse
Affiliation(s)
- Jean-Simon Fortin
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| | - Maryse Cloutier
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| | - Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
15
|
Schneppenheim J, Dressel R, Hüttl S, Lüllmann-Rauch R, Engelke M, Dittmann K, Wienands J, Eskelinen EL, Hermans-Borgmeyer I, Fluhrer R, Saftig P, Schröder B. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. ACTA ACUST UNITED AC 2012; 210:41-58. [PMID: 23267015 PMCID: PMC3549707 DOI: 10.1084/jem.20121069] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The intramembrane protease SPPL2a cleaves the NTF of invariant chain (CD74), which is essential for normal trafficking of MHC class II–containing endosomes and thus for B cell development and function. Regulated intramembrane proteolysis is a central cellular process involved in signal transduction and membrane protein turnover. The presenilin homologue signal-peptide-peptidase-like 2a (SPPL2a) has been implicated in the cleavage of type 2 transmembrane proteins. We show that the invariant chain (li, CD74) of the major histocompatability class II complex (MHCII) undergoes intramembrane proteolysis mediated by SPPL2a. B lymphocytes of SPPL2a−/− mice accumulate an N-terminal fragment (NTF) of CD74, which severely impairs membrane traffic within the endocytic system and leads to an altered response to B cell receptor stimulation, reduced BAFF-R surface expression, and accumulation of MHCII in transitional developmental stage T1 B cells. This results in significant loss of B cell subsets beyond the T1 stage and disrupted humoral immune responses, which can be recovered by additional ablation of CD74. Hence, we provide evidence that regulation of CD74-NTF levels by SPPL2a is indispensable for B cell development and function by maintaining trafficking and integrity of MHCII-containing endosomes, highlighting SPPL2a as a promising pharmacological target for depleting and/or modulating B cells.
Collapse
Affiliation(s)
- Janna Schneppenheim
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Skjeldal FM, Strunze S, Bergeland T, Walseng E, Gregers TF, Bakke O. The fusion of early endosomes induces molecular-motor-driven tubule formation and fission. J Cell Sci 2012; 125:1910-9. [PMID: 22357949 DOI: 10.1242/jcs.092569] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Organelles in the endocytic pathway interact and communicate through the crucial mechanisms of fusion and fission. However, any specific link between fusion and fission has not yet been determined. To study the endosomal interactions with high spatial and temporal resolution, we enlarged the endosomes by two mechanistically different methods: by expression of the MHC-class-II-associated chaperone invariant chain (Ii; or CD74) or Rab5, both of which increased the fusion rate of early endosomes and resulted in enlarged endosomes. Fast homotypic fusions were studied, and immediately after the fusion a highly active and specific tubule formation and fission was observed. These explosive tubule formations following fusion seemed to be a direct effect of fusion. The tubule formations were dependent on microtubule interactions, and specifically controlled by Kif16b and dynein. Our results show that fusion of endosomes is a rapid process that destabilizes the membrane and instantly induces molecular-motor-driven tubule formation and fission.
