1
|
Al-Ghabkari A, Huang B, Park M. Aberrant MET Receptor Tyrosine Kinase Signaling in Glioblastoma: Targeted Therapy and Future Directions. Cells 2024; 13:218. [PMID: 38334610 PMCID: PMC10854665 DOI: 10.3390/cells13030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Brain tumors represent a heterogeneous group of neoplasms characterized by a high degree of aggressiveness and a poor prognosis. Despite recent therapeutic advances, the treatment of brain tumors, including glioblastoma (GBM), an aggressive primary brain tumor associated with poor prognosis and resistance to therapy, remains a significant challenge. Receptor tyrosine kinases (RTKs) are critical during development and in adulthood. Dysregulation of RTKs through activating mutations and gene amplification contributes to many human cancers and provides attractive therapeutic targets for treatment. Under physiological conditions, the Met RTK, the hepatocyte growth factor/scatter factor (HGF/SF) receptor, promotes fundamental signaling cascades that modulate epithelial-to-mesenchymal transition (EMT) involved in tissue repair and embryogenesis. In cancer, increased Met activity promotes tumor growth and metastasis by providing signals for proliferation, survival, and migration/invasion. Recent clinical genomic studies have unveiled multiple mechanisms by which MET is genetically altered in GBM, including focal amplification, chromosomal rearrangements generating gene fusions, and a splicing variant mutation (exon 14 skipping, METex14del). Notably, MET overexpression contributes to chemotherapy resistance in GBM by promoting the survival of cancer stem-like cells. This is linked to distinctive Met-induced pathways, such as the upregulation of DNA repair mechanisms, which can protect tumor cells from the cytotoxic effects of chemotherapy. The development of MET-targeted therapies represents a major step forward in the treatment of brain tumours. Preclinical studies have shown that MET-targeted therapies (monoclonal antibodies or small molecule inhibitors) can suppress growth and invasion, enhancing the efficacy of conventional therapies. Early-phase clinical trials have demonstrated promising results with MET-targeted therapies in improving overall survival for patients with recurrent GBM. However, challenges remain, including the need for patient stratification, the optimization of treatment regimens, and the identification of mechanisms of resistance. This review aims to highlight the current understanding of mechanisms underlying MET dysregulation in GBM. In addition, it will focus on the ongoing preclinical and clinical assessment of therapies targeting MET dysregulation in GBM.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
| | - Bruce Huang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Pérez-Baena MJ, Cordero-Pérez FJ, Pérez-Losada J, Holgado-Madruga M. The Role of GAB1 in Cancer. Cancers (Basel) 2023; 15:4179. [PMID: 37627207 PMCID: PMC10453317 DOI: 10.3390/cancers15164179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
GRB2-associated binder 1 (GAB1) is the inaugural member of the GAB/DOS family of pleckstrin homology (PH) domain-containing proteins. Upon receiving various stimuli, GAB1 transitions from the cytoplasm to the membrane where it is phosphorylated by a range of kinases. This event recruits SH2 domain-containing proteins like SHP2, PI3K's p85 subunit, CRK, and others, thereby activating distinct signaling pathways, including MAPK, PI3K/AKT, and JNK. GAB1-deficient embryos succumb in utero, presenting with developmental abnormalities in the heart, placenta, liver, skin, limb, and diaphragm myocytes. Oncogenic mutations have been identified in the context of cancer. GAB1 expression levels are disrupted in various tumors, and elevated levels in patients often portend a worse prognosis in multiple cancer types. This review focuses on GAB1's influence on cellular transformation particularly in proliferation, evasion of apoptosis, metastasis, and angiogenesis-each of these processes being a cancer hallmark. GAB1 also modulates the resistance/sensitivity to antitumor therapies, making it a promising target for future anticancer strategies.
Collapse
Affiliation(s)
- Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | | | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
- Virtual Institute for Good Health and Well Being (GLADE), European Campus of City Universities (EC2U), 86073 Poitiers, France
| |
Collapse
|
3
|
Zhao Y, Ye W, Wang YD, Chen WD. HGF/c-Met: A Key Promoter in Liver Regeneration. Front Pharmacol 2022; 13:808855. [PMID: 35370682 PMCID: PMC8968572 DOI: 10.3389/fphar.2022.808855] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/11/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a peptide-containing multifunctional cytokine that acts on various epithelial cells to regulate cell growth, movement and morphogenesis, and tissue regeneration of injured organs. HGF is sequestered by heparin-like protein in its inactive form and is widespread in the extracellular matrix of most tissues. When the liver loses its average mass, volume, or physiological and biochemical functions due to various reasons, HGF binds to its specific receptor c-Met (cellular mesenchymal-epithelial transition) and transmits the signals into the cells, and triggers the intrinsic kinase activity of c-Met. The downstream cascades of HGF/c-Met include JAK/STAT3, PI3K/Akt/NF-κB, and Ras/Raf pathways, affecting cell proliferation, growth, and survival. HGF has important clinical significance for liver fibrosis, hepatocyte regeneration after inflammation, and liver regeneration after transplantation. And the development of HGF as a biological drug for regenerative therapy of diseases, that is, using recombinant human HGF protein to treat disorders in clinical trials, is underway. This review summarizes the recent findings of the HGF/c-Met signaling functions in liver regeneration.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Guo X, Li T, Xu Y, Xu X, Zhu Z, Zhang Y, Xu J, Xu K, Cheng H, Zhang X, Ke Y. Increased levels of Gab1 and Gab2 adaptor proteins skew interleukin-4 (IL-4) signaling toward M2 macrophage-driven pulmonary fibrosis in mice. J Biol Chem 2017; 292:14003-14015. [PMID: 28687632 DOI: 10.1074/jbc.m117.802066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
M2-polarized macrophages, also known as alternatively activated macrophages, have long been associated with pulmonary fibrosis; however, the mechanism has not been fully defined. Gab1 and Gab2 proteins belong to the Gab family of adaptors and are integral components of the signal specificity in response to various extracellular stimuli. In this report, we found that levels of both Gab1 and Gab2 were elevated in M2-polarized macrophages isolated from bleomycin-induced fibrotic lungs. In vitro Gab1/2 deficiency in bone marrow-derived macrophages abrogated IL-4-mediated M2 polarization. Furthermore, in vivo conditional removal of Gab1 (Gab1MyKO) and germ line knock-out of Gab2 (Gab2-/-) in macrophages prevented a bias toward the M2 phenotype and attenuated bleomycin-induced fibrotic lung remodeling. In support of these observations, Gab1/2 were involved in responses predominated by IL-4 signaling, an essential determinant for macrophage M2 polarization. Further investigation revealed that both Gab1 and -2 are recruited to the IL-4 receptor, synergistically enhancing downstream signal amplification but conferring IL-4 signal preference. Mechanistically, the loss of Gab1 attenuated AKT activation, whereas the absence of Gab2 suppressed STAT6 activation in response to IL-4 stimulation, both of which are commonly attributed to M2-driven pulmonary fibrosis in mice. Taken together, these observations define a non-redundant role of Gab docking proteins in M2 polarization, adding critical insights into the pathogenesis of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohong Guo
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tingting Li
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiayan Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhengyi Zhu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Zhang
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kaihong Xu
- Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Hongqiang Cheng
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| | - Yuehai Ke
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
5
|
Extracellular Signal-Regulated Kinases 1 and 2 Phosphorylate Gab2 To Promote a Negative-Feedback Loop That Attenuates Phosphoinositide 3-Kinase/Akt Signaling. Mol Cell Biol 2017; 37:MCB.00357-16. [PMID: 28096188 DOI: 10.1128/mcb.00357-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022] Open
Abstract
The scaffolding adapter protein Gab2 (Grb2-associated binder) promotes cell proliferation, survival, and motility by engaging several signaling pathways downstream of growth factor and cytokine receptors. In particular, Gab2 plays essential roles in mast cells, as it is required for phosphoinositide 3-kinase (PI3K) activation in response to Kit and the high-affinity IgE receptor. While the positive role of Gab2 in PI3K signaling is well documented, very little is known about the mechanisms that attenuate its function. Here we show that Gab2 becomes phosphorylated on multiple proline-directed sites upon stimulation of the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. We demonstrate that ERK1 and ERK2 interact with Gab2 via a novel docking motif, which is required for subsequent Gab2 phosphorylation in response to ERK1/2 activation. We identified four ERK1/2-dependent phosphorylation sites in Gab2 that prevent the recruitment of the p85 regulatory subunit of PI3K. Using bone marrow-derived mast cells to study Gab2-dependent signaling, we found that the inhibition of ERK1/2 activity promotes Akt signaling in response to Kit and the high-affinity IgE receptor. Together, our results indicate that ERK1/2 participates in a negative-feedback loop that attenuates PI3K/Akt signaling in response to various agonists.
Collapse
|
6
|
Deng H, Fung G, Qiu Y, Wang C, Zhang J, Jin ZG, Luo H. Cleavage of Grb2-Associated Binding Protein 2 by Viral Proteinase 2A during Coxsackievirus Infection. Front Cell Infect Microbiol 2017; 7:85. [PMID: 28361043 PMCID: PMC5352685 DOI: 10.3389/fcimb.2017.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus type B3 (CV-B3), an enterovirus associated with the pathogenesis of several human diseases, subverts, or employs the host intracellular signaling pathways to support effective viral infection. We have previously demonstrated that Grb2-associated binding protein 1 (GAB1), a signaling adaptor protein that serves as a platform for intracellular signaling assembly and transduction, is cleaved upon CV-B3 infection, resulting in a gain-of-pro-viral-function via the modification of GAB1-mediated ERK1/2 pathway. GAB2 is a mammalian homolog of GAB1. In this study, we aim to address whether GAB2 plays a synergistic role with GAB1 in the regulation of CV-B3 replication. Here, we reported that GAB2 is also a target of CV-B3-encoded viral proteinase. We showed that GAB2 is cleaved at G238 during CV-B3 infection by viral proteinase 2A, generating two cleaved fragments of GAB2-N1−237 and GAB2-C238−676. Moreover, knockdown of GAB2 significantly inhibits the synthesis of viral protein and subsequent viral progeny production, accompanied by reduced levels of phosphorylated p38, suggesting a pro-viral function for GAB2 linked to p38 activation. Finally, we examined whether the cleavage of GAB2 can promote viral replication as observed for GAB1 cleavage. We showed that expression of neither GAB2-N1−237 nor GAB2-C238−676 results in enhanced viral infectivity, indicating a loss-of-function, rather than a gain-of-function of GAB2 cleavage in mediating virus replication. Taken together, our findings in this study suggest a novel host defense machinery through which CV-B3 infection is limited by the cleavage of a pro-viral protein.
