1
|
Muciño-Hernández G, Acevo-Rodríguez PS, Cabrera-Benitez S, Guerrero AO, Merchant-Larios H, Castro-Obregón S. Nucleophagy contributes to genome stability through degradation of type II topoisomerases A and B and nucleolar components. J Cell Sci 2023; 136:286548. [PMID: 36633090 PMCID: PMC10112964 DOI: 10.1242/jcs.260563] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood. Here, we describe that primary mouse embryonic fibroblasts develop a basal level of nuclear buds and micronuclei, which increase after etoposide-induced DNA double-stranded breaks. Both basal and induced nuclear buds and micronuclei colocalize with the autophagic proteins BECN1 and LC3B (also known as MAP1LC3B) and with acidic vesicles, suggesting their clearance by nucleophagy. Some of the nuclear alterations also contain autophagic proteins and type II DNA topoisomerases (TOP2A and TOP2B), or the nucleolar protein fibrillarin, implying they are also targets of nucleophagy. We propose that basal nucleophagy contributes to genome and nuclear stability, as well as in response to DNA damage.
Collapse
Affiliation(s)
- Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Pilar Sarah Acevo-Rodríguez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Sandra Cabrera-Benitez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Adán Oswaldo Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
2
|
Sun Y, Nitiss JL, Pommier Y. SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases. Front Mol Biosci 2022; 9:871161. [PMID: 35463961 PMCID: PMC9019546 DOI: 10.3389/fmolb.2022.871161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
Topoisomerases play crucial roles in DNA metabolism that include replication, transcription, recombination, and chromatin structure by manipulating DNA structures arising in double-stranded DNA. These proteins play key enzymatic roles in a variety of cellular processes and are also likely to play structural roles. Topoisomerases allow topological transformations by introducing transient breaks in DNA by a transesterification reaction between a tyrosine residue of the enzyme and DNA. The cleavage reaction leads to a unique enzyme intermediate that allows cutting DNA while minimizing the potential for damage-induced genetic changes. Nonetheless, topoisomerase-mediated cleavage has the potential for inducing genome instability if the enzyme-mediated DNA resealing is impaired. Regulation of topoisomerase functions is accomplished by post-translational modifications including phosphorylation, polyADP-ribosylation, ubiquitylation, and SUMOylation. These modifications modulate enzyme activity and likely play key roles in determining sites of enzyme action and enzyme stability. Topoisomerase-mediated DNA cleavage and rejoining are affected by a variety of conditions including the action of small molecules, topoisomerase mutations, and DNA structural forms which permit the conversion of the short-lived cleavage intermediate to persistent topoisomerase DNA-protein crosslink (TOP-DPC). Recognition and processing of TOP-DPCs utilizes many of the same post-translational modifications that regulate enzyme activity. This review focuses on SUMOylation of topoisomerases, which has been demonstrated to be a key modification of both type I and type II topoisomerases. Special emphasis is placed on recent studies that indicate how SUMOylation regulates topoisomerase function in unperturbed cells and the unique roles that SUMOylation plays in repairing damage arising from topoisomerase malfunction.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - John L. Nitiss
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, IL, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
3
|
Anka AU, Usman AB, Kaoje AN, Kabir RM, Bala A, Kazem Arki M, Hossein-Khannazer N, Azizi G. Potential mechanisms of some selected heavy metals in the induction of inflammation and autoimmunity. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inflammation is a physiological event that protects tissues from infection and injury. Chronic inflammation causes immune cell over activation and sustained release of inflammatory cytokines and chemokines cause pathologic conditions including autoimmune diseases. Heavy metals exposure affects innate and adaptive immune systems through triggering inflammatory responses. It seems that extended inflammatory responses could accelerate heavy metal-induced autoimmunity. In the present review we discuss the exposure route and toxicity of Cadmium (Cd), Lead (Pb), Mercury (Hg), Vanadium (V) and Platinum (Pt) and their effects on inflammatory responses by innate and adaptive immune system and autoimmunity.
Collapse
Affiliation(s)
- Abubakar U Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abubakar B Usman
- Department of Immunology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abubakar N Kaoje
- Department of Health Services, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Ramadan M Kabir
- Laboratory Department, Murtala Muhammad Specialist Hospital, Kano, Nigeria
| | - Aliyu Bala
- Hematology Department, Federal Medical Center, Katsina, Nigeria
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zagirova D, Autenried R, Nelson ME, Rezvani K. Proteasome Complexes and Their Heterogeneity in Colorectal, Breast and Pancreatic Cancers. J Cancer 2021; 12:2472-2487. [PMID: 33854609 PMCID: PMC8040722 DOI: 10.7150/jca.52414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Targeting the ubiquitin-proteasome system (UPS) - in particular, the proteasome complex - has emerged as an attractive novel cancer therapy. While several proteasome inhibitors have been successfully approved by the Food and Drug Administration for the treatment of hematological malignancies, the clinical efficacy of these inhibitors is unexpectedly lower in the treatment of solid tumors due to the functional and structural heterogeneity of proteasomes in solid tumors. There are ongoing trials to examine the effectiveness of compound and novel proteasome inhibitors that can target solid tumors either alone or in combination with conventional chemotherapeutic agents. The modest therapeutic efficacy of proteasome inhibitors such as bortezomib in solid malignancies demands further research to clarify the exact effects of these proteasome inhibitors on different proteasomes present in cancer cells. The structural, cellular localization and functional analysis of the proteasome complexes in solid tumors originated from different tissues provides new insights into the diversity of proteasomes' responses to inhibitors. In this study, we used an optimized iodixanol gradient ultracentrifugation to purify a native form of proteasome complexes with their intact associated protein partners enriched within distinct cellular compartments. It is therefore possible to isolate proteasome subcomplexes with far greater resolution than sucrose or glycerol fractionations. We have identified differences in the catalytic activities, subcellular distribution, and inhibitor sensitivity of cytoplasmic proteasomes isolated from human colon, breast, and pancreatic cancer cell lines. Our developed techniques and generated results will serve as a valuable guideline for investigators developing a new generation of proteasome inhibitors as an effective targeted therapy for solid tumors.