Collapse
Affiliation(s)
- Frode M Skjeldal
- Centre of Immune Regulation, Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
17
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11:823-36. [PMID: 22076556 DOI: 10.1038/nri3084] [Citation(s) in RCA: 1258] [Impact Index Per Article: 89.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
18
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011. [PMID: 22076556 DOI: 10.1038/nri3084.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
19
|
Requirement for invariant chain in macrophages for Mycobacterium tuberculosis replication and CD1d antigen presentation. Infect Immun 2011; 79:3053-63. [PMID: 21576321 DOI: 10.1128/iai.01108-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular bacterium that persists in phagosomes of myeloid cells. M. tuberculosis-encoded factors support pathogen survival and reduce fusion of phagosomes with bactericidal lysosomal compartments. It is, however, not entirely understood if host factors that mediate endosomal fusion affect M. tuberculosis intracellular localization and survival. Neither is it known if endosomal fusion influences induction of host immune reactivity by M. tuberculosis-infected cells. Lysosomal degradation of M. tuberculosis appears to be pivotal for making available lipid substrates for assembly into lipid-CD1d complexes to allow activation of CD1d-restricted invariant natural killer T (iNKT) cells. To clarify the role for endosomal fusion in M. tuberculosis survival and induction of host CD1d-mediated immune defense, we focused our studies on the invariant chain (Ii). Ii regulates endosome docking and fusion and thereby controls endosomal transport. Through direct binding, Ii also directs intracellular transport of the class II major histocompatibility complex and CD1d. Our findings demonstrate that upon infection of Ii-knockout (Ii(-/-)) macrophages, M. tuberculosis is initially retained in early endosomal antigen 1-positive lysosomal-associated membrane protein 1-negative phagosomes, which results in slightly impaired pathogen replication. The absence of Ii did not affect the ability of uninfected and infected macrophages to produce nitric oxide, tumor necrosis factor alpha, or interleukin-12. However, induction of cell surface CD1d was impaired in infected Ii(-/-) macrophages, and CD1d-restricted iNKT cells were unable to suppress bacterial replication when they were cocultured with M. tuberculosis-infected Ii(-/-) macrophages. Thus, while the host factor Ii is not essential for the formation of the M. tuberculosis-containing vacuole, its presence is crucial for iNKT cell recognition of infected macrophages.
Collapse
|
20
|
Sillé FCM, Martin C, Jayaraman P, Rothchild A, Besra GS, Behar SM, Boes M. Critical role for invariant chain in CD1d-mediated selection and maturation of Vα14-invariant NKT cells. Immunol Lett 2011; 139:33-41. [PMID: 21565221 DOI: 10.1016/j.imlet.2011.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
The development and maturation of Vα14 invariant (i)NKT cells in mice requires CD1d-mediated lipid antigen presentation in the thymus and the periphery. Cortical thymocytes mediate positive selection, while professional APCs are involved in thymic negative selection and in terminal maturation of iNKT cells in the periphery. CD1d requires entry in the endosomal pathway to allow antigen acquisition for assembly as lipid/CD1d complexes for display to iNKT cells. This process involves tyrosine-based sorting motifs in the CD1d cytoplasmic tail and invariant chain (Ii) that CD1d associates with in the endoplasmic reticulum. The function of Ii in iNKT cell thymic development and peripheral maturation had not been fully understood. Using mice deficient in Ii and the Ii-processing enzyme cathepsin S (catS), we addressed this question. Ii(-/-) mice but not catS(-/-) mice developed significantly fewer iNKT cells in thymus, that were less mature as measured by CD44 and NK1.1 expression. Ii(-/-) mice but not catS(-/-) mice developed fewer Vβ7(+) cells in their iNKT TCR repertoire than WT counterparts, indicative of a change in endogenous glycolipid antigen/CD1d-mediated iNKT cell selection. Finally, using a Mycobacterium tuberculosis infection model in macrophages, we show that iNKT developed in Ii(-/-) but not catS(-/-) mice have defective effector function. Our data support a role for professional APCs expressing Ii, but no role for catS in the thymic development and peripheral terminal maturation of iNKT cells.
Collapse
Affiliation(s)
- Fenna C M Sillé
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Koch N, Zacharias M, König A, Temme S, Neumann J, Springer S. Stoichiometry of HLA class II-invariant chain oligomers. PLoS One 2011; 6:e17257. [PMID: 21364959 PMCID: PMC3043101 DOI: 10.1371/journal.pone.0017257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/27/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii.