Collapse
Affiliation(s)
- Haoyu Deng
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouver, BC, Canada; Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Gabriel Fung
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| | - Ye Qiu
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| | - Chen Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouver, BC, Canada; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical ScienceBeijing, China
| | - Jingchun Zhang
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| | - Zheng-Gen Jin
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY, USA
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
7
|
Wang K, Qin S, Liang Z, Zhang Y, Xu Y, Chen A, Guo X, Cheng H, Zhang X, Ke Y. Epithelial disruption of Gab1 perturbs surfactant homeostasis and predisposes mice to lung injuries. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1149-L1159. [PMID: 27793798 DOI: 10.1152/ajplung.00107.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
GRB2-associated-binding protein 1 (Gab1) belongs to Gab adaptor family, which integrates multiple signals in response to the epithelial growth factors. Recent genetic studies identified genetic variants of human Gab1 gene as potential risk factors of asthmatic inflammation. However, the functions of Gab1 in lungs remain largely unknown. Alveolar type-II cells (AT-IIs) are responsible for surfactant homeostasis and essentially regulate lung inflammation following various injuries (3). In this study, in vitro knockdown of Gab1 was shown to decrease the surfactant proteins (SPs) levels in AT-IIs. We further examined in vivo Gab1 functions through alveolar epithelium-specific Gab1 knockout mice (Gab1Δ/Δ). In vivo Gab1 deficiency leads to a decrease in SP synthesis and the appearance of disorganized lamellar bodies. Histological analysis of the lung sections in Gab1Δ/Δ mice shows no apparent pathological alterations or inflammation. However, Gab1Δ/Δ mice demonstrate inflammatory responses during the LPS-induced acute lung injury. Similarly, in mice challenged with bleomycin, fibrotic lesions were found to be aggravated in Gab1Δ/Δ These observations suggest that the abolishment of Gab1 in AT-IIs impairs SP homeostasis, predisposing mice to lung injuries. In addition, we observed that the production of surfactants in AT-IIs overexpressing Gab1 mutants, in which Shp2 phosphatase and PI3K kinase binding sites have been mutated (Gab1ΔShp2, Gab1ΔPI3K), has been considerably attenuated. Together, these findings provide the direct evidence about the roles of docking protein Gab1 in lungs, adding to our understanding of acute and interstitial lung diseases caused by the disruption of alveolar SP homeostasis.
Collapse
Affiliation(s)
- Kai Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenlu Qin
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyu Liang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhang
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchun Xu
- Department of Pulmonary Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and
| | - An Chen
- Department of Neonatal, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China;
| |
Collapse
|
8
|
Ha JR, Siegel PM, Ursini-Siegel J. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness. J Cell Biochem 2016; 117:1971-90. [PMID: 27392311 DOI: 10.1002/jcb.25561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Barrow-McGee R, Kermorgant S. Met endosomal signalling: In the right place, at the right time. Int J Biochem Cell Biol 2014; 49:69-74. [DOI: 10.1016/j.biocel.2014.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
|
10
|
Gärke C, Ytournel F, Sharifi AR, Pimentel ECG, Ludwig A, Simianer H. Footprints of recent selection and variability in breed composition in the Göttingen Minipig genome. Anim Genet 2014; 45:381-91. [PMID: 24684393 DOI: 10.1111/age.12150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2014] [Indexed: 12/01/2022]
Abstract
The Göttingen Minipig (GMP) developed at the University of Göttingen is a synthetic breed that is widely used in medical research and toxicology. It combines the high fertility of the Vietnamese potbellied pig, the low body weight of the Minnesota Minipig and the white coat colour of the German Landrace pig. The aim of this study was to find genomic regions that may have undergone selection since the creation of the breed in the 1960s. Therefore, the whole genome was screened for footprints of recent selection based on single nucleotide polymorphism (SNP) genotypes from the Illumina Porcine SNP60 BeadChip using two methods: the extended haplotype homozygosity (EHH) test and the estimation of the genomic proportion of the three original breeds at each SNP using a Bayesian approach. Local deviations from the average genome-wide breed composition were tested with a permutation-based empirical test. Results for a comprehensive whole-genome scan for both methods are presented. Several regions showing the highest P-values in the EHH test are related to breeding goals relevant in the GMP, such as growth (SOCS2, TXN, DDR2 and GRB10 genes) and white colour (PRLR gene). Additionally, the calculated proportion of the founder breeds diverged significantly in many regions from the pedigree-based expectations and the genome average. The results provide a genome-wide map of selection signatures in the GMP, which leads to a better understanding of selection that took place over the last decades in GMP breed development.
Collapse
Affiliation(s)
- C Gärke
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, 37075, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 2013; 142:316-38. [PMID: 24384534 DOI: 10.1016/j.pharmthera.2013.12.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/14/2022]
Abstract
The Met receptor tyrosine kinase (RTK) is an attractive oncology therapeutic target. Met and its ligand, HGF, play a central role in signaling pathways that are exploited during the oncogenic process, including regulation of cell proliferation, invasion, angiogenesis, and cancer stem cell regulation. Elevated Met and HGF as well as numerous Met genetic alterations have been reported in human cancers and correlate with poor outcome. Alterations of pathways that regulate Met, such as the ubiquitin ligase c-Cbl are also likely to activate Met in the oncogenic setting. Moreover, interactive crosstalk between Met and other receptors such as EGFR, HER2 and VEGFR, underlies a key role for Met in resistance to other RTK-targeted therapies. A large body of preclinical and clinical data exists that supports the use of either antibodies or small molecule inhibitors that target Met or HGF as oncology therapeutics. The prognostic potential of Met expression has been suggested from studies in numerous cancers including lung, renal, liver, head and neck, stomach, and breast. Clinical trials using Met inhibitors indicate that the level of Met expression is a determinant of trial outcome, a finding that is actively under investigation in multiple clinical scenarios. Research in Met prognostics and predictors of drug response is now shifting toward more sophisticated methodologies suitable for development as validated and effective biomarkers that can be partnered with therapeutics to improve patient survival.
Collapse
Affiliation(s)
- Christiane R Maroun
- Mirati Therapeutics, 7150 Frederick-Banting, Suite 200, Montreal, Quebec H4S 2A1, Canada.
| | - Tracey Rowlands
- Mirati Therapeutics, 7150 Frederick-Banting, Suite 200, Montreal, Quebec H4S 2A1, Canada
| |
Collapse
|
12
|
Gadepalli R, Kotla S, Heckle MR, Verma SK, Singh NK, Rao GN. Novel role for p21-activated kinase 2 in thrombin-induced monocyte migration. J Biol Chem 2013; 288:30815-31. [PMID: 24025335 DOI: 10.1074/jbc.m113.463414] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To understand the role of thrombin in inflammation, we tested its effects on migration of THP-1 cells, a human monocytic cell line. Thrombin induced THP-1 cell migration in a dose-dependent manner. Thrombin induced tyrosine phosphorylation of Pyk2, Gab1, and p115 RhoGEF, leading to Rac1- and RhoA-dependent Pak2 activation. Downstream to Pyk2, Gab1 formed a complex with p115 RhoGEF involving their pleckstrin homology domains. Furthermore, inhibition or depletion of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, or Pak2 levels substantially attenuated thrombin-induced THP-1 cell F-actin cytoskeletal remodeling and migration. Inhibition or depletion of PAR1 also blocked thrombin-induced activation of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2, resulting in diminished THP-1 cell F-actin cytoskeletal remodeling and migration. Similarly, depletion of Gα12 negated thrombin-induced Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2 activation, leading to attenuation of THP-1 cell F-actin cytoskeletal remodeling and migration. These novel observations reveal that thrombin induces monocyte/macrophage migration via PAR1-Gα12-dependent Pyk2-mediated Gab1 and p115 RhoGEF interactions, leading to Rac1- and RhoA-targeted Pak2 activation. Thus, these findings provide mechanistic evidence for the role of thrombin and its receptor PAR1 in inflammation.
Collapse
Affiliation(s)
- Ravisekhar Gadepalli
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | | | |
Collapse
|
13
|
Halbach S, Rigbolt KT, Wöhrle FU, Diedrich B, Gretzmeier C, Brummer T, Dengjel J. Alterations of Gab2 signalling complexes in imatinib and dasatinib treated chronic myeloid leukaemia cells. Cell Commun Signal 2013; 11:30. [PMID: 23607741 PMCID: PMC3640961 DOI: 10.1186/1478-811x-11-30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/25/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The Gab2 docking protein acts as an important signal amplifier downstream of various growth factor receptors and Bcr-Abl, the driver of chronic myeloid leukaemia (CML). Despite the success of Bcr-Abl tyrosine kinase inhibitors (TKI) in the therapy of CML, TKI-resistance remains an unsolved problem in the clinic. We have recently shown that Gab2 signalling counteracts the efficacy of four distinct Bcr-Abl inhibitors. In the course of that project, we noticed that two clinically relevant drugs, imatinib and dasatinib, provoke distinct alterations in the electrophoretic mobility of Gab2, its signalling output and protein interactions. As the signalling potential of the docking protein is highly modulated by its phosphorylation status, we set out to obtain more insights into the impact of TKIs on Gab2 phosphorylation. FINDINGS Using stable isotope labelling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry (MS), we show now that imatinib and dasatinib provoke distinct effects on the phosphorylation status and interactome of Gab2. This study identifies several new phosphorylation sites on Gab2 and confirms many sites previously known from other experimental systems. At equimolar concentrations, dasatinib is more effective in preventing Gab2 tyrosine and serine/threonine phosphorylation than imatinib. It also affects the phosphorylation status of more residues than imatinib. In addition, we also identify novel components of the Gab2 signalling complex, such as casein kinases, stathmins and PIP1 as well as known interaction partners whose association with Gab2 is disrupted by imatinib and/or dasatinib. CONCLUSIONS By using MS-based proteomics, we have identified new and confirmed known phosphorylation sites and interaction partners of Gab2, which may play an important role in the regulation of this docking protein. Given the growing importance of Gab2 in several tumour entities we expect that our results will help to understand the complex regulation of Gab2 and how this docking protein can contribute to malignancy.