Collapse
Affiliation(s)
- Diana Zagirova
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rebecca Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan E Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| |
Collapse
|
5
|
Sampuda KM, Riley M, Boyd L. Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans. BMC Cell Biol 2017; 18:18. [PMID: 28424053 PMCID: PMC5395811 DOI: 10.1186/s12860-017-0136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/07/2017] [Indexed: 01/30/2023] Open
Abstract
Background Environmental stress can affect the viability or fecundity of an organism. Environmental stressors may affect the genome or the proteome and can cause cellular distress by contributing to protein damage or misfolding. This study examines the cellular response to environmental stress in the germline of the nematode, C. elegans. Results Salt stress, oxidative stress, and starvation, but not heat shock, induce the relocalization of ubiquitin, proteasome, and the TIAR-2 protein into distinct subnuclear regions referred to as stress induced nuclear granules (SINGs). The SINGs form within 1 h of stress initiation and do not require intertissue signaling. K48-linked polyubiquitin chains but not K63 chains are enriched in SINGs. Worms with a mutation in the conjugating enzyme, ubc-18, do not form SINGs. Additionally, knockdown of ubc-20 and ubc-22 reduces the level of SING formation as does knockdown of the ubiquitin ligase chn-1, a CHIP homolog. The nuclear import machinery is required for SING formation. Stressed embryos containing SINGs fail to hatch and cell division in these embryos is halted. The formation of SINGs can be prevented by pre-exposure to a brief period of heat shock before stress exposure. Heat shock inhibition of SINGs is dependent upon the HSF-1 transcription factor. Conclusions The heat shock results suggest that chaperone expression can prevent SING formation and that the accumulation of damaged or misfolded proteins is a necessary precursor to SING formation. Thus, SINGs may be part of a novel protein quality control system. The data suggest an interesting model where SINGs represent sites of localized protein degradation for nuclear or cytosolic proteins. Thus, the physiological impacts of environmental stress may begin at the cellular level with the formation of stress induced nuclear granules. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0136-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine M Sampuda
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA
| | - Mason Riley
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA
| | - Lynn Boyd
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
6
|
Chang CH, Hsu FC, Lee SC, Lo YS, Wang JD, Shaw J, Taliansky M, Chang BY, Hsu YH, Lin NS. The Nucleolar Fibrillarin Protein Is Required for Helper Virus-Independent Long-Distance Trafficking of a Subviral Satellite RNA in Plants. THE PLANT CELL 2016; 28:2586-2602. [PMID: 27702772 PMCID: PMC5134973 DOI: 10.1105/tpc.16.00071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 05/03/2023]
Abstract
RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Institute of Plant Biology, National Taiwan University, Taipei 11106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fu-Chen Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Chuan Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yih-Shan Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Da Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jane Shaw
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Michael Taliansky
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Ban-Yang Chang
- Department of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Institute of Plant Biology, National Taiwan University, Taipei 11106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Rodriguez-Corona U, Sobol M, Rodriguez-Zapata LC, Hozak P, Castano E. Fibrillarin from Archaea to human. Biol Cell 2015; 107:159-74. [PMID: 25772805 DOI: 10.1111/boc.201400077] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Abstract
Fibrillarin is an essential protein that is well known as a molecular marker of transcriptionally active RNA polymerase I. Fibrillarin methyltransferase activity is the primary known source of methylation for more than 100 methylated sites involved in the first steps of preribosomal processing and required for structural ribosome stability. High expression levels of fibrillarin have been observed in several types of cancer cells, particularly when p53 levels are reduced, because p53 is a direct negative regulator of fibrillarin transcription. Here, we show fibrillarin domain conservation, structure and interacting molecules in different cellular processes as well as with several viral proteins during virus infection.
Collapse
Affiliation(s)
- Ulises Rodriguez-Corona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Luis Carlos Rodriguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| |
Collapse
|
8
|
Nallar SC, Kalvakolanu DV. Interferons, signal transduction pathways, and the central nervous system. J Interferon Cytokine Res 2015; 34:559-76. [PMID: 25084173 DOI: 10.1089/jir.2014.0021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) family of cytokines participates in the development of innate and acquired immune defenses against various pathogens and pathogenic stimuli. Discovered originally as a proteinaceous substance secreted from virus-infected cells that afforded immunity to neighboring cells from virus infection, these cytokines are now implicated in various human pathologies, including control of tumor development, cell differentiation, and autoimmunity. It is now believed that the IFN system (IFN genes and the genes induced by them, and the factors that regulate these processes) is a generalized alarm of cellular stress, including DNA damage. IFNs exert both beneficial and deleterious effects on the central nervous system (CNS). Our knowledge of the IFN-regulated processes in the CNS is far from being clear. In this article, we reviewed the current understanding of IFN signal transduction pathways and gene products that might have potential relevance to diseases of the CNS.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland
| | | |
Collapse
|
9
|
Deschênes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13:1840-58. [PMID: 24866342 DOI: 10.4161/cc.29335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
10
|
Fbw7α and Fbw7γ collaborate to shuttle cyclin E1 into the nucleolus for multiubiquitylation. Mol Cell Biol 2012; 33:85-97. [PMID: 23109421 DOI: 10.1128/mcb.00288-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin E1, an activator of cyclin-dependent kinase 2 (Cdk2) that promotes replicative functions, is normally expressed periodically within the mammalian cell cycle, peaking at the G(1)-S-phase transition. This periodicity is achieved by E2F-dependent transcription in late G(1) and early S phases and by ubiquitin-mediated proteolysis. The ubiquitin ligase that targets phosphorylated cyclin E is SCF(Fbw7) (also known as SCF(Cdc4)), a member of the cullin ring ligase (CRL) family. Fbw7, a substrate adaptor subunit, is expressed as three splice-variant isoforms with different subcellular distributions: Fbw7α is nucleoplasmic but excluded from the nucleolus, Fbw7β is cytoplasmic, and Fbw7γ is nucleolar. Degradation of cyclin E in vivo requires SCF complexes containing Fbw7α and Fbw7γ, respectively. In vitro reconstitution showed that the role of SCF(Fbw7α) in cyclin E degradation, rather than ubiquitylation, is to serve as a cofactor of the prolyl cis-trans isomerase Pin1 in the isomerization of a noncanonical proline-proline bond in the cyclin E phosphodegron. This isomerization is required for subsequent binding and ubiquitylation by SCF(Fbw7γ). Here we show that Pin1-mediated isomerization of the cyclin E phosphodegron and subsequent binding to Fbw7γ drive nucleolar localization of cyclin E, where it is ubiquitylated by SCF(Fbw7γ) prior to its degradation by the proteasome. It is possible that this constitutes a mechanism for rapid inactivation of phosphorylated cyclin E by nucleolar sequestration prior to its multiubiquitylation and degradation.
Collapse
|
11
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
12
|
Richardson LA, Reed BJ, Charette JM, Freed EF, Fredrickson EK, Locke MN, Baserga SJ, Gardner RG. A conserved deubiquitinating enzyme controls cell growth by regulating RNA polymerase I stability. Cell Rep 2012; 2:372-85. [PMID: 22902402 DOI: 10.1016/j.celrep.2012.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic ribosome biogenesis requires hundreds of trans-acting factors and dozens of RNAs. Although most factors required for ribosome biogenesis have been identified, little is known about their regulation. Here, we reveal that the yeast deubiquitinating enzyme Ubp10 is localized to the nucleolus and that ubp10Δ cells have reduced pre-rRNAs, mature rRNAs, and translating ribosomes. Through proteomic analyses, we found that Ubp10 interacts with proteins that function in rRNA production and ribosome biogenesis. In particular, we discovered that the largest subunit of RNA polymerase I (RNAPI) is stabilized via Ubp10-mediated deubiquitination and that this is required in order to achieve optimal levels of ribosomes and cell growth. USP36, the human ortholog of Ubp10, complements the ubp10Δ allele for RNAPI stability, pre-rRNA processing, and cell growth in yeast, suggesting that deubiquitination of RNAPI may be conserved in eukaryotes. Our work implicates Ubp10/USP36 as a key regulator of rRNA production through control of RNAPI stability.