Collapse
Affiliation(s)
- Norbert Koch
- Division of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Landsverk OJB, Barois N, Gregers TF, Bakke O. Invariant chain increases the half-life of MHC II by delaying endosomal maturation. Immunol Cell Biol 2010; 89:619-29. [PMID: 21116285 DOI: 10.1038/icb.2010.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mounting adaptive immune responses requires the cell surface expression of major histocompatibility class II molecules (MHC II) loaded with antigenic peptide. However, in the absence of antigenic stimuli, the surface population of MHC II is highly dynamic and exhibits a high turnover. Several studies have focused on the regulation of MHC II, and it is now recognized that ubiquitination is one key mechanism operating in the turnover of MHC II in B cells and dendritic cells. Here, we describe how the invariant chain (Ii) can prolong the half-life of MHC II through its action on the endocytic pathway. We find that in cells expressing intermediate-to-high levels of Ii, the half-life of MHC II is increased, with MHC II accumulating in slowly-maturing endosomes. The accumulation in endosomes is not due to retention of new MHC II directed from the endoplasmatic reticulum, as also mature, not Ii associated, MHC II is preserved. We suggest that this alternative endocytic pathway induced by Ii would serve to enhance the rate, quantity and diversity of MHC II antigen presentation by concentrating MHC II into specialized compartments and reducing the need for new MHC II synthesis upon antigen encounter.
Collapse
Affiliation(s)
- Ole J B Landsverk
- Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo and Rikshospitalet, Oslo University Hospital Norway, Oslo, Norway
| | | | | | | |
Collapse
|
23
|
Bird PI, Trapani JA, Villadangos JA. Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 2009; 9:871-82. [PMID: 19935806 DOI: 10.1038/nri2671] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular endolysosomal compartment is dynamic, complex and incompletely understood. Its organelles and constituents vary between different cell types, but endolysosomal proteases are key components of this compartment in all cells. In immune cells, these proteases function in pathogen recognition and elimination, signal processing and cell homeostasis, and they are regulated by dedicated inhibitors. Pathogens can produce analogous proteases to subvert the host immune response. The balance in activity between a protease and its inhibitor can tune the immune response or cause damage as a result of mislocalized proteolysis. In this Review, we highlight recent developments in this area and emphasize the importance of studying the role of endolysosomal proteases, and their natural inhibitors, in the initiation and regulation of immune responses.
Collapse
Affiliation(s)
- Phillip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
24
|
Landsverk OJB, Bakke O, Gregers TF. MHC II and the endocytic pathway: regulation by invariant chain. Scand J Immunol 2009; 70:184-93. [PMID: 19703008 DOI: 10.1111/j.1365-3083.2009.02301.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The major histocompatibility complex (MHC) class I and II molecules perform vital functions in innate and adaptive immune responses towards invading pathogens. MHC class I molecules load peptides in the endoplasmatic reticulum (ER) and display them to the T cell receptors (TcR) on CD8(+) T lymphocytes. MHC class II molecules (MHC II) acquire their peptides in endosomes and present these to the TcR on CD4+ T lymphocytes. They are vital for the generation of humoral immune responses. MHC II assembly in the ER and trafficking to endosomes is guided by a specialized MHC II chaperone termed the invariant chain (Ii). Ii self-associates into a trimer in the ER, this provides a scaffold for the assembly of three MHC II heterodimers and blocks their peptide binding grooves, thereby avoiding premature peptide binding. Ii then transports the nascent MHC II to more or less specialized compartment where they can load peptides derived from internalized pathogens.
Collapse
Affiliation(s)
- O J B Landsverk
- Centre for Immune Regulation, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | | | | |
Collapse
|
25
|
Cell-cycle-dependent binding kinetics for the early endosomal tethering factor EEA1. EMBO Rep 2008; 9:171-8. [PMID: 18188183 DOI: 10.1038/sj.embor.7401152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/23/2007] [Accepted: 11/16/2007] [Indexed: 11/08/2022] Open
Abstract
Early endosomal antigen 1 (EEA1) is a cytosolic protein that specifically binds to early endosomal membranes where it has a crucial role in the tethering process leading to homotypic endosome fusion. Green fluorescent protein-tagged EEA1 (EEA1-GFP) was bound to the endosomal membrane throughout the cell cycle, and measurements using fluorescent recovery after photobleaching showed two fractions: one rapidly exchanging with the cytosolic pool, and the other with a long half-life. The exchange consists of a release and binding process, and we have separated these two by using GFP and photoactivable GFP. The release rate was identical to the exchange rate, showing that the dissociation characteristics determine the cycling of this molecule. During mitosis, we found that the dissociation rate was markedly accelerated and, in addition, the long-lived fraction was markedly reduced. This indicates that a fusion arrest in mitosis is not the result of EEA1 not binding to early endosomes, but rather due to the marked shift in membrane-binding characteristics. This might be a general mechanism to fine-tune and control tethering and fusion of early endosomes.