Collapse
Affiliation(s)
- Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str, 17, Freiburg 79104, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The scaffolding adapter protein Gab2 (Grb2-associated binder) participates in the signaling response evoked by various growth factors and cytokines. Gab2 is overexpressed in several human malignancies, including breast cancer, and was shown to promote mammary epithelial cell migration. The role of Gab2 in the activation of different signaling pathways is well documented, but less is known regarding the feedback mechanisms responsible for its inactivation. We now demonstrate that activation of the Ras/mitogen-activated protein kinase (MAPK) pathway promotes Gab2 phosphorylation on basic consensus motifs. More specifically, we show that RSK (p90 ribosomal S6 kinase) phosphorylates Gab2 on three conserved residues, both in vivo and in vitro. Mutation of these phosphorylation sites does not alter Gab2 binding to Grb2, but instead, we show that Gab2 phosphorylation inhibits the recruitment of the tyrosine phosphatase Shp2 in response to growth factors. Expression of an unphosphorylatable Gab2 mutant in mammary epithelial cells promotes an invasion-like phenotype and increases cell motility. Taken together, these results suggest that RSK is part of a negative-feedback loop that restricts Gab2-dependent epithelial cell motility. On the basis of the widespread role of Gab2 in receptor signaling, these findings also suggest that RSK plays a regulatory function in diverse receptor systems.
Collapse
|
15
|
Gab docking proteins in cardiovascular disease, cancer, and inflammation. Int J Inflam 2013; 2013:141068. [PMID: 23431498 PMCID: PMC3566608 DOI: 10.1155/2013/141068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
The docking proteins of the Grb2-associated binder (Gab) family have emerged as crucial signaling compartments in metazoans. In mammals, the Gab proteins, consisting of Gab1, Gab2, and Gab3, are involved in the amplification and integration of signal transduction evoked by a variety of extracellular stimuli, including growth factors, cytokines, antigens, and other molecules. Gab proteins lack the enzymatic activity themselves; however, when phosphorylated on tyrosine residues, they provide binding sites for multiple Src homology-2 (SH2) domain-containing proteins, such as SH2-containing protein tyrosine phosphatase 2 (SHP2), phosphatidylinositol 3-kinase regulatory subunit p85, phospholipase Cγ, Crk, and GC-GAP. Through these interactions, the Gab proteins transduce signals from activated receptors into pathways with distinct biological functions, thereby contributing to signal diversification. They are known to play crucial roles in numerous physiological processes through their associations with SHP2 and p85. In addition, abnormal Gab protein signaling has been linked to human diseases including cancer, cardiovascular disease, and inflammatory disorders. In this paper, we provide an overview of the structure, effector functions, and regulation of the Gab docking proteins, with a special focus on their associations with cardiovascular disease, cancer, and inflammation.
Collapse
|
16
|
Le Goff A, Ji Z, Leclercq B, Bourette RP, Mougel A, Guerardel C, de Launoit Y, Vicogne J, Goormachtigh G, Fafeur V. Anti-apoptotic role of caspase-cleaved GAB1 adaptor protein in hepatocyte growth factor/scatter factor-MET receptor protein signaling. J Biol Chem 2012; 287:35382-35396. [PMID: 22915589 PMCID: PMC3471683 DOI: 10.1074/jbc.m112.409797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 08/20/2012] [Indexed: 11/06/2022] Open
Abstract
The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling.
Collapse
Affiliation(s)
- Arnaud Le Goff
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France
| | - Zongling Ji
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France; Faculty of Life Sciences, C2222 Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Bérénice Leclercq
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France
| | - Roland P Bourette
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France
| | - Alexandra Mougel
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France
| | - Cateline Guerardel
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France
| | - Yvan de Launoit
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France
| | - Jérôme Vicogne
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France
| | - Gautier Goormachtigh
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France
| | - Véronique Fafeur
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille-Nord de France, Institut Pasteur de Lille, IFR142, Lille, France.
| |
Collapse
|
17
|
Zhu X, Li Z, Pan W, Qin L, Zhu G, Ke Y, Wu J, Bo P, Meng S. Participation of Gab1 and Gab2 in IL-22-mediated keratinocyte proliferation, migration, and differentiation. Mol Cell Biochem 2012; 369:255-66. [PMID: 22851227 DOI: 10.1007/s11010-012-1389-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 07/07/2012] [Indexed: 12/13/2022]
Abstract
Interleukin-22 (IL-22) is one of the key mediators of keratinocyte alterations in psoriasis. IL-22 inhibits keratinocyte differentiation and induces the migration of human keratinocytes. Grb2-associated binder 1 (Gab1) has been shown to mediate epidermal growth factor-induced epidermal growth and differentiation via interaction with the Src homology-2-containing protein-tyrosine phosphatase (Shp2). In this investigation, we explore the role of Gab1 and Gab2 in IL-22-mediated keratinocyte activities. We show that both Gab1 and Gab2 were tyrosine phosphorylated in IL-22-stimulated HaCaT cells and human primary epidermal keratinocytes and contributed to the activation of Extracellular signal regulated kinase 1/2 (Erk1/2) through interaction with Shp2. We further demonstrate that HaCaT cells infected with adenoviruses expressing Shp2-binding-defective Gab1/2 mutants exhibited decreased cell proliferation and migration, as well as increased differentiation. Moreover, similar results were observed in HaCaT cells infected with adenovirus-based small interfering RNAs targeting Gab1 and/or Gab2. Altogether, these data underscore the critical roles of Gab1 and Gab2 in IL-22-mediated HaCaT cell proliferation, migration, and differentiation.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Department of Dermatology of Clinical Medical School, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang Y, Wu J, Demir A, Castillo-Martin M, Melamed RD, Zhang G, Fukunaga-Kanabis M, Perez-Lorenzo R, Zheng B, Silvers DN, Brunner G, Wang S, Rabadan R, Cordon-Cardo C, Celebi JT. GAB2 induces tumor angiogenesis in NRAS-driven melanoma. Oncogene 2012; 32:3627-37. [PMID: 22926523 DOI: 10.1038/onc.2012.367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 12/17/2022]
Abstract
GAB2 is a scaffold protein with diverse upstream and downstream effectors. MAPK and PI3K signaling pathways are known effectors of GAB2. It is amplified and overexpressed in a variety of human tumors including melanoma. Here we show a previously undescribed role for GAB2 in NRAS-driven melanoma. Specifically, we found that GAB2 is co-expressed with mutant NRAS in melanoma cell lines and tumor samples and its expression correlated with metastatic potential. Co-expression of GAB2(WT) and NRAS(G12D) in melanocytes and in melanoma cells increased anchorage-independent growth by providing GAB2-expressing cells a survival advantage through upregulation of BCL-2 family of anti-apoptotic factors. Of note, collaboration of GAB2 with mutant NRAS enhanced tumorigenesis in vivo and led to an increased vessel density with strong CD34 and VEGFR2 activity. We found that GAB2 facilitiated an angiogenic switch by upregulating HIF-1α and VEGF levels. This angiogenic response was significantly suppressed with the MEK inhibitor PD325901. These data suggest that GAB2-mediated signaling cascades collaborate with NRAS-driven downstream activation for conferring an aggressive phenotype in melanoma. Second, we show that GAB2/NRAS signaling axis is non-linear and non-redundant in melanocytes and melanoma, and thus are acting independent of each other. Finally, we establish a link between GAB2 and angiogenesis in melanoma for the first time. In conclusion, our findings provide evidence that GAB2 is a novel regulator of tumor angiogenesis in NRAS-driven melanoma through regulation of HIF-1α and VEGF expressions mediated by RAS-RAF-MEK-ERK signaling.
Collapse
Affiliation(s)
- Y Yang
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rajadurai CV, Havrylov S, Zaoui K, Vaillancourt R, Stuible M, Naujokas M, Zuo D, Tremblay ML, Park M. Met receptor tyrosine kinase signals through a cortactin-Gab1 scaffold complex, to mediate invadopodia. J Cell Sci 2012; 125:2940-53. [PMID: 22366451 PMCID: PMC3434810 DOI: 10.1242/jcs.100834] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive carcinoma cells form actin-rich matrix-degrading protrusions called invadopodia. These structures resemble podosomes produced by some normal cells and play a crucial role in extracellular matrix remodeling. In cancer, formation of invadopodia is strongly associated with invasive potential. Although deregulated signals from the receptor tyrosine kinase Met (also known as hepatocyte growth factor are linked to cancer metastasis and poor prognosis, its role in invadopodia formation is not known. Here we show that stimulation of breast cancer cells with the ligand for Met, hepatocyte growth factor, promotes invadopodia formation, and in aggressive gastric tumor cells where Met is amplified, invadopodia formation is dependent on Met activity. Using both GRB2-associated-binding protein 1 (Gab1)-null fibroblasts and specific knockdown of Gab1 in tumor cells we show that Met-mediated invadopodia formation and cell invasion requires the scaffold protein Gab1. By a structure–function approach, we demonstrate that two proline-rich motifs (P4/5) within Gab1 are essential for invadopodia formation. We identify the actin regulatory protein, cortactin, as a direct interaction partner for Gab1 and show that a Gab1–cortactin interaction is dependent on the SH3 domain of cortactin and the integrity of the P4/5 region of Gab1. Both cortactin and Gab1 localize to invadopodia rosettes in Met-transformed cells and the specific uncoupling of cortactin from Gab1 abrogates invadopodia biogenesis and cell invasion downstream from the Met receptor tyrosine kinase. Met localizes to invadopodia along with cortactin and promotes phosphorylation of cortactin. These findings provide insights into the molecular mechanisms of invadopodia formation and identify Gab1 as a scaffold protein involved in this process.