Collapse
|
13
|
Stępiński D. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells. Eur J Histochem 2012; 56:e13. [PMID: 22688294 PMCID: PMC3428962 DOI: 10.4081/ejh.2012.e13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system.
Collapse
|
14
|
Stępiński D. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells. Eur J Histochem 2012; 56:e13. [PMID: 22688294 PMCID: PMC3428962 DOI: 10.4081/ejh.2012.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 01/01/2023] Open
Abstract
In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- D Stępiński
- Department of Cytophysiology, University of Łódź, Poland.
| |
Collapse
|
15
|
Sharif R, Fritzler MJ, Mayes MD, Gonzalez EB, McNearney TA, Draeger H, Baron M, Furst DE, Khanna DK, del Junco DJ, Molitor JA, Schiopu E, Phillips K, Seibold JR, Silver RM, Simms RW, Perry M, Rojo C, Charles J, Zhou X, Agarwal SK, Reveille JD, Assassi S, Arnett FC. Anti-fibrillarin antibody in African American patients with systemic sclerosis: immunogenetics, clinical features, and survival analysis. J Rheumatol 2011; 38:1622-30. [PMID: 21572159 DOI: 10.3899/jrheum.110071] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Anti-U3-RNP, or anti-fibrillarin antibodies (AFA), are detected more frequently among African American (AA) patients with systemic sclerosis (SSc) compared to other ethnic groups and are associated with distinct clinical features. We examined the immunogenetic, clinical, and survival correlates of AFA in a large group of AA patients with SSc. METHODS Overall, 278 AA patients with SSc and 328 unaffected AA controls were enrolled from 3 North American cohorts. Clinical features, autoantibody profile, and HLA class II genotyping were determined. To compare clinical manifestations, relevant clinical features were adjusted for disease duration. Cox proportional hazards regression was used to determine the effect of AFA on survival. RESULTS Fifty (18.5%) AA patients had AFA. After Bonferroni correction, HLA-DRB1*08:04 was associated with AFA, compared to unaffected AA controls (OR 11.5, p < 0.0001) and AFA-negative SSc patients (OR 5.2, p = 0.0002). AFA-positive AA patients had younger age of disease onset, higher frequency of digital ulcers, diarrhea, pericarditis, higher Medsger perivascular and lower Medsger lung severity indices (p = 0.004, p = 0.014, p = 0.019, p = 0.092, p = 0.006, and p = 0.016, respectively). After adjustment for age at enrollment, AFA-positive patients did not have different survival compared to patients without AFA (p = 0.493). CONCLUSION Our findings demonstrate strong association between AFA and HLA-DRB1*08:04 allele in AA patients with SSc. AA SSc patients with AFA had younger age of onset, higher frequency of digital ulcers, pericarditis and severe lower gastrointestinal involvement, but less severe lung involvement compared to AA patients without AFA. Presence of AFA did not change survival.
Collapse
Affiliation(s)
- Roozbeh Sharif
- Division of Rheumatology and Immunogenetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Scharf A, Grozdanov PN, Veith R, Kubitscheck U, Meier UT, von Mikecz A. Distant positioning of proteasomal proteolysis relative to actively transcribed genes. Nucleic Acids Res 2011; 39:4612-27. [PMID: 21306993 PMCID: PMC3113580 DOI: 10.1093/nar/gkr069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While it is widely acknowledged that the ubiquitin–proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchromatin. Such proteolytic domains are immobile and distinctly positioned in relation to transcriptional processes. Analysis of gene arrays and early genes in Caenorhabditis elegans embryos reveals that proteasomes and proteasomal activity are distantly located relative to transcriptionally active genes. In contrast, transcriptional inhibition generally induces local overlap of proteolytic microdomains with components of the transcription machinery and degradation of RNA polymerase II. The results establish that spatial organization of proteasomal activity differs with respect to distinct phases of the transcription cycle in at least some genes, and thus might contribute to the plasticity of gene expression in response to environmental stimuli.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF - Leibniz Research Institute for Environmental Medicine at Heinrich-Heine University Duesseldorf, D-40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Barygina VV, Aref’eva AS, Zatsepina OV. The role of mercury in the processes of vital activity of the human and mammalian organisms. RUSS J GEN CHEM+ 2011. [DOI: 10.1134/s1070363210130037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Barygina VV, Veiko VP, Zatsepina OV. Analysis of nucleolar protein fibrillarin mobility and functional state in living HeLa cells. BIOCHEMISTRY (MOSCOW) 2010; 75:979-88. [PMID: 21073418 DOI: 10.1134/s0006297910080055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrillarin is an evolutionarily-conserved and obligatory protein component of eukaryotic cell nucleoli involved in pre-rRNA processing and methylation. In vertebrates the fibrillarin molecule contains two cysteine residues (Cys99 and Cys268) whose sulfhydryl groups are able to establish intramolecular -S-S- bridges. However, the functional state of fibrillarin with reduced or oxidized thiol groups is still practically unstudied. Besides, there are no data in the literature concerning existence of the -S-S- fibrillarin form in human cells. To answer these questions, we used plasmids encoding native human fibrillarin and its mutant form devoid of cysteine residues (fibrillarinC99/268S) fused with EGFP for temporary transfection of HeLa cells. The mobile fraction localizing the enzymatically active protein molecules and the fluorescence half-recovery time characterizing the rate of enzymatic reactions were determined by the FRAP technique using a confocal laser scanning microscope. Measurements were carried out at 37 and 27°C. The results show that the fibrillarin pool in HeLa cells includes two protein forms, with reduced SH groups and with oxidized SH groups forming intramolecular -S-S- bridges between Cys99 and Cys268. However, the absence of Cys99 and Cys268 has no effect on intracellular localization of fibrillarin and its main dynamic parameters. The human fibrillarin form without disulfide bridges is included into the mobile protein fraction and is consistent with its functionally active state.