Collapse
|
26
|
Stern LJ, Potolicchio I, Santambrogio L. MHC class II compartment subtypes: structure and function. Curr Opin Immunol 2005; 18:64-9. [PMID: 16337363 DOI: 10.1016/j.coi.2005.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/24/2005] [Indexed: 11/24/2022]
Abstract
Reports from the past couple of years point to an emerging association of the biogenesis, composition and ultrastructural morphology of MHC class II compartments (MIICs) with their functions in antigen processing and loading. Growth factors and cytokines involved in dendritic cell maturation have been shown to regulate MIIC biogenesis, and the MHC-class-II-associated invariant chain chaperone has been reported to regulate endosomal morphology and vacuolation. Differences among ultrastructurally distinct MIICs have begun to be appreciated with regard to variation in antigen loading capacity and to polarization of MHC class II conformational variants among different compartments. Finally, the MIIC ultrastructure organizes the mechanism of MHC class II surface trafficking. Together, these findings begin to shed light on the connection between MIIC protein content, MIIC morphology and MHC class II-related antigen processing.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology University of Massachusetts Medical School Worcester, MA 01655, USA
| | | | | |
Collapse
|
27
|
Boes M, van der Wel N, Peperzak V, Kim YM, Peters PJ, Ploegh H. In vivo control of endosomal architecture by class II-associated invariant chain and cathepsin S. Eur J Immunol 2005; 35:2552-62. [PMID: 16094690 DOI: 10.1002/eji.200526323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The invariant chain (Ii) is a chaperone that regulates assembly and transport of class II MHC molecules. In the absence of the lysosomal protease cathepsin S (CatS), degradation of Ii is impaired and an Ii remnant that extends from the N terminus to about residue 110 accumulates in class II MHC-positive endosomal compartments, which are enlarged in size and lack multivesicular morphology. In primary B cells examined in vitro and in lymph nodes examined by immuno-electron microscopy, CatS controls architecture of class II-positive endosomal compartments. In a compound mutant mouse that lacks both CatS and Ii, the normal size of endosomes in class II-positive cells is restored, although internal endosomal membranes are absent. Proper degradation of Ii is thus essential for normal endosomal morphology in antigen-presenting cells in vivo.
Collapse
Affiliation(s)
- Marianne Boes
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Kuronita T, Hatano T, Furuyama A, Hirota Y, Masuyama N, Saftig P, Himeno M, Fujita H, Tanaka Y. The NH(2)-terminal transmembrane and lumenal domains of LGP85 are needed for the formation of enlarged endosomes/lysosomes. Traffic 2005; 6:895-906. [PMID: 16138903 DOI: 10.1111/j.1600-0854.2005.00325.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
LGP85 is a lysosomal membrane protein possessing a type III topology and is also known as a member of the CD36 superfamily of proteins, such as CD36 and the scavenger-receptor BI (SR-BI). We have recently demonstrated that overexpression of LGP85 in various mammalian cell lines causes the enlargement of endosomal/lysosomal compartments (ELCs). Using chimeras and deletion mutants, we show here that the lumenal region of LGP85 is necessary, but not sufficient, for the development of ELCs. Effective formation of enlarged ELC was largely dependent on the presence of a preceding NH(2)-terminal transmembrane segment. Analyses of deletion mutants within the lumenal domain further revealed a requirement of the NH(2)-terminal transmembrane proximal lumenal region, with high sequence similarity with SR-BI for the enlargement of ELC. These results suggest that an interaction of the NH(2)-terminal transmembrane proximal lumenal domain of LGP85 with the inner leaflet of endosomal/lysosomal membranes through the connection with the transmembrane domain is an essential determinant for the regulation of endosomal/lysosomal membrane traffic. Interestingly, although the NH(2)-terminal transmembrane domain itself was not sufficient for the enlargement of ELCs, it appeared to be required for direct targeting of LGP85 from the trans-Golgi network to late endosomes/lysosomes. Taken together, these results indicate the involvement of distinct domain of LGP85 in the targeting to, and biogenesis and maintenance of, ELC.