Collapse
Affiliation(s)
- Charles V Rajadurai
- Department of Biochemistry, McGill University, Montréal Québec H3A 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sattler M, Reddy MM, Hasina R, Gangadhar T, Salgia R. The role of the c-Met pathway in lung cancer and the potential for targeted therapy. Ther Adv Med Oncol 2011; 3:171-84. [PMID: 21904579 DOI: 10.1177/1758834011408636] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatocyte growth factor receptor (HGFR), the product of the MET gene, plays an important role in normal cellular function and oncogenesis. In cancer, HGFR has been implicated in cellular proliferation, cell survival, invasion, cell motility, metastasis and angiogenesis. Activation of HGFR can occur through binding to its ligand, hepatocyte growth factor (HGF), overexpression/amplification, mutation, and/or decreased degradation. Amplification of HGFR can occur de novo or in resistance to therapy. Mutations of HGFR have been described in the tyrosine kinase domain, juxtamembrane domain, or semaphorin domain in a number of tumors. These mutations appear to have gain of function, and also reflect differential sensitivity to therapeutic inhibition. There have been various drugs developed to target HGFR, including antibodies to HGFR/HGF, small-molecule inhibitors against the tyrosine kinase domain of HGFR and downstream targets. Different HGFR inhibitors are currently in clinical trials in lung cancer and a number of solid tumors. Several phase I trials have already been completed, and two specific trials have been reported combining HGFR with epidermal growth factor receptor (EGFR) inhibition in non-small cell lung cancer. In particular, trials involving MetMAb and ARQ197 (tivantinib) have gained interest. Ultimately, as individualized therapies become a reality for cancers, HGFR will be an important molecular target.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
21
|
Nasrazadani A, Van Den Berg CL. c-Jun N-terminal Kinase 2 Regulates Multiple Receptor Tyrosine Kinase Pathways in Mouse Mammary Tumor Growth and Metastasis. Genes Cancer 2011; 2:31-45. [PMID: 21779479 DOI: 10.1177/1947601911400901] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/10/2011] [Accepted: 01/22/2011] [Indexed: 12/17/2022] Open
Abstract
c-Jun N-terminal kinase 2 (JNK2) isoforms are transcribed from the jnk2 gene and are highly homologous with jnk1 and jnk3 transcriptional products. JNK proteins mediate cell proliferation, stress response, and migration when activated by a variety of stimuli, including receptor tyrosine kinases (RTKs), but their ability to influence tumor metastasis is ill defined. To evaluate JNK2 in this manner, we used the highly metastatic 4T1.2 mammary tumor cells. Short hairpin RNA expression directed toward JNK2 (shJNK2) decreases tumor cell invasion. In vivo, shJNK2 expression slows tumor growth and inhibits lung metastasis. Subsequent analysis of tumors showed that shJNK2 tumors express lower GRB2-associated binding protein 2 (GAB2). In vitro, knockdown of JNK2 or GAB2 inhibits Akt activation by hepatocyte growth factor (HGF), insulin, and heregulin-1, while phosphorylation of ERK is constitutive and Src dependent. Knockdown of GAB2 phenocopies knockdown of JNK2 in vivo by reducing tumor growth and metastasis, supporting that JNK2 mediates tumor progression by regulating GAB2. The influence of jnk2 in the host or microenvironment was also evaluated using syngeneic jnk2-/- and jnk2+/+ mice. Jnk2-/- mice experience longer survival and less bone and lung metastasis compared to jnk2+/+ mice after intracardiac injection of 4T1.2 cells. GAB2 has previously been shown to mediate osteoclast differentiation, and osteoclasts are critical mediators of tumor-related osteolysis. Thus, studies focusing on the role of JNK2 on osteoclast differentiation were undertaken. ShJNK2 expression impairs osteoclast differentiation, independently of GAB2. Further, shJNK2 4T1.2 cells express less RANKL, a stimulant of osteoclast differentiation. Together, our data support that JNK2 conveys Src/phosphotidylinositol 3-kinase (PI3K) signals important for tumor growth and metastasis by enhancing GAB2 expression. In osteoclast progenitor cells, JNK2 promotes differentiation, which may contribute to the progression of bone metastasis. These studies identify JNK2 as a tumor and host target to inhibit breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Azadeh Nasrazadani
- Division of Pharmacology/Toxicology, Center for Molecular and Cellular Toxicology, and Drug Dynamics Institute, College of Pharmacy, and Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
22
|
Parachoniak CA, Luo Y, Abella JV, Keen JH, Park M. GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell 2011; 20:751-63. [PMID: 21664574 DOI: 10.1016/j.devcel.2011.05.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/08/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
Abstract
Cells are dependent on correct sorting of activated receptor tyrosine kinases (RTKs) for the outcome of growth factor signaling. Upon activation, RTKs are coupled through the endocytic machinery for degradation or recycled to the cell surface. However, the molecular mechanisms governing RTK recycling are poorly understood. Here, we show that Golgi-localized gamma ear-containing Arf-binding protein 3 (GGA3) interacts selectively with the Met/hepatocyte growth factor RTK when stimulated, to sort it for recycling in association with "gyrating" clathrin. GGA3 loss abrogates Met recycling from a Rab4 endosomal subdomain, resulting in pronounced trafficking of Met toward degradation. Decreased Met recycling attenuates ERK activation and cell migration. Met recycling, sustained ERK activation, and migration require interaction of GGA3 with Arf6 and an unexpected association with the Crk adaptor. The data show that GGA3 defines an active recycling pathway and support a broader role for GGA3-mediated cargo selection in targeting receptors destined for recycling.
Collapse
|
23
|
Chaudhuri A, Xie MH, Yang B, Mahapatra K, Liu J, Marsters S, Bodepudi S, Ashkenazi A. Distinct involvement of the Gab1 and Grb2 adaptor proteins in signal transduction by the related receptor tyrosine kinases RON and MET. J Biol Chem 2011; 286:32762-74. [PMID: 21784853 DOI: 10.1074/jbc.m111.239384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although the signal transduction mechanisms of the receptor tyrosine kinase MET are well defined, less is known about its close relative RON. MET initiates intracellular signaling by autophosphorylation on specific cytoplasmic tyrosines that form docking sites for the adaptor proteins Grb2 and Gab1. Grb2 binds directly and is essential for all of the biological activities of MET. Gab1 docks either directly or indirectly via Grb2 and controls only a subset of MET functions. Because MET and RON possess similar adaptor binding sites, it was anticipated that their adaptor interactions would be conserved. Here we show that in contrast to MET, RON relies primarily on Gab1 for signal transmission. Surprisingly, disruption of the Grb2 docking site of RON or Grb2 depletion augments activity, whereas enhancement of Grb2 binding attenuates Gab1 recruitment and signaling. Hence, RON and MET differ in their adaptor interactions; furthermore, Grb2 performs a novel antagonistic role in the context of RON signaling.
Collapse
Affiliation(s)
- Amitabha Chaudhuri
- Department of Molecular Oncology, Genentech, Inc, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shioyama W, Nakaoka Y, Higuchi K, Minami T, Taniyama Y, Nishida K, Kidoya H, Sonobe T, Naito H, Arita Y, Hashimoto T, Kuroda T, Fujio Y, Shirai M, Takakura N, Morishita R, Yamauchi-Takihara K, Kodama T, Hirano T, Mochizuki N, Komuro I. Docking Protein Gab1 Is an Essential Component of Postnatal Angiogenesis After Ischemia via HGF/c-Met Signaling. Circ Res 2011; 108:664-75. [DOI: 10.1161/circresaha.110.232223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rationale:
Grb2-associated binder (Gab) docking proteins, consisting of Gab1, Gab2, and Gab3, have crucial roles in growth factor–dependent signaling. Various proangiogenic growth factors regulate angiogenesis and endothelial function. However, the roles of Gab proteins in angiogenesis remain elusive.
Objective:
To elucidate the role of Gab proteins in postnatal angiogenesis.
Methods and Results:
Endothelium-specific Gab1 knockout (Gab1ECKO) mice were viable and showed no obvious defects in vascular development. Therefore, we analyzed a hindlimb ischemia (HLI) model of control, Gab1ECKO, or conventional Gab2 knockout (Gab2KO) mice. Intriguingly, impaired blood flow recovery and necrosis in the operated limb was observed in all of Gab1ECKO, but not in control or Gab2KO mice. Among several proangiogenic growth factors, hepatocyte growth factor (HGF) induced the most prominent tyrosine phosphorylation of Gab1 and subsequent complex formation of Gab1 with SHP2 (Src homology-2–containing protein tyrosine phosphatase 2) and phosphatidylinositol 3-kinase subunit p85 in human endothelial cells (ECs). Gab1-SHP2 complex was required for HGF-induced migration and proliferation of ECs via extracellular signal-regulated kinase (ERK)1/2 pathway and for HGF-induced stabilization of ECs via ERK5. In contrast, Gab1-p85 complex regulated activation of AKT and contributed partially to migration of ECs after HGF stimulation. Microarray analysis demonstrated that HGF upregulated angiogenesis-related genes such as
KLF2
(Krüppel-like factor 2) and
Egr1
(early growth response 1) via Gab1-SHP2 complex in human ECs. In Gab1ECKO mice, gene transfer of vascular endothelial growth factor, but not HGF, improved blood flow recovery and ameliorated limb necrosis after HLI.