Collapse
Affiliation(s)
- V V Barygina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | |
Collapse
|
19
|
Shcherbik N, Pestov DG. Ubiquitin and ubiquitin-like proteins in the nucleolus: multitasking tools for a ribosome factory. Genes Cancer 2010; 1:681-689. [PMID: 21113400 DOI: 10.1177/1947601910381382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthesis of new ribosomes is an essential process upregulated during cell growth and proliferation. Here, we review our current understanding of the role that ubiquitin and ubiquitin-like proteins (UBLs) play in ribosome biogenesis, with a focus on mammalian cells. One important function of the nuclear ubiquitin-proteasome system is to control the supply of ribosomal proteins for the assembly of new ribosomal subunits in the nucleolus. Mutations in ribosomal proteins or ribosome assembly factors, stress, and many anticancer drugs have been shown to disrupt normal ribosome biogenesis, triggering a p53-dependent response. We discuss how p53 can be activated by the aberrant ribosome formation, centering on the current models of the interaction between ribosomal proteins released from the nucleolus and the ubiquitin ligase Mdm2. Recent studies also revealed multiple ubiquitin- and UBL-conjugated forms of nucleolar proteins with largely unknown functions, indicating that many new details about the role of these modifications in the nucleolus await to be discovered.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084
| | | |
Collapse
|
20
|
Sharma P, Murillas R, Zhang H, Kuehn MR. N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J Cell Sci 2010; 123:1227-34. [PMID: 20233849 DOI: 10.1242/jcs.060160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A number of proteins can be conjugated with both ubiquitin and the small ubiquitin-related modifier (SUMO), with crosstalk between these two post-translational modifications serving to regulate protein function and stability. We previously identified N4BP1 as a substrate for monoubiquitylation by the E3 ubiquitin ligase Nedd4. Here, we describe Nedd4-mediated polyubiquitylation and proteasomal degradation of N4BP1. In addition, we show that N4BP1 can be conjugated with SUMO1 and that this abrogates N4BP1 ubiquitylation. Consistent with this, endogenous N4BP1 is stabilized in primary embryonic fibroblasts from mutants of the desumoylating enzyme SENP1, which show increased steady-state sumoylation levels. We have localized endogenous N4BP1 predominantly to the nucleolus in primary cells. However, a small fraction is found at promyelocytic leukemia (PML) nuclear bodies (NBs). In cells deficient for SENP1 or in wild-type cells treated with the proteasome inhibitor MG132, there is considerable accumulation of N4BP1 at PML NBs. These findings suggest a dynamic interaction between subnuclear compartments, and a role for post-translational modification by ubiquitin and SUMO in the regulation of nucleolar protein turnover.
Collapse
Affiliation(s)
- Prashant Sharma
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
21
|
Cisterna B, Biggiogera M. Ribosome biogenesis: from structure to dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:67-111. [PMID: 20875629 DOI: 10.1016/s1937-6448(10)84002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we describe the status of the research concerning the nucleolus, the major nuclear body. The nucleolus has been recognized as a dynamic organelle with many more functions than one could imagine. In fact, in addition to its fundamental role in the biogenesis of preribosomes, the nucleolus takes part in many other cellular processes and functions, such as the cell-cycle control and the p53 pathway: the direct or indirect involvement of the nucleolus in these various processes makes it sensitive to their alteration. Moreover, it is worth noting that the different nucleolar factors participating to independent mechanisms show different dynamics of association/disassociation with the nucleolar body.
Collapse
Affiliation(s)
- Barbara Cisterna
- Laboratory of Cell Biology and Neurobiology, Department of Animal Biology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
22
|
von Mikecz A. PolyQ fibrillation in the cell nucleus: who's bad? Trends Cell Biol 2009; 19:685-91. [PMID: 19796946 DOI: 10.1016/j.tcb.2009.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/17/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Nuclear inclusions that contain proteins with expanded polyglutamine (polyQ) repeats are observed in neurodegenerative aggregation diseases and are, therefore, viewed as a pathologic feature. However, a summary of research indicates that polyQ repeats are inherently both toxic and functional at the same time. PolyQ motifs occur in proteins involved in gene expression and promote nuclear assemblies such as the transcription initiation complex. Transition of these functional complexes to insoluble protein aggregates is constitutively prevented by proteasomal proteolysis. Thus, conditions that exhaust the ubiquitin-proteasome system, such as the extensive production of expanded polyQ proteins, aging and xenobiotic stress, induce a congested state in which nuclear proteins, including those with polyQ stretches, form amyloid-like aggregates. Because protein aggregation is preceded by a series of protein misfolding steps termed polyQ fibrillation, the characterization of distinct fibrillation steps correlating with nuclear function and identification of the respective genetic modifiers is essential for understanding both the biology and pathology of polyQ. Thus, the comprehension of the physiological role of polyQ repeats is a prerequisite for uncovering the underlying mechanisms of neurodegenerative aggregation diseases.
Collapse
Affiliation(s)
- Anna von Mikecz
- Institut für umweltmedizinische Forschung (IUF) at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
23
|
Schiraldi M, Monestier M. How can a chemical element elicit complex immunopathology? Lessons from mercury-induced autoimmunity. Trends Immunol 2009; 30:502-9. [PMID: 19709928 DOI: 10.1016/j.it.2009.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/15/2009] [Accepted: 07/27/2009] [Indexed: 01/09/2023]
Abstract
Although most autoimmune diseases develop without a manifest cause, epidemiological studies indicate that external factors play an important role in triggering or aggravating autoimmune processes in genetically predisposed individuals. Nevertheless, most autoimmune disease-promoting environmental agents are unknown because their relationships to immune function are not understood. Thus, the study of animal models of chemically-induced autoimmunity should shed light on the pathways involved and allow us to identify these agents. The rodent model of heavy metal-induced autoimmunity is one of the most intriguing experimental systems available to address such questions. Although the ultimate pathophysiology of this model remains mysterious, recent studies have started to elucidate the mechanisms by which heavy metal exposure leads to immune activation and loss of self-tolerance.
Collapse
Affiliation(s)
- Michael Schiraldi
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, United States
| | | |
Collapse
|
24
|
Endo A, Kitamura N, Komada M. Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36. J Biol Chem 2009; 284:27918-27923. [PMID: 19679658 DOI: 10.1074/jbc.m109.037218] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolus is a subnuclear compartment with multiple cellular functions, including ribosome biogenesis. USP36 is a deubiquitylating enzyme that localizes to nucleoli and plays an essential role in regulating the structure and function of the organelle. However, how the localization of USP36 is regulated remains unknown. Here, we identified a short stretch of basic amino acids (RGKEKKIKKFKREKRR) that resides in the C-terminal region of USP36 and serves as a nucleolar localization signal for the protein. We found that this motif interacts with a central acidic region of nucleophosmin/B23, a major nucleolar protein involved in various nucleolar functions. Knockdown of nucleophosmin/B23 resulted in a significant reduction in the amount of USP36 in nucleoli, without affecting the cellular USP36 level. This was associated with elevated ubiquitylation levels of fibrillarin, a USP36 substrate protein in nucleoli. We conclude that nucleophosmin/B23 recruits USP36 to nucleoli, thereby serving as a platform for the regulation of nucleolar protein functions through ubiquitylation/deubiquitylation.