Collapse
Affiliation(s)
- Toshio Kuronita
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Santambrogio L, Potolicchio I, Fessler SP, Wong SH, Raposo G, Strominger JL. Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells. Nat Immunol 2005; 6:1020-8. [PMID: 16170319 DOI: 10.1038/ni1250] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 08/09/2005] [Indexed: 01/01/2023]
Abstract
The involvement of the tetrameric adaptor protein 1 (AP-1) complex in protein sorting in intracellular compartments is not yet completely defined. Here we report that in immature dendritic cells, the beta1- and gamma-subunits of AP-1 underwent caspase 3-catalyzed cleavage in their hinge regions, resulting in removal of the C-terminal 'ear' domains. Cleavage was inhibited by lipopolysaccharide or caspase inhibitors, each of which led to maturation of the dendritic cells, demonstrated by endosomal remodeling and an increase in surface expression of peptide-loaded major histocompatibility complex class II. Overexpression of similarly truncated AP-1 together with 'silencing' of the endogenous genes in immature dendritic cells did not compromise delivery of major histocompatibility complex class II invariant chain to endosomal compartments. However, after lipopolysaccharide-induced maturation, overexpression of truncated AP-1 and 'silencing' of endogenous genes did result in the anomalous surface accumulation of invariant chain and the peptide-editing molecule H2-DM. Thus, at least one function for intact AP-1 is to retain some proteins in endosomes during the dendritic cell maturation process in which others are allowed to egress to the cell surface.
Collapse
Affiliation(s)
- Laura Santambrogio
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Beers C, Burich A, Kleijmeer MJ, Griffith JM, Wong P, Rudensky AY. Cathepsin S controls MHC class II-mediated antigen presentation by epithelial cells in vivo. THE JOURNAL OF IMMUNOLOGY 2005; 174:1205-12. [PMID: 15661874 DOI: 10.4049/jimmunol.174.3.1205] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epithelial cells at environmental interfaces provide protection from potentially harmful agents, including pathogens. In addition to serving as a physical barrier and producing soluble mediators of immunity, such as cytokines or antimicrobial peptides, these cells are thought to function as nonprofessional APCs. In this regard, intestinal epithelial cells are particularly prominent because they express MHC class II molecules at the site of massive antigenic exposure. However, unlike bone marrow-derived professional APC, such as dendritic cells or B cells, little is known about the mechanisms of MHC class II presentation by the nonprofessional APC in vivo. The former use the lysosomal cysteine protease cathepsin S (Cat S), whereas thymic cortical epithelial cells use cathepsin L (Cat L) for invariant chain degradation and MHC class II maturation. Unexpectedly, we found that murine Cat S plays a critical role in invariant chain degradation in intestinal epithelial cells. Furthermore, we report that nonprofessional APC present a class II-bound endogenous peptide to naive CD4 T cells in vivo in a Cat S-dependent fashion. These results suggest that in vivo, both professional and nonprofessional MHC class II-expressing APC use Cat S, but not Cat L, for MHC class II-mediated Ag presentation.