Conclusion:
Gab1 is essential for postnatal angiogenesis after ischemia via HGF/c-Met signaling.
Collapse
Affiliation(s)
- Wataru Shioyama
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Yoshikazu Nakaoka
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Kaori Higuchi
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Takashi Minami
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Yoshiaki Taniyama
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Keigo Nishida
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Hiroyasu Kidoya
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Takashi Sonobe
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Hisamichi Naito
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Yoh Arita
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Takahiro Hashimoto
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Tadashi Kuroda
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Yasushi Fujio
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Mikiyasu Shirai
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Nobuyuki Takakura
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Ryuichi Morishita
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Keiko Yamauchi-Takihara
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Tatsuhiko Kodama
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Toshio Hirano
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Naoki Mochizuki
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Issei Komuro
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| |
Collapse
|
25
|
Abella JV, Vaillancourt R, Frigault MM, Ponzo MG, Zuo D, Sangwan V, Larose L, Park M. The Gab1 scaffold regulates RTK-dependent dorsal ruffle formation through the adaptor Nck. J Cell Sci 2010; 123:1306-19. [PMID: 20332103 DOI: 10.1242/jcs.062570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarised distribution of signals downstream from receptor tyrosine kinases (RTKs) regulates fundamental cellular processes that control cell migration, growth and morphogenesis. It is poorly understood how RTKs are involved in the localised signalling and actin remodelling required for these processes. Here, we show that the Gab1 scaffold is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream from the Met, EGF and PDGF RTKs. Gab1 associates constitutively with the actin-nucleating factor N-WASP. Following RTK activation, Gab1 recruits Nck, an activator of N-WASP, into a signalling complex localised to dorsal ruffles. Formation of dorsal ruffles requires interaction between Gab1 and Nck, and also requires functional N-WASP. Epithelial cells expressing Gab1DeltaNck (Y407F) exhibit decreased Met-dependent Rac activation, fail to induce dorsal ruffles, and have impaired cell migration and epithelial remodelling. These data show that a Gab1-Nck signalling complex interacts with several RTKs to promote polarised actin remodelling and downstream biological responses.
Collapse
Affiliation(s)
- Jasmine V Abella
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tetzlaff S, Murani E, Schellander K, Ponsuksili S, Wimmers K. Differential expression of growth factors and their receptors indicates their involvement in the inverted teat defect in pigs1. J Anim Sci 2009; 87:3451-7. [DOI: 10.2527/jas.2008-1660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7:22. [PMID: 19737390 PMCID: PMC2747914 DOI: 10.1186/1478-811x-7-22] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023] Open
Abstract
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany.
| | | | | |
Collapse
|
28
|
Distinct Binding Modes of Two Epitopes in Gab2 that Interact with the SH3C Domain of Grb2. Structure 2009; 17:809-22. [DOI: 10.1016/j.str.2009.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/11/2023]
|
29
|
Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the Met receptor. Mol Cell Biol 2009; 29:3018-32. [PMID: 19289496 DOI: 10.1128/mcb.01286-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, induces epithelial cell dispersal, invasion, and morphogenesis, events that require remodeling of the actin cytoskeleton. The scaffold protein Gab1 is essential for these biological responses downstream from Met. We have identified p21-activated kinase 4 (Pak4) as a novel Gab1-interacting protein. We show that in response to HGF, Gab1 and Pak4 associate and colocalize at the cell periphery within lamellipodia. The association between Pak4 and Gab1 is dependent on Gab1 phosphorylation but independent of Pak4 kinase activity. The interaction is mediated through a region in Gab1, which displays no homology to known Gab1 interaction motifs and through the guanine exchange factor-interacting domain of Pak4. In response to HGF, Gab1 and Pak4 synergize to enhance epithelial cell dispersal, migration, and invasion, whereas knockdown of Pak4 attenuates these responses. A Gab1 mutant unable to recruit Pak4 fails to promote epithelial cell dispersal and an invasive morphogenic program in response to HGF, demonstrating a physiological requirement for Gab1-Pak4 association. These data demonstrate a novel association between Gab1 and Pak4 and identify Pak4 as a key integrator of cell migration and invasive growth downstream from the Met receptor.
Collapse
|
30
|
Caron C, Spring K, Laramée M, Chabot C, Cloutier M, Gu H, Royal I. Non-redundant roles of the Gab1 and Gab2 scaffolding adapters in VEGF-mediated signalling, migration, and survival of endothelial cells. Cell Signal 2009; 21:943-53. [PMID: 19233262 DOI: 10.1016/j.cellsig.2009.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/02/2009] [Accepted: 02/10/2009] [Indexed: 01/07/2023]
Abstract
Gab1 was previously described as a positive modulator of Akt, Src, ERK1/2, endothelial cell migration, and capillary formation in response to vascular endothelial growth factor (VEGF). However, its involvement in endothelial cell survival, as well as the potential contribution of the other family member Gab2 to signalling and biological responses remained unknown. Here, we show that Gab2 is tyrosine phosphorylated in a Grb2-dependent manner downstream of activated VEGF receptor-2 (VEGFR2), and that it associates with signalling proteins including PI3K and SHP2, but apparently not with the receptor. Similarly to Gab1, over-expression of Gab2 induces endothelial cell migration in response to VEGF, whereas its depletion using siRNAs results in its reduction. Importantly, depletion of both Gab1 and Gab2 leads to an even greater inhibition of VEGF-induced cell migration. However, contrary to what has been reported for Gab1, the silencing of Gab2 results in increased Src, Akt and ERK1/2 activation, slightly reduced p38 phosphorylation, and up-regulation of Gab1 protein levels. Accordingly, re-expression of Gab2 in Gab2-/- fibroblasts leads to opposite results, suggesting that the modulation of both Gab2 and Gab1 expression in these conditions might contribute to the impaired signalling observed. Consistent with their opposite roles on Akt, the depletion of Gab1, but not of Gab2, results in reduced FOXO1 phosphorylation and VEGF-mediated endothelial cell survival. Mutation of VEGFR2 Y801 and Y1214, which abrogates the phosphorylation of Gab1, also correlates with inhibition of Akt. Altogether, these results underscore the non-redundant and essential roles of Gab1 and Gab2 in endothelial cells, and suggest major contributions of these proteins during in vivo angiogenesis.
Collapse
Affiliation(s)
- Christine Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, 1560 rue Sherbrooke est, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
31
|
Phosphorylation-dependent binding of 14-3-3 terminates signalling by the Gab2 docking protein. EMBO J 2009; 27:2305-16. [PMID: 19172738 DOI: 10.1038/emboj.2008.159] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Grb2-associated binder (Gab)2 functions downstream of a variety of receptor and cytoplasmic tyrosine kinases as a docking platform for specific signal transducers and performs important functions in both normal physiology and oncogenesis. Gab2 signalling is promoted by its association with specific receptors through the adaptor Grb2. However, the molecular mechanisms that attenuate Gab2 signals have remained unclear. We now demonstrate that growth factor-induced phosphorylation of Gab2 on two residues, S210 and T391, leads to recruitment of 14-3-3 proteins. Together, these events mediate negative-feedback regulation, as Gab2(S210A/T391A) exhibits sustained receptor association and signalling and promotes cell proliferation and transformation. Importantly, introduction of constitutive 14-3-3-binding sites into Gab2 renders it refractory to receptor activation, demonstrating that site-selective binding of 14-3-3 proteins is sufficient to terminate Gab2 signalling. Furthermore, this is associated with reduced binding of Grb2. This leads to a model where signal attenuation occurs because 14-3-3 promotes dissociation of Gab2 from Grb2, and thereby uncouples Gab2 from the receptor complex. This represents a novel regulatory mechanism with implications for diverse tyrosine kinase signalling systems.
Collapse
|
32
|
Parachoniak CA, Park M. Distinct recruitment of Eps15 via Its coiled-coil domain is required for efficient down-regulation of the met receptor tyrosine kinase. J Biol Chem 2008; 284:8382-94. [PMID: 19109251 DOI: 10.1074/jbc.m807607200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Down-regulation of receptor tyrosine kinases (RTK) through receptor internalization and degradation is critical for appropriate biological responses. The hepatocyte growth factor RTK (also known as Met) regulates epithelial remodeling, dispersal, and invasion and is deregulated in human cancers. Impaired down-regulation of the Met RTK leads to sustained signaling, cell transformation, and tumorigenesis, hence understanding mechanisms that regulate this process is crucial. Here we report that, following Met activation, the endocytic adaptor protein, Eps15, is recruited to the plasma membrane and becomes both tyrosine-phosphorylated and ubiquitinated. Recruitment of Eps15 requires Met receptor kinase activity and involves two distinct Eps15 domains. Unlike previous reports for the EGF RTK, which requires the Eps15 ubiquitin interacting motif, recruitment of Eps15 to Met involves the coiled-coil domain of Eps15 and the signaling adaptor molecule, Grb2, which binds through a proline-rich motif in the third domain of Eps15. Expression of the coiled-coil domain is sufficient to displace the wild-type Eps15 protein complex from Met, resulting in loss of tyrosine phosphorylation of Eps15. Knockdown of Eps15 results in delayed Met degradation, which can be rescued by expression of Eps15 WT but not an Eps15 mutant lacking the coiled-coil domain, identifying a role for this domain in Eps15-mediated Met down-modulation. This study demonstrates a new mechanism of recruitment for Eps15 downstream of the Met receptor, involving the coiled-coil domain of Eps15 as well as interaction of Eps15 with Grb2. This highlights distinct regulation of Eps15 recruitment and the diversity and adaptability of endocytic molecules in promoting RTK trafficking.