Collapse
Affiliation(s)
- Akinori Endo
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Naomi Kitamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masayuki Komada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
25
|
Smetana K, Jirásková I, Mikulenková D, Klamová H. The translocation of AgNORs in large nucleoli of early granulocyte progenitors in patients suffering from chronic phase of chronic myeloid leukaemia. J Appl Biomed 2009. [DOI: 10.32725/jab.2009.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
26
|
Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N, Komada M. Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci 2009; 122:678-86. [DOI: 10.1242/jcs.044461] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleolus is a subnuclear compartment and the site of ribosome biogenesis. Previous studies have implicated protein ubiquitylation in nucleolar activity. Here we show that USP36, a deubiquitylating enzyme of unknown function, regulates nucleolar activity in mammalian cells. USP36 localized to nucleoli via the C-terminal region, which contains basic amino acid stretches. Dominant-negative inhibition of USP36 caused the accumulation of ubiquitin-protein conjugates in nucleoli, suggesting that nucleoli are the site of USP36 action. USP36 deubiquitylated the nucleolar proteins nucleophosmin/B23 and fibrillarin, and stabilized them by counteracting ubiquitylation-mediated proteasomal degradation. RNAi-mediated depletion of cellular USP36 resulted in reduced levels of rRNA transcription and processing, a less-developed nucleolar morphology and a slight reduction in the cytoplasmic ribosome level, which eventually led to a reduced rate of cell proliferation. We conclude that by deubiquitylating various nucleolar substrate proteins including nucleophosmin/B23 and fibrillarin, USP36 plays a crucial role in regulating the structure and function of nucleoli.
Collapse
Affiliation(s)
- Akinori Endo
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshifumi Inada
- Department of Molecular Biology, Nagoya University, Nagoya 464-8602, Japan
| | - Akitsugu Yamamoto
- Department of Bio-science, Nagahama Institute of Bio-science and Technology, Nagahama 526-0829, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Naomi Kitamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masayuki Komada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
27
|
Abstract
The heavy metal mercury is ubiquitously distributed in the environment resulting in permanent low-level exposure in human populations. Mercury can be encountered in three main chemical forms (elemental, inorganic, and organic) which can affect the immune system in different ways. In this review, we describe the effects of these various forms of mercury exposure on immune cells in humans and animals. In genetically susceptible mice or rats, subtoxic doses of mercury induce the production of highly specific autoantibodies as well as a generalized activation of the immune system. We review studies performed in this model and discuss their implications for the role of environmental chemicals in human autoimmunity.
Collapse
Affiliation(s)
- Jaya Vas
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
28
|
Simoneau M, Boulanger J, Coulombe G, Renaud MA, Duchesne C, Rivard N. Activation of Cdk2 stimulates proteasome-dependent truncation of tyrosine phosphatase SHP-1 in human proliferating intestinal epithelial cells. J Biol Chem 2008; 283:25544-25556. [PMID: 18617527 DOI: 10.1074/jbc.m804177200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP-1 is expressed in the nuclei of intestinal epithelial cells (IECs). Increased SHP-1 expression and phosphatase activity coincide with cell cycle arrest and differentiation in these cells. Suspecting the tumor-suppressive properties of SHP-1, a yeast two-hybrid screen of an IEC cDNA library was conducted using the full-length SHP-1 as bait. Characterization of many positive clones revealed sequences identical to a segment of the Cdk2 cDNA sequence. Interaction between SHP-1 and Cdk2 was confirmed by co-immunoprecipitations whereby co-precipitated Cdk2 phosphorylated SHP-1 protein. Inhibition of Cdk2 (roscovitine) or proteasome (MG132) was associated with an enhanced nuclear punctuate distribution of SHP-1. Double labeling localization studies with signature proteins of subnuclear domains revealed a co-localization between the splicing factor SC35 and SHP-1 in bright nucleoplasmic foci. Using Western blot analyses with the anti-SHP-1 antibody recognizing the C terminus, a lower molecular mass species of 45 kDa was observed in addition to the full-length 64-65-kDa SHP-1 protein. Treatment with MG132 led to an increase in expression of the full-length SHP-1 protein while concomitantly leading to a decrease in the levels of the lower mass 45-kDa molecular species. Further Western blots revealed that the 45-kDa protein corresponds to the C-terminal portion of SHP-1 generated from proteasome activity. Mutational analysis of Tyr(208) and Ser(591) (a Cdk2 phosphorylation site) residues on SHP-1 abolished the expression of the amino-truncated 45-kDa SHP-1 protein. In conclusion, our results indicate that Cdk2-associated complexes, by targeting SHP-1 for proteolysis, counteract the ability of SHP-1 to block cell cycle progression of IECs.
Collapse
Affiliation(s)
- Mélanie Simoneau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jim Boulanger
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Geneviève Coulombe
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Marc-André Renaud
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Cathia Duchesne
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathalie Rivard
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
29
|
Baldin V, Militello M, Thomas Y, Doucet C, Fic W, Boireau S, Jariel-Encontre I, Piechaczyk M, Bertrand E, Tazi J, Coux O. A novel role for PA28gamma-proteasome in nuclear speckle organization and SR protein trafficking. Mol Biol Cell 2008; 19:1706-16. [PMID: 18256291 DOI: 10.1091/mbc.e07-07-0637] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In eukaryotic cells, proteasomes play an essential role in intracellular proteolysis and are involved in the control of most biological processes through regulated degradation of key proteins. Analysis of 20S proteasome localization in human cell lines, using ectopic expression of its CFP-tagged alpha7 subunit, revealed the presence in nuclear foci of a specific and proteolytically active complex made by association of the 20S proteasome with its PA28gamma regulator. Identification of these foci as the nuclear speckles (NS), which are dynamic subnuclear structures enriched in splicing factors (including the SR protein family), prompted us to analyze the role(s) of proteasome-PA28gamma complexes in the NS. Here, we show that knockdown of these complexes by small interfering RNAs directed against PA28gamma strongly impacts the organization of the NS. Further analysis of PA28gamma-depleted cells demonstrated an alteration of intranuclear trafficking of SR proteins. Thus, our data identify proteasome-PA28gamma complexes as a novel regulator of NS organization and function, acting most likely through selective proteolysis. These results constitute the first demonstration of a role of a specific proteasome complex in a defined subnuclear compartment and suggest that proteolysis plays important functions in the precise control of splicing factors trafficking within the nucleus.
Collapse
Affiliation(s)
- Véronique Baldin
- Centre de Recherche de Biochimie Macromoléculaire (CRBM-CNRS UMR 5237) and Institut de Génétique Moléculaire de Montpellier (IGMM-CNRS UMR 5535), IFR122, Universités Montpellier 1 et 2, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Baltrons MA, Pifarré P, Berciano MT, Lafarga M, García A. LPS-induced down-regulation of NO-sensitive guanylyl cyclase in astrocytes occurs by proteasomal degradation in clastosomes. Mol Cell Neurosci 2007; 37:494-506. [PMID: 18083532 DOI: 10.1016/j.mcn.2007.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/31/2007] [Accepted: 11/07/2007] [Indexed: 01/30/2023] Open
Abstract
We previously showed that treatment with bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines decreases NO-sensitive guanylyl cyclase (GC(NO)) activity in astrocytes by decreasing the half-life of the obligate GC(NO) beta1 subunit in a NO-independent but transcription- and translation-dependent process. Here we show that LPS-induced beta1 degradation requires proteasome activity and is independent of NFkappaB activation or beta1 interaction with HSP90. Immunocytochemistry and confocal microscopy analysis revealed that LPS promotes colocalization of the predominantly soluble beta1 protein with ubiquitin and the 20S proteasome in nuclear aggregates that present characteristics of clastosomes, nuclear bodies involved in proteolysis via the ubiquitin-proteasome system. Proteasome and protein synthesis inhibitors prevented LPS-induced clastosome assembly and nuclear colocalization of beta1 with ubiquitin and 20S proteasome, strongly supporting a role for these transient nuclear structures in GC(NO) down-regulation during neuroinflammation.