Collapse
Affiliation(s)
- Courtney Beers
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
31
|
Berntzen G, Lunde E, Flobakk M, Andersen JT, Lauvrak V, Sandlie I. Prolonged and increased expression of soluble Fc receptors, IgG and a TCR-Ig fusion protein by transiently transfected adherent 293E cells. J Immunol Methods 2005; 298:93-104. [PMID: 15847800 DOI: 10.1016/j.jim.2005.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 12/13/2004] [Accepted: 01/14/2005] [Indexed: 11/24/2022]
Abstract
In studies of the relation between structure and function of proteins of the immune system, there is a continuous need for screening of a large number of protein variants. To optimise the yield following transient gene expression in small or medium culture volumes, several parameters were investigated. First, secretion levels of a soluble form of human Fcgamma receptor IIA (FcgammaRIIA) were measured after transfection of 293, 293E, 293T as well as COS-7 cell lines. The transgene was under cytomegalovirus (CMV) promoter control on the expression vector pcDNA3, which also contains an SV40 origin of replication (SV40 ori). All 293 cell lines secreted more protein than COS-7 cells. Introduction of the Epstein Barr virus (EBV) origin of replication (oriP) greatly increased the protein expression from the 293E cells, both the amount of protein produced per day and the duration of production. At best, 293E cells secreted fully functional protein for 3-4 weeks provided supernatant was harvested every 2-3 days followed by medium replacement. This method was then used for expression of soluble forms of human FcgammaRI, FcgammaRIIB, the human neonatal Fc receptor (FcRn), a T cell receptor (TCR)-immunoglobulin (Ig) fusion protein, and human IgG3. With an initial culture volume of 5 ml, the yield was approximately 200 microg for FcgammaRIIA, 1.5 microg for FcgammaRI, 5 microg for FcRn, 20 microg for FcgammaRIIB, 40 microg for the TCR-Ig fusion protein and 850 microg for IgG3. Culture expansion during the 3 weeks of culture further increased the yield. Protein yield was also improved by scaling up the initial volume. This approach can provide sufficient amounts of protein for screening experiments, and in the case of antibody, milligrams of recombinant protein for extensive structural analysis can be obtained from one single transient transfection. The approach should be of interest to laboratories that do not have access to a bioreactor but still have a requirement for reasonable amounts of protein to be produced in an easy and cost-effective manner.
Collapse
Affiliation(s)
- Gøril Berntzen
- Department of Molecular Biosciences, University of Oslo, P.O.Box 1041, 0316, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
32
|
Wilson NS, Villadangos JA. Regulation of Antigen Presentation and Cross-Presentation in the Dendritic Cell Network: Facts, Hypothesis, and Immunological Implications. Adv Immunol 2005; 86:241-305. [PMID: 15705424 DOI: 10.1016/s0065-2776(04)86007-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are central to the maintenance of immunological tolerance and the initiation and control of immunity. The antigen-presenting properties of DCs enable them to present a sample of self and foreign proteins, contained within an organism at any given time, to the T-cell repertoire. DCs achieve this communication with T cells by displaying antigenic peptides bound to MHC I and MHC II molecules. Here we review the studies carried out over the past 15 years to characterize these antigen presentation mechanisms, emphasizing their significance in relation to DC function in vivo. The life cycles of different DC populations found in vivo are described. Furthermore, we provide a critical assessment of the studies that examine the mechanisms controlling DC MHC class II antigen presentation, which have often reached contradictory conclusions. Finally, we review findings pertaining to the biological mechanisms that enable DCs to present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. Throughout, we highlight what we consider to be major knowledge gaps in the field and speculate on possible directions for future research.
Collapse
Affiliation(s)
- Nicholas S Wilson
- Immunology Division and The Cooperative Research Center for Vaccine Technology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | |
Collapse
|
33
|
Barabanova YA, Kang HK, Myoung J, Kang B, Bishop GA, Kim BS. Role of the major histocompatibility complex class II transmembrane region in antigen presentation and intracellular trafficking. Immunology 2004; 111:165-72. [PMID: 15027901 PMCID: PMC1782412 DOI: 10.1111/j.0019-2805.2003.01772.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While a sorting signal in the cytoplasmic tail of the major histocompatibility complex (MHC) class II molecules is known to influence their endocytic transport, potential effects of the transmembrane (TM) domain of the MHC class II molecules on endocytic transport remain unclear. We have examined the role of the TM domain by comparing antigen-presenting functions of the wildtype (WT) I-Ab and mutant (MT) I-Ab molecule substituted in the beta-chain TM with alpha chain TM. A20 cells transfected with WT I-Ab were able to present antigen (hen egg lysozyme) better to some hybridomas, while those transfected with MT I-Ab consistently outperformed WT for other hybridomas recognizing different epitopes. This difference in antigen processing and presentation is not caused by the differences in H-2M (DM) requirement or association with Ii. The time required for processing of specific epitopes appears to be different, suggesting sequential involvement of various endocytic compartments in the antigen processing. Although both WT and MT molecules were found in the early endocytic (transferrin receptor-rich) compartments, MT molecules accumulated in these compartments in higher quantities for longer time periods. Similarly, the MT molecule is retained for a longer time period than WT in late endocytic (LAMP-1 associated) compartments. Together, our data indicate an important role of the TM domain of the MHC class II molecules in the intracellular trafficking and, consequently, antigen processing and presentation.