Collapse
Affiliation(s)
- Christine A Parachoniak
- Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
33
|
Yi T, Lee HL, Cha JH, Ko SI, Kim HJ, Shin HI, Woo KM, Ryoo HM, Kim GS, Baek JH. Epidermal growth factor receptor regulates osteoclast differentiation and survival through cross-talking with RANK signaling. J Cell Physiol 2008; 217:409-22. [PMID: 18543257 DOI: 10.1002/jcp.21511] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) functions in various cellular physiological processes such as proliferation, differentiation, and motility. Although recent studies have reported that EGFR signaling is involved in osteoclast recruitment and formation, the molecular mechanism of EGFR signaling for the regulation of osteoclastogenesis remains unclear. We investigated the role of the EGFR in osteoclast differentiation and survival and show that the expression of the EGFR was highly up-regulated by receptor activator of nuclear factor-kappaB ligand (RANKL) during osteoclast differentiation. EGFR-specific tyrosine kinase inhibitors and EGFR knockdown blocked RANKL-dependent osteoclast formation, suggesting that EGFR signaling plays an important role in osteoclastogenesis. EGFR inhibition impaired the RANKL-mediated activation of osteoclastogenic signaling pathways, including c-Jun N-terminal kinase (JNK), NF-kappaB, and Akt/protein kinase B (PKB). In addition, EGFR inhibition in differentiated osteoclasts caused apoptosis through caspase activation. Inhibition of the phosphoinositide-3 kinase (PI3K)-Akt/PKB pathway and subsequent activation of BAD and caspases-9 and -3 may be responsible for the EGFR inhibition-induced apoptosis. The EGFR physically associated with receptor activator of nuclear factor-kappaB (RANK) and Grb2-associated binder 2 (Gab2). Moreover, RANKL transactivated EGFR. These data indicate that EGFR regulates RANKL-activated signaling pathways by cross-talking with RANK, suggesting that the EGFR may play a crucial role as a RANK downstream signal and/or a novel type of RANK co-receptor in osteoclast differentiation and survival.
Collapse
Affiliation(s)
- Tacghee Yi
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The receptor for hepatocyte growth factor (HGF)/scatter factor (SF), Met, controls a program of invasive epithelial growth through the coordination of cell proliferation and survival, cell migration and epithelial morphogenesis. This process is important during embryogenesis and for organ regeneration in the adult. However, when deregulated the HGF/SF-Met signaling axis contributes to tumorigenesis and metastasis. Studies on the oncogenic activation of the Met receptor have shed light on the molecular mechanisms underlying the oncogenic activation of receptor tyrosine kinase (RTKs). More than a decade ago, work on the Met related oncogene, Tpr-Met, revealed the mechanism for activation of RTK-derived oncogenes generated following chromosomal translocation. More recently, studies on the mechanisms of downregulation of the Met RTK highlight a role for loss of downregulation in RTK oncogenic activation.
Collapse
Affiliation(s)
- P Peschard
- Department of Biochemistry, Molecular Oncology Group, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
35
|
Frigault MM, Naujokas MA, Park M. Gab2 requires membrane targeting and the met binding motif to promote lamellipodia, cell scatter, and epithelial morphogenesis downstream from the met receptor. J Cell Physiol 2007; 214:694-705. [PMID: 17894413 DOI: 10.1002/jcp.21264] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gab1 and Gab2 are conserved scaffolding proteins that amplify and integrate signals stimulated by many growth factor receptors including the Met receptor. Gab1 acts to diversify the signal downstream from Met through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. However, whereas Gab1 and Gab2 are both expressed in epithelial cells, Gab2 fails to support a morphogenic response. We demonstrate that Gab1 and Gab2 are divergent in their function whereby Gab1, but not Gab2, promotes lamellipodia formation, and is localized to the membrane of lamellipodia upon Met activation. We have identified activation of ERK1/2 as a requirement for lamellipodia formation. Moreover, activated ERK1/2 are localized to lamellipodia in Gab1 expressing cells but not in cells that overexpress Gab2. By structure-function studies, we identify that enhanced membrane localization conferred through the addition of a myristoylation signal, together with the addition of the direct Met binding motif (MBM) from Gab1, are required to promote lamellipodia and confer a morphogenic signaling response to Gab2. Moreover, the morphogenesis competent myristoylated Gab2MBM promotes localization of activated ERK1/2 to the leading edge of lamellipodia in a similar manner to Gab1. Hence, subcellular localization of the Gab scaffold, as well as the ability of Gab to interact directly with the Met receptor, are both essential components of the morphogenic signaling response which involves lamellipodia formation and the localization of ERK1/2 activation in membrane ruffles.
Collapse
Affiliation(s)
- Melanie M Frigault
- Department of Biochemistry, Molecular Oncology Group, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
36
|
Laramée M, Chabot C, Cloutier M, Stenne R, Holgado-Madruga M, Wong AJ, Royal I. The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem 2006; 282:7758-69. [PMID: 17178724 DOI: 10.1074/jbc.m611327200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is involved in the promotion of endothelial cell proliferation, migration, and capillary formation. These activities are mainly mediated by the VEGFR2 receptor tyrosine kinase that upon stimulation, promotes the activation of numerous proteins including phospholipase Cgamma (PLCgamma), phosphatidylinositol 3-kinase (PI3K), Akt, Src, and ERK1/2. However, the VEGFR2-proximal signaling events leading to the activation of these targets remain ill defined. We have identified the Gab1 adapter as a novel tyrosine-phosphorylated protein in VEGF-stimulated cells. In bovine aortic endothelial cells, Gab1 associates with VEGFR2, Grb2, PI3K, SHP2, Shc, and PLCgamma, and its overexpression enhances VEGF-dependent cell migration. Importantly, silencing of Gab1 using small interfering RNAs leads to the impaired activation of PLCgamma, ERK1/2, Src, and Akt; blocks VEGF-induced endothelial cell migration; and perturbs actin reorganization and capillary formation. In addition, co-expression of VEGFR2 with Gab1 mutants unable to bind SHP2 or PI3K in human embryonic kidney 293 cells and bovine aortic endothelial cells mimics the defects observed in Gab1-depleted cells. Our work thus identifies Gab1 as a novel critical regulatory component of endothelial cell migration and capillary formation and reveals its key role in the activation of VEGF-evoked signaling pathways required for angiogenesis.
Collapse
Affiliation(s)
- Mélanie Laramée
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal/Institut du Cancer de Montréal and Département de Médecine de l'Université de Montréal, Montréal, Québec H2L 4M1, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Hoffmann KM, Tapia JA, Jensen RT. Activation of Gab1 in pancreatic acinar cells: Effects of gastrointestinal growth factors/hormones on stimulation, phosphospecific phosphorylation, translocation and interaction with downstream signaling molecules. Cell Signal 2006; 18:942-54. [PMID: 16185843 DOI: 10.1016/j.cellsig.2005.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/02/2005] [Accepted: 08/18/2005] [Indexed: 12/13/2022]
Abstract
The scaffolding/adapter protein, Gab1, is a key signaling molecule for numerous stimuli including growth factors and G protein-coupled-receptors (GPCRs). A number of questions about Gab1 signaling remain and little is known about the ability of gastrointestinal (GI) hormones/neurotransmitters/growth factors to activate Gab1. Therefore, we examined their ability to activate Gab1 and explored the mechanisms involved using rat pancreatic acini. HGF and EGF stimulated total Gab1 tyrosine phosphorylation (TyrP) and TyrP of Gab1 phospho-specific sites (Y307, Y627), but not other pancreatic growth factors, GI GPCRs (CCK, bombesin, carbachol, VIP, secretin), or agents directly activating PKC or increasing Ca2+. HGF-stimulated Y307 Gab1 TyrP differed in kinetics from total and Y627. Neither GF109203X, nor inhibition of Ca2+ increases altered HGF's effect. In unstimulated cells>95% of Gab1 was cytosolic and HGF stimulated a 3-fold increase in membrane Gab1. HGF stimulated equal increases in pY307 and pY627 Gab1 in cytosol/membrane. HGF stimulated Gab1 association with c-Met, Grb2, SHP2, PI3K, Shc, Crk isoforms and CrkL, but not with PLCgamma1. These results demonstrate that only a subset of pancreatic growth factors (HGF/EGF) stimulates Gab1 signaling and no pancreatic hormones/neurotransmitters. Our results with Gab1 activation with different growth factors, the role of PKC, and its interaction with distant signaling molecules suggest the cellular mechanisms of Gab1 signaling show important differences in different cells. These results show that Gab1 activation plays a central role in HGF's ability to stimulate intracellular transduction cascades in pancreatic acinar cells and this action likely plays a key role in HGF's ability to alter pancreatic cell function (i.e., growth/regeneration).
Collapse
Affiliation(s)
- K Martin Hoffmann
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Room 9C-103, 10 CENTER DR MSC 1804, Bethesda, MD, 20892-1804, United States
| | | | | |
Collapse
|
38
|
Mood K, Saucier C, Bong YS, Lee HS, Park M, Daar IO. Gab1 is required for cell cycle transition, cell proliferation, and transformation induced by an oncogenic met receptor. Mol Biol Cell 2006; 17:3717-28. [PMID: 16775003 PMCID: PMC1556377 DOI: 10.1091/mbc.e06-03-0244] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have shown previously that either Grb2- or Shc-mediated signaling from the oncogenic Met receptor Tpr-Met is sufficient to trigger cell cycle progression in Xenopus oocytes. However, direct binding of these adaptors to Tpr-Met is dispensable, implying that another Met binding partner mediates these responses. In this study, we show that overexpression of Grb2-associated binder 1 (Gab1) promotes cell cycle progression when Tpr-Met is expressed at suboptimal levels. This response requires that Gab1 possess an intact Met-binding motif, the pleckstrin homology domain, and the binding sites for phosphatidylinositol 3-kinase and tyrosine phosphatase SHP-2, but not the Grb2 and CrkII/phospholipase Cgamma binding sites. Importantly, we establish that Gab1-mediated signals are critical for cell cycle transition promoted by the oncogenic Met and fibroblast growth factor receptors, but not by progesterone, the natural inducer of cell cycle transition in Xenopus oocytes. Moreover, Gab1 is essential for Tpr-Met-mediated morphological transformation and proliferation of fibroblasts. This study provides the first evidence that Gab1 is a key binding partner of the Met receptor for induction of cell cycle progression, proliferation, and oncogenic morphological transformation. This study identifies Gab1 and its associated signaling partners as potential therapeutic targets to impair proliferation or transformation of cancer cells in human malignancies harboring a deregulated Met receptor.