Collapse
Affiliation(s)
- María Antonia Baltrons
- Institute of Biotechnology and Biomedicine V. Villar Palasí, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | | | | | | | | |
Collapse
|
31
|
Philips AS, Kwok JC, Chong BH. Analysis of the signals and mechanisms mediating nuclear trafficking of GATA-4. Loss of DNA binding is associated with localization in intranuclear speckles. J Biol Chem 2007; 282:24915-27. [PMID: 17548362 DOI: 10.1074/jbc.m701789200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleocytoplasmic transport of GATA-4 is important in maintaining and regulating normal cardiogenesis and heart function. This report investigates the detailed mechanisms of GATA-4 nuclear transport. We characterized a nonclassical nuclear localization signal between amino acids 270 and 324 that actively transports GATA-4 into the nucleus of both HeLa cells and cardiac myocytes. Fine mapping studies revealed four crucial arginine residues within this region that mediate active transport predominantly through the nonclassical pathway via interaction with importin beta. These four residues were also essential for the DNA binding activity of GATA-4 and transcriptional activation of cardiac-specific genes. Interestingly, mutation of these residues not only inhibited DNA binding and gene transcription but also resulted in a preferential accumulation of the GATA-4 protein in distinct subnuclear speckles. A cardiac myocyte-specific, chromosome maintenance region 1-dependent nuclear export signal consisting of three essential leucine residues was also identified. The current study provides detailed information on the nuclear shuttling pathways of GATA-4 that represents an additional mechanism of gene regulation.
Collapse
Affiliation(s)
- Alana S Philips
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
32
|
Scharf A, Rockel TD, von Mikecz A. Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry. Histochem Cell Biol 2007; 127:591-601. [PMID: 17205305 DOI: 10.1007/s00418-006-0266-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Proteasomes are ATP-driven, multisubunit proteolytic machines that degrade endogenous proteins into peptides and play a crucial role in cellular events such as the cell cycle, signal transduction, maintenance of proper protein folding and gene expression. Recent evidence indicates that the ubiquitin-proteasome system is an active component of the cell nucleus. A characteristic feature of the nucleus is its organization into distinct domains that have a unique composition of macromolecules and dynamically form as a response to the requirements of nuclear function. Here, we show by systematic application of different immunocytochemical procedures and comparison with signature proteins of nuclear domains that during interphase endogenous proteasomes are localized diffusely throughout the nucleoplasm, in speckles, in nuclear bodies, and in nucleoplasmic foci. Proteasomes do not occur in the nuclear envelope region or the nucleolus, unless nucleoplasmic invaginations expand into this nuclear body. Confirmedly, proteasomal proteolysis is detected in nucleoplasmic foci, but is absent from the nuclear envelope or nucleolus. The results underpin the idea that the ubiquitin-proteasome system is not only located, but also proteolytically active in distinct nuclear domains and thus may be directly involved in gene expression, and nuclear quality control.
Collapse
Affiliation(s)
- Andrea Scharf
- Institut für umweltmedizinische Forschung, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
33
|
Ding Q, Cecarini V, Keller JN. Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci 2007; 30:31-6. [PMID: 17126920 DOI: 10.1016/j.tins.2006.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/28/2006] [Accepted: 11/16/2006] [Indexed: 01/23/2023]
Abstract
Compromise of the ubiquitin-proteasome system (UPS) is a potential basis for multiple physiological abnormalities and pathologies in the CNS. This could be because reduced protein turnover leads to bulk intracellular protein accumulation. However, conditions associated with compromised UPS function are also associated with impairments in protein synthesis, and impairment of UPS function is sufficient to inhibit protein synthesis. These data suggest that the toxicity of UPS inhibition need not depend on gross intracellular protein accumulation, and indicate the potential for crosstalk between the UPS and protein-synthesis pathways. In this review, we discuss evidence for interplay between the UPS and protein-synthesis machinery, and outline the implications of this crosstalk for physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Qunxing Ding
- Department of Anatomy and Neurobiology, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | |
Collapse
|
34
|
Hippe A, Bylaite M, Chen M, von Mikecz A, Wolf R, Ruzicka T, Walz M. Expression and tissue distribution of mouse Hax1. Gene 2006; 379:116-26. [PMID: 16814492 DOI: 10.1016/j.gene.2006.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/20/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
HAX1 is an ubiquitously expressed human gene. Though a number of cellular and viral proteins are known to interact with HAX1, its function is still not completely understood. On the basis of these identified interaction partners, HAX1 seems to play a role in apoptosis and the organization of the cytoskeleton. The cDNAs for human and mouse Hax1 share 86% identity and 80% identity at the protein level, suggesting a similar functional importance. To date, no conclusive data on the tissue specific expression of the murine Hax1 are available and only one interaction partner has been identified. Here, we show a detailed expression analysis for the murine ortholog by RT-PCR, Northern and Western blot. Furthermore, the distribution of Hax1 within different mouse tissues was studied by immunohistochemistry (IHC). In general, we found a good correlation between the results obtained from different detection techniques. Similar to its human counterpart, mouse Hax1 seems to be ubiquitously expressed. At the RNA level, we found the highest expression of Hax1 in liver, kidney and testis. In sharp contrast to the human HAX1 which is highly expressed in skeletal muscle, the mouse ortholog was detected only at very low levels. Using a specific antibody, we detected Hax1 in the majority of mouse tissues by IHC. Interestingly, the most prominent expression of Hax1 was found in epithelial, endothelial and muscle cells. Surprisingly, thymus, spleen and pancreas did not show detectable immunostaining. Furthermore, we have studied the subcellular localisation of Hax1 in a keratinocyte and a neuronal cell line by immunofluorescence. We found Hax1 to be localised mainly in the cytoplasm and detected a partial colocalisation with mitochondria. The results presented here summarize for the first time the expression of the murine Hax1 in different tissues and two cell lines. Further studies will elucidate the functional importance of this protein in individual cell types with respect to structural aspects, cell mobility and apoptosis.