Collapse
Affiliation(s)
- Yelena A Barabanova
- Department of Microbiology-Immunology, North-western University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ikonomov OC, Sbrissa D, Foti M, Carpentier JL, Shisheva A. PIKfyve controls fluid phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol Biol Cell 2003; 14:4581-91. [PMID: 14551253 PMCID: PMC266774 DOI: 10.1091/mbc.e03-04-0222] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mammalian phosphatidylinositol (PtdIns) 5-P/PtdIns 3,5-P2-producing kinase PIKfyve has been implicated in maintaining endomembrane homeostasis in mammalian cells. To address the role of PIKfyve in trafficking processes, we examined the functioning of the biosynthetic, endocytic, and recycling pathways in stable human embryonic kidney 293 cell lines inducibly expressing the wild-type or kinase-defective dominant-negative form. PIKfyveWT or PIKfyveK1831E expression did not affect the processing and lysosomal targeting of newly synthesized procathepsin D. Likewise the rates of transferrin uptake/recycling or epidermal growth factor receptor degradation were not altered upon expression of either protein. In contrast, PIKfyveK1831E but not PIKfyveWT expression markedly impaired the late uptake of fluid phase marker horseradish peroxidase. Inspection of the organelle morphology by confocal microscopy with specific markers in COS cells transiently expressing PIKfyveK1831E showed the Golgi apparatus, end lysosomes, and the recycling compartment indistinguishable from nontransfected cells, despite the dramatic PIKfyveK1831E-induced endomembrane vacuolation. In contrast, we observed a striking effect on the late endocytic compartment, marked by disruption of the dextran-labeled perinuclear endosomal compartment and formation of dispersed enlarged vesicles. Electron microscopy identified the cytoplasmic vacuoles in the PIKfyveK1831E-expressing human embryonic kidney 293 cells as enlarged multivesicular body-like structures with substantially lower number of internal vesicles and membrane whorls. Together, these data indicate that PIKfyve selectively regulates the sorting and traffic of peripheral endosomes containing lysosomaly directed fluid phase cargo through controlling the morphogenesis and function of multivesicular bodies.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
35
|
Stanic AK, Park JJ, Joyce S. Innate self recognition by an invariant, rearranged T-cell receptor and its immune consequences. Immunology 2003; 109:171-84. [PMID: 12757612 PMCID: PMC1782955 DOI: 10.1046/j.1365-2567.2003.01657.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review attempts to illuminate the glycolipid antigen presentation properties of CD1d, how CD1d controls the function of natural T (iNKT) cells and how CD1d and iNKT cells interact to jump-start the immune system. It is postulated that the CD1d-iNKT cell system functions as a sensor, sensing alterations in cellular lipid content by virtue of its affinity for such ligands. The presentation of a neo-self glycolipid, presumably by infectious assault of antigen-presenting cells, activates iNKT cells, which promptly release pro-inflammatory and anti-inflammatory cytokines and jump-start the immune system.
Collapse
Affiliation(s)
- Aleksandar K Stanic
- Department of Microbiology and Immunology, Vanderbilt University School of Medical School, Nashville, TN 37232, USA
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Sebastian Joyce
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|