Collapse
Affiliation(s)
- Kathleen Mood
- *Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702; and
| | | | - Yong-Sik Bong
- *Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702; and
| | - Hyun-Shik Lee
- *Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702; and
| | - Morag Park
- Molecular Oncology Group and
- Departments of Biochemistry, Medicine, and Oncology, McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Ira O. Daar
- *Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702; and
| |
Collapse
|
39
|
Meng S, Chen Z, Munoz-Antonia T, Wu J. Participation of both Gab1 and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J 2006; 391:143-51. [PMID: 15952937 PMCID: PMC1237148 DOI: 10.1042/bj20050229] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three members of Gab family docking proteins, Gab1, Gab2 and Gab3, have been identified in humans. Previous studies have found that the hepatocyte growth factor preferentially utilizes Gab1 for signalling, whereas Bcr-Abl selectively signals through Gab2. Gab1-SHP2 interaction has been shown to mediate ERK (extracellular-signal-regulated kinase) activation by EGF (epidermal growth factor). However, it was unclear whether EGF selectively utilizes Gab1 for signalling to ERK and whether Gab2 is dispensable in cells where Gab1 and Gab2 are co-expressed. Using T47D and MCF-7 human breast carcinoma cells that express endogenous Gab1 and Gab2, we examined the role of these docking proteins in EGF-induced ERK activation. It was found that EGF induced a similar amount of SHP2-Gab1 and SHP2-Gab2 complexes. Expression of either SHP2-binding defective Gab1 or Gab2 mutant blocked EGF-induced ERK activation. Down-regulation of either Gab1 or Gab2 by siRNAs (small interfering RNAs) effectively inhibited the EGF-stimulated ERK activation pathway and cell migration. Interestingly, the inhibitory effect of Gab1 siRNA could be rescued not only by expression of an exogenous mouse Gab1 but also by an exogenous human Gab2 and vice versa, but not by IRS1 (insulin receptor substrate 1). These results reveal that Gab2 plays a pivotal role in the EGF-induced ERK activation pathway and that it can complement the function of Gab1 in the EGF signalling pathway. Furthermore, Gab1 and Gab2 are critical signalling threshold proteins for ERK activation by EGF.
Collapse
Affiliation(s)
- Songshu Meng
- *Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, U.S.A
- †Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| | - Zhengming Chen
- *Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, U.S.A
- †Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| | - Teresita Munoz-Antonia
- *Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, U.S.A
- †Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| | - Jie Wu
- *Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, U.S.A
- †Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
- ‡Department of Medical Microbiology and Immunology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
- To whom correspondence should be addressed, at Molecular Oncology Program, SRB-3, H. Lee Moffitt Cancer Center and Research Institute (email )
| |
Collapse
|
40
|
Brummer T, Schramek D, Hayes VM, Bennett HL, Caldon CE, Musgrove EA, Daly RJ. Increased Proliferation and Altered Growth Factor Dependence of Human Mammary Epithelial Cells Overexpressing the Gab2 Docking Protein. J Biol Chem 2006; 281:626-37. [PMID: 16253990 DOI: 10.1074/jbc.m509567200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The docking protein Gab2 is a proto-oncogene product that is overexpressed in primary breast cancers. To determine the functional consequences of Gab2 overexpression, we utilized the immortalized human mammary epithelial cell line MCF-10A. In monolayer culture, expression of Gab2 at levels comparable with those detected in human breast cancer cells accelerated epidermal growth factor (EGF)-induced cell cycle progression and was associated with increased basal Stat5 tyrosine phosphorylation and enhanced and/or more sustained EGF-induced Erk and Akt activation. Three-dimensional Matrigel culture of MCF-10A cells resulted in the formation of polarized, growth-arrested acini with hollow lumina. Under these conditions, Gab2 increased cell proliferation during morphogenesis, leading to significantly larger acini, an effect dependent on Gab2 binding to Grb2 and Shp2 and enhanced by recruitment of the p85 subunit of phosphatidylinositol 3-kinase. Pharmacological inhibition of MEK revealed that, in addition to direct activation of phosphatidylinositol 3-kinase, increased Erk signaling also contributed to Gab2-mediated enhancement of acinar size. In addition, Gab2 overcame the proliferative suppression that normally occurs in late stage cultures and conferred independence of the morphogenetic program from exogenous EGF. Finally, higher levels of Gab2 expression led to the formation of large disorganized structures with defective luminal clearance. These findings support a role for Gab2 in mammary tumorigenesis.
Collapse
Affiliation(s)
- Tilman Brummer
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Xie Y, Wang Y, Sun T, Wang F, Trostinskaia A, Puscheck E, Rappolee DA. Six post-implantation lethal knockouts of genes for lipophilic MAPK pathway proteins are expressed in preimplantation mouse embryos and trophoblast stem cells. Mol Reprod Dev 2005; 71:1-11. [PMID: 15736129 DOI: 10.1002/mrd.20116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways play an important role in controlling embryonic proliferation and differentiation. It has been demonstrated that sequential lipophilic signal transduction mediators that participate in the MAPK pathway are null post-implantation lethal. It is not clear why the lethality of these null mutants arises after implantation and not before. One hypothesis is that the gene product of these post-implantation lethal null mutants are not present before implantation in normal embryos and do not have function until after implantation. To test this hypothesis, we selected a set of lipophilic genes mediating MAPK signal transduction pathways whose null mutants result in early peri-implantation or placental lethality. These included FRS2alpha, GAB1, GRB2, SOS1, Raf-B, and Raf1. Products of these selected genes were detected and their locations and functions indicated by indirect immunocytochemistry and Western blotting for proteins and RT-polymerase chain reaction (PCR) for mRNA transcription. We report here that all six signal mediators are detected at the protein level in preimplantation mouse embryo, placental trophoblasts, and in cultured trophoblast stem cells (TSC). Proteins are all detected in E3.5 embryos at a time when the first known mitogenic intercellular communication has been documented. mRNA transcripts of two post-implantation null mutant genes are expressed in mouse preimplantation embryos and unfertilized eggs. These mRNA transcripts were detected as maternal mRNA in unfertilized eggs that could delay the lethality of null mutants. All of the proteins were detected in the cytoplasm or in the cell membrane. This study of spatial and temporal expression revealed that all of these six null mutants post-implantation genes in MAPK pathway are expressed and, where tested, phosphorylated/activated proteins are detected in the blastocyst. Studies on RNA expression using RT-PCR suggest that maternal RNA could play an important role in delaying the presence of the lethal phenotype of null mutations.
Collapse
Affiliation(s)
- Yufen Xie
- CS Mott Center for Human Growth and Development of Ob/Gyn, Wayne State University School of Medicine, East Hancock, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Podar K, Mostoslavsky G, Sattler M, Tai YT, Hayashi T, Catley LP, Hideshima T, Mulligan RC, Chauhan D, Anderson KC. Critical Role for Hematopoietic Cell Kinase (Hck)-mediated Phosphorylation of Gab1 and Gab2 Docking Proteins in Interleukin 6-induced Proliferation and Survival of Multiple Myeloma Cells. J Biol Chem 2004; 279:21658-65. [PMID: 15010462 DOI: 10.1074/jbc.m305783200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-6 (LI-6) is a known growth and survival factor in multiple myeloma via activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling cascade. In this report we show that Grb2-associated binder (Gab) family adapter proteins Gab1 and Gab2 are expressed by multiple myeloma cells; and that interleukin-6 induces their tyrosine phosphorylation and association with downstream signaling molecules. We further demonstrate that these events are Src family tyrosine kinase-dependent and specifically identify the role of hematopoietic cell kinase (Hck) as a new Gab family adapter protein kinase. Conversely, inhibition of Src family tyrosine kinases by the pyrazolopyrimidine PP2, as in kinase-inactive Hck mutants, significantly reduces IL-6-triggered activation of extracellular signal-regulated kinase and AKT-1, leading to significant reduction of multiple myeloma cell proliferation and survival. Taken together, these results delineate a key role for Hck-mediated phosphorylation of Gab1 and Gab2 docking proteins in IL-6-induced proliferation and survival of multiple myeloma cells and identify tyrosine kinases and downstream adapter proteins as potential new therapeutic targets in multiple myeloma.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
van den Akker E, van Dijk T, Parren-van Amelsvoort M, Grossmann KS, Schaeper U, Toney-Earley K, Waltz SE, Löwenberg B, von Lindern M. Tyrosine kinase receptor RON functions downstream of the erythropoietin receptor to induce expansion of erythroid progenitors. Blood 2004; 103:4457-65. [PMID: 14982882 DOI: 10.1182/blood-2003-08-2713] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Erythropoietin (EPO) is required for cell survival during differentiation and for progenitor expansion during stress erythropoiesis. Although signaling pathways may couple directly to docking sites on the EPO receptor (EpoR), additional docking molecules expand the signaling platform of the receptor. We studied the roles of the docking molecules Grb2-associated binder-1 (Gab1) and Gab2 in EPO-induced signal transduction and erythropoiesis. Inhibitors of phosphatidylinositide 3-kinase and Src kinases suppressed EPO-dependent phosphorylation of Gab2. In contrast, Gab1 activation depends on recruitment and phosphorylation by the tyrosine kinase receptor RON, with which it is constitutively associated. RON activation induces the phosphorylation of Gab1, mitogen-activated protein kinase (MAPK), and protein kinase B (PKB) but not of signal transducer and activator of transcription 5 (Stat5). RON activation was sufficient to replace EPO in progenitor expansion but not in differentiation. In conclusion, we elucidated a novel mechanism specifically involved in the expansion of erythroblasts involving RON as a downstream target of the EpoR.