Collapse
Affiliation(s)
- Andreas Hippe
- Department of Dermatology, Heinrich-Heine University, Moorenstrasse 5, D-40225 Duesseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Stavreva DA, Kawasaki M, Dundr M, Koberna K, Müller WG, Tsujimura-Takahashi T, Komatsu W, Hayano T, Isobe T, Raska I, Misteli T, Takahashi N, McNally JG. Potential roles for ubiquitin and the proteasome during ribosome biogenesis. Mol Cell Biol 2006; 26:5131-45. [PMID: 16782897 PMCID: PMC1489179 DOI: 10.1128/mcb.02227-05] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the possible involvement of the ubiquitin-proteasome system (UPS) in ribosome biogenesis. We find by immunofluorescence that ubiquitin is present within nucleoli and also demonstrate by immunoprecipitation that complexes associated with pre-rRNA processing factors are ubiquitinated. Using short proteasome inhibition treatments, we show by fluorescence microscopy that nucleolar morphology is disrupted for some but not all factors involved in ribosome biogenesis. Interference with proteasome degradation also induces the accumulation of 90S preribosomes, alters the dynamic properties of a number of processing factors, slows the release of mature rRNA from the nucleolus, and leads to the depletion of 18S and 28S rRNAs. Together, these results suggest that the UPS is probably involved at many steps during ribosome biogenesis, including the maturation of the 90S preribosome.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research [corrected] National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In eukaryotes, thousands of genes have to be organized and expressed in the cell nucleus. Conformational and kinetic instability of nuclear structure and components appear to enable cells to use the encoded information selectively. The ubiquitin-proteasome system is active in distinct nuclear domains and plays a major role controlling the initial steps of gene expression, DNA repair and nuclear quality-control mechanisms. Recent work indicates that a tuned balance of ubiquitylation and proteasome-dependent protein degradation of nuclear proteins is instrumental in nuclear function and, when deregulated, leads to the development of diseases such as polyQ disorders and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Anna von Mikecz
- Institut für umweltmedizinische Forschung, Heinrich-Heine-Universität Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
37
|
Rockel TD, Stuhlmann D, von Mikecz A. Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci 2005; 118:5231-42. [PMID: 16249232 DOI: 10.1242/jcs.02642] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin proteasome system plays a fundamental role in the regulation of cellular processes by degradation of endogenous proteins. Proteasomes are localized in both, the cytoplasm and the cell nucleus, however, little is known about nuclear proteolysis. Here, fluorogenic precursor substrates enabled detection of proteasomal activity in nucleoplasmic cell fractions (turnover 0.0541 μM/minute) and nuclei of living cells (turnover 0.0472 μM/minute). By contrast, cell fractions of nucleoli or nuclear envelopes did not contain proteasomal activity. Microinjection of ectopic fluorogenic protein DQ-ovalbumin revealed that proteasomal protein degradation occurs in distinct nucleoplasmic foci, which partially overlap with signature proteins of subnuclear domains, such as splicing speckles or promyelocytic leukemia bodies, ubiquitin, nucleoplasmic proteasomes and RNA polymerase II. Our results establish proteasomal proteolysis as an intrinsic function of the cell nucleus.
Collapse
Affiliation(s)
- Thomas Dino Rockel
- Institut für Umweltmedizinische Forschung at Heinrich-Heine-University, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
38
|
Rowley B, Monestier M. Mechanisms of heavy metal-induced autoimmunity. Mol Immunol 2005; 42:833-8. [PMID: 15829271 DOI: 10.1016/j.molimm.2004.07.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 07/07/2004] [Indexed: 11/24/2022]
Abstract
Chemical exposure can trigger or accelerate the development of autoimmune manifestations. Although heavy metals are elementary chemical structures, they can have profound and complex effects on the immune system. In genetically susceptible mice or rats, administration of subtoxic doses of mercury induces both the production of highly specific autoantibodies and a polyclonal activation of the immune system. We review in this article some of the mechanisms by which heavy metal exposure can lead to autoimmunity.
Collapse
Affiliation(s)
- Benjamin Rowley
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
39
|
Chen M, von Mikecz A. Xenobiotic-Induced Recruitment of Autoantigens to Nuclear Proteasomes Suggests a Role for Altered Antigen Processing in Scleroderma. Ann N Y Acad Sci 2005; 1051:382-9. [PMID: 16126980 DOI: 10.1196/annals.1361.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cell nucleus is a prominent target of autoantibodies in systemic autoimmune disorders. Approximately 2% of the population in Europe and North America suffers from systemic rheumatic diseases, such as rheumatoid arthritis, systemic lupus erythematosus (SLE), and scleroderma. The molecular mechanisms of systemic autoimmunity are largely unknown despite its high prevalence. Contributing factors that have been considered include (1) genetic predisposition, (2) influence of hormones, and (3) environmental factors. The latter are mainly correlated with the generation of scleroderma, as xenobiotic-induced subsets of this disease have been observed in individuals exposed to silica (SiO(2)) dusts, organic solvents, heavy metals, and certain drugs. In addition to the epidemiological relevance, animal models of xenobiotic-induced autoimmunity serve as elegant tools for controlled induction of antigen-driven autoimmune responses. Because antigen processing and presentation constitute the basis for every antigen-driven autoimmune response, effects of xenobiotics on degradation of nuclear autoantigens have been characterized to elucidate molecular mechanisms of autoimmunity that target the cell nucleus. By means of a cell-based disease model, it has been shown that xenobiotics such as mercuric chloride, platinum salts, and silica (nano)particles specifically alter structure, function, and proteolysis in the cell nucleus. Signature proteins of the cell nucleus redistribute to aberrant, nucleoplasmic clusters, where they colocalize with proteasomes and are subjected to proteasomal proteolysis. Recruitment of nuclear autoantigens to proteasomal degradation is correlated with autoimmune responses that specifically target these antigens in both animal models of xenobiotic-induced autoimmunity and patients with idiopathic scleroderma.
Collapse
Affiliation(s)
- Min Chen
- Institut für umweltmedizinische Forschung at Heinrich-Heine-University Duesseldorf, Auf'm Hennekamp 50, D-40225 Duesseldorf, Germany.
| | | |
Collapse
|
40
|
Chen M, Dittmann A, Kuhn A, Ruzicka T, von Mikecz A. Recruitment of topoisomerase I (Scl-70) to nucleoplasmic proteasomes in response to xenobiotics suggests a role for altered antigen processing in scleroderma. ACTA ACUST UNITED AC 2005; 52:877-84. [PMID: 15751092 DOI: 10.1002/art.20962] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Scleroderma, also known as systemic sclerosis (SSc), is a chronic, life-threatening autoimmune disease characterized by a wide spectrum of manifestations and a variable evolution. The presence of particular antinuclear antibodies is often predictive of the clinical expression and prognosis of the disease, but the molecular mechanisms of the immune responses remain unclear. Recently, we have shown xenobiotic-induced recruitment of nuclear autoantigens to proteasomes in the cell nucleus in cell culture and in animal models in correlation with a unique autoantibody response. In this study, we attempted to validate our findings in patients with SSc. METHODS Using indirect immunofluorescence microscopy, run-on replication and transcription assays, immunoblotting, and proteasome activity assays, we analyzed the nuclear structure, function, and proteasomal proteolysis in HEp-2 cells treated with xenobiotics or left untreated. Blood dendritic cells (DCs) were isolated from 30 patients with SSc and age- and sex-matched control subjects to determine the subcellular localization of SSc autoantigens in relation to proteasomes. RESULTS Xenobiotics induced a relocation of the SSc autoantigen DNA topoisomerase I (Scl-70, topo I) to nucleoplasmic clusters, where proteasomes degrade topo I. Colocalization of topo I with proteasomes occurred exclusively in DCs from patients with SSc who developed antibodies against this autoantigen. Neither centromeres nor other SSc autoantigens colocalized with proteasomes in DCs from patients with SSc or from control subjects. CONCLUSION Alteration of nuclear structure and function by xenobiotics induces recruitment of the nuclear autoantigen topo I for proteasomal processing. This event may, in turn, lead to subsequent presentation of the resulting peptides on the cell surface and the autoimmune responses against topo I in SSc.
Collapse
Affiliation(s)
- Min Chen
- Heinrich-Heine-University Düsseldorf, Dusseldorf, Germany
| | | | | | | | | |
Collapse
|
41
|
von Mikecz A. Xenobiotic-induced autoimmunity and protein aggregation diseases share a common subnuclear pathology. Autoimmun Rev 2005; 4:214-8. [PMID: 15893714 DOI: 10.1016/j.autrev.2004.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 11/21/2004] [Indexed: 11/18/2022]
Abstract
The cell nucleus constitutes a prime target of idiopathic and xenobiotic-induced autoimmunity. Despite of the high prevalence of rheumatic autoimmune diseases, the molecular mechanisms inducing systemic autoimmunity are largely unknown. In appreciation of Rudolf Virchow's cellularpathology, this review introduces the new concept of subnuclear pathology to autoimmune responses against the cell nucleus. Aberrant nucleoplasmic clusters consisting of nuclear autoantigens and proteasomes are observed in xenobiotic-treated cell lines, splenic cells from animal models of xenobiotic-induced autoimmunity, and dendritic cells of scleroderma patients. Aggregation of nuclear proteins in clusters inhibits nuclear functions such as replication and transcription, and induces altered proteasomal degradation of nuclear autoantigens and cellular senescence. Since these modifications of nuclear structure, function and proteolysis resemble the pathology of neurodegenerative protein aggregation diseases, the hypothesis is put forward that xenobiotic-induced autoimmunity may also be a consequence of protein aggregation.
Collapse
Affiliation(s)
- Anna von Mikecz
- Institut für umweltmedizinische Forschung at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 50, D-40225 Düsseldorf, Germany.
| |
Collapse
|
42
|
Zhou GJ, Zhang Y, Wang J, Guo JH, Ni J, Zhong ZM, Wang LQ, Dang YJ, Dai JF, Yu L. Cloning and characterization of a novel human RNA binding protein gene PNO1. ACTA ACUST UNITED AC 2005; 15:219-24. [PMID: 15497447 DOI: 10.1080/10425170410001702159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Present work reported the cloning and characterization of a human novel RNA binding gene Partner of NOB1 (PNO1), with a length of 1637bp and a putative open reading frame of 759 bp, isolated from human kidney. It is composed of seven exons and is localized on chromosome 2p14. Western blot showed that the molecular weight of PNO1 is about 35kDa. RT-PCR results in 16 human tissues indicated that PNO1 is expressed mainly in liver, lung, spleen and kidney, slightly in thymus, testis, ovary, respectively, but not in heart, brain, skeletal muscle, placenta, pancreas, prostate, small intestine, colon and peripheral blood leukocytes. GFP fusion expression in mammalian cells exhibited its localization in the nucleus, especially in nucleoli. Subcellular localization of thirteen GFP fusion PNO1 deletion proteins showed that the region of 92-230 aa is solely responsible for its nucleolar retention, and KH domain alone is not sufficient for nucleolar retention. The PNO1 family shows significant conservation in both eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- Guang-Jin Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sutovsky P, Manandhar G, McCauley TC, Caamaño JN, Sutovsky M, Thompson WE, Day BN. Proteasomal Interference Prevents Zona Pellucida Penetration and Fertilization in Mammals1. Biol Reprod 2004; 71:1625-37. [PMID: 15253927 DOI: 10.1095/biolreprod.104.032532] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The ubiquitin-proteasome pathway has been implicated in the penetration of ascidian vitelline envelope by the fertilizing spermatozoon (Sawada et al., Proc Natl Acad Sci U S A 2002; 99:1223-1228). The present study provides experimental evidence demonstrating proteasome involvement in the penetration of mammalian zona pellucida (ZP). Using porcine in vitro fertilization as a model, penetration of ZP was completely inhibited by specific proteasomal inhibitors MG-132 and lactacystin. Three commercial rabbit sera recognizing 20S proteasomal core subunits beta-1i, beta-2i, alpha-6, and beta-5 completely blocked fertilization at a very low concentration (i.e., diluted 1/2000 to 1/8000 in fertilization medium). Neither proteasome inhibitors nor antibodies had any effects on sperm-ZP binding and acrosome exocytosis in zona-enclosed oocytes or on fertilization rates in zona-free oocytes, which were highly polyspermic. Consistent with a possible role of ubiquitin-proteasome pathway in ZP penetration, ubiquitin and various alpha and beta type proteasomal subunits were detected in boar sperm acrosome by specific antibodies, immunoprecipitated and microsequenced by MALDI-TOF from boar sperm extracts. Antiubiquitin-immunoreactive substrates were detected on the outer face of ZP by epifluorescence microscopy. This study therefore provides strong evidence implicating the ubiquitin-proteasome pathway in mammalian fertilization and zona penetration. This finding opens a new line of acrosome/ZP research because further studies of the sperm acrosomal proteasome can provide new tools for the management of polyspermia during in vitro fertilization and identify new targets for contraceptive development.
Collapse
Affiliation(s)
- Peter Sutovsky
- Department of Animal Science, University of Missouri-Columbia, S141 ASRC, 920 East Campus Dr., Columbia, MO 65211-5300, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Peter Sutovsky
- Department of Animal Science, University of Missouri-Columbia, S141 ASRC, 920 East Campus Drive, Columbia, MO 65211, USA.
| | | |
Collapse
|
45
|
Dino Rockel T, von Mikecz A. Proteasome-dependent processing of nuclear proteins is correlated with their subnuclear localization. J Struct Biol 2002; 140:189-99. [PMID: 12490167 DOI: 10.1016/s1047-8477(02)00527-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although proteasomes are abundant in the nucleoplasm little is known of proteasome-dependent proteolysis within the nucleus. Thus, we monitored the subcellular distribution of nuclear proteins in correlation with proteasomes. The proteasomal pathway clears away endogenous proteins, regulates numerous cellular processes, and delivers immunocompetent peptides to the antigen presenting machinery. Confocal laser scanning