Collapse
Affiliation(s)
- Emile van den Akker
- Department of Hematology, Erasmus MC, PO Box 1738, 3000 DR Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chan PC, Chen YL, Cheng CH, Yu KC, Cary LA, Shu KH, Ho WL, Chen HC. Src phosphorylates Grb2-associated binder 1 upon hepatocyte growth factor stimulation. J Biol Chem 2003; 278:44075-82. [PMID: 12941962 DOI: 10.1074/jbc.m305745200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Grb2-associated binder 1 (Gab1) is known to play an important role in hepatocyte growth factor (HGF) signaling, which rapidly becomes tyrosine-phosphorylated upon HGF stimulation. In this study, we found that the tyrosine phosphorylation of Gab1 in the cells derived from Src/Yes/Fyn null mouse embryos was approximately 40% lower than that in their wild type counterparts upon HGF stimulation. Increased expression of wild-type Src enhanced HGF-induced phosphorylation of Gab1, and, in contrast, expression of the Src kinase-deficient mutant or treatment of the specific Src inhibitor PP1 suppressed it. Expression of a constitutively active Src mutant (Y527F) or oncogenic v-Src led to a prominent increase in Gab1 phosphorylation independent of HGF stimulation. Moreover, Src interacted with Gab1 via both its Src homology 2 and 3 domains and was capable of phosphorylating purified Gab1 in vitro. Finally, the increased phosphorylation of Gab1 by Src selectively potentiated HGF-induced activation of ERK and AKT. Taken together, our results establish a new role for Src in HGF-induced Gab1 phosphorylation.
Collapse
Affiliation(s)
- Po-Chao Chan
- Department of Life Sciences and the Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ischenko I, Petrenko O, Gu H, Hayman MJ. Scaffolding protein Gab2 mediates fibroblast transformation by the SEA tyrosine kinase. Oncogene 2003; 22:6311-8. [PMID: 14508511 DOI: 10.1038/sj.onc.1206742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transformation of fibroblasts by V-SEA involves activation of the ERK and phosphatidylinositol 3-kinase (PI3K) pathways. Effector proteins that are key mediators of the ERK and PI3K pathways, namely Grb2, the tyrosine phosphatase, SHP2 and PI3K, interact with the two phosphotyrosines found in the bidentate motif in the carboxy-terminal region of V-SEA. Genetic analysis demonstrated that while Y557 was a primary binding site and thus activator of the PI3K-Akt pathway, Y564 also contributed to the activation of this pathway. Y564 was located within a Grb2-binding motif, this raised the possibility that a protein that associated with Grb2 might be important for this PI3K activation. The scaffolding proteins Gab1 and/or Gab2 were candidates for this role. In this report, we demonstrate that V-SEA preferentially interacts with Gab2. Furthermore by using Gab2 null fibroblasts, we demonstrate that Gab2 is essential for fibroblast transformation by V-SEA. Using mutant forms of Gab2, we show that activation of the PI3K-Akt pathway via Gab2 is required for V-SEA-induced transformation. However, efficient fibroblast transformation also requires the SHP2 interaction site on Gab2.
Collapse
Affiliation(s)
- Irene Ischenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | | | | | |
Collapse
|
46
|
Lock LS, Frigault MM, Saucier C, Park M. Grb2-independent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the Met receptor kinase domain. J Biol Chem 2003; 278:30083-90. [PMID: 12766170 DOI: 10.1074/jbc.m302675200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gab1 docking protein forms a platform for the assembly of a multiprotein signaling complex downstream from receptor tyrosine kinases. In general, recruitment of Gab1 occurs indirectly, via the adapter protein Grb2. In addition, Gab1 interacts with the Met/hepatocyte growth factor receptor in a Grb2-independent manner. This interaction requires a Met binding domain (MBD) in Gab1 and is essential for Met-mediated epithelial morphogenesis. The Gab1 MBD has been proposed to act as a phosphotyrosine binding domain that binds Tyr-1349 in the Met receptor. We show that a 16-amino acid motif within the Gab1 MBD is sufficient for interaction with the Met receptor, suggesting that it is unlikely that the Gab1 MBD forms a structured domain. Alternatively, the structural integrity of the Met receptor, and residues upstream of Tyr-1349 located in the C-terminal lobe of the kinase domain, are required for Grb2-independent interaction with the Gab1 MBD. Moreover, the substitution of Tyr-1349 with an acidic residue allows for the recruitment of the Gab1 MBD and for phosphorylation of Gab1. We propose that Gab1 and the Met receptor interact in a novel manner, such that the activated kinase domain of Met and the negative charge of phosphotyrosine 1349 engage the Gab1 MBD as an extended peptide ligand.
Collapse
Affiliation(s)
- Lisa S Lock
- Department of Biochemistry, Molecular Oncology Group, McGill University Health Centre, Montreal, Quebec H3A 1A1, Canada
| | | | | | | |
Collapse
|
47
|
Saito T, Yamasaki S. Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 2003; 192:143-60. [PMID: 12670402 DOI: 10.1034/j.1600-065x.2003.00022.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antigen recognition by the T cell receptor (TCR) complex induces the formation of a TCR signalosome by recruiting various signaling molecules, generating the recognition signals for T cell activation. The activation status and functional outcome are positively and negatively regulated by dynamic organization of the signalosome and by costimulation signals. We have studied the negative regulation of T cell activation, particularly through inhibitory adapters and costimulation receptors that are little expressed in resting cells but are induced upon T cell activation. We described Grb-associated binder 2 (Gab2) and cytotoxic T lymphocyte antigen-4 (CTLA-4) as a representative inhibitory adapter and a negative costimulation receptor, respectively, both of which exhibit negative feedback. Gab2 functions as a signal branch for activation vs. inhibition, as phosphorylation of either Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) or Gab2 by zeta-associated protein of 70 kDa (ZAP-70) determines the fate of the response. As a professional inhibitory receptor, CTLA-4 inhibits T cell response by competition of ligand binding with positive costimulator receptor CD28, and also induces inhibitory signaling. The trafficking and the cell surface expression of CTLA-4 are dynamically regulated and induced. CTLA-4 is accumulated in lysosomes and secreted to the T cell-APC contact site upon TCR stimulation. As T cell activation proceeds, these inhibitory adapters and costimulation receptors are induced and suppress/regulate the responses as negative feedback.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | |
Collapse
|
48
|
Maroun CR, Naujokas MA, Park M. Membrane targeting of Grb2-associated binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell 2003; 14:1691-708. [PMID: 12686619 PMCID: PMC153132 DOI: 10.1091/mbc.e02-06-0352] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness.
Collapse
Affiliation(s)
- Christiane R Maroun
- Department of Medicine, Molecular Oncology Group, McGill University Health Centre, McGill University, Montreal, Quebec, H3A 1A1, Canada
| | | | | |
Collapse
|
49
|
Minoguchi M, Minoguchi S, Aki D, Joo A, Yamamoto T, Yumioka T, Matsuda T, Yoshimura A. STAP-2/BKS, an adaptor/docking protein, modulates STAT3 activation in acute-phase response through its YXXQ motif. J Biol Chem 2003; 278:11182-9. [PMID: 12540842 DOI: 10.1074/jbc.m211230200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
As a c-fms-interacting protein, we cloned a novel adaptor molecule, signal-transducing adaptor protein-2 (STAP-2), which contains pleckstrin homology- and Src homology 2-like (PH and SRC) domains and a proline-rich region. STAP-2 is structurally related to STAP-1/BRDG1 (BCR downstream signaling-1), which we had cloned previously from hematopoietic stem cells. STAP-2 is a murine homologue of a recently identified adaptor molecule, BKS, a substrate of BRK tyrosine kinase. STAP-2 was tyrosine-phosphorylated and translocated to the plasma membrane in response to epidermal growth factor when overexpressed in fibroblastic cells. To define the function of STAP-2, we generated mice lacking the STAP-2 gene. STAP-2 mRNA was strongly induced in the liver in response to lipopolysaccharide and in isolated hepatocytes in response to interleukin-6. In the STAP-2(-/-) hepatocytes, the interleukin-6-induced expression of acute-phase (AP) genes and the tyrosine-phosphorylation level of STAT3 were reduced specifically at the late phase (6-24 h) of the response. These data indicate that STAP-2 plays a regulatory role in the AP response in systemic inflammation. STAP-2 contains a YXXQ motif in the C-terminal region that is a potential STAT3-binding site. Overexpression of wild-type STAP-2, but not of mutants lacking this motif, enhanced the AP response element reporter activity and an AP protein production. These data suggest that STAP-2 is a new class of adaptor molecule that modulates STAT3 activity through its YXXQ motif.
Collapse
Affiliation(s)
- Mayu Minoguchi
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Tyrosine phosphorylation plays an important role in controlling cellular growth, differentiation and function. Abnormal regulation of tyrosine phosphorylation can result in human diseases such as cancer. A major challenge of signal transduction research is to determine how the initial activation of protein-tyrosine kinases (PTKs) by extracellular stimuli triggers multiple downstream signaling cascades, which ultimately elicit diverse cellular responses. Recent studies reveal that members of the Gab/Dos subfamily of scaffolding adaptor proteins (hereafter, "Gab proteins") play a crucial role in transmitting key signals that control cell growth, differentiation and function from multiple receptors. Here, we review the structure, mechanism of action and function of these interesting molecules in normal biology and disease.
Collapse
Affiliation(s)
- Haihua Gu
- Cancer Biology Program, Division of Hematology-Oncology, Dept of Medicine, Beth Israel-Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| | | |
Collapse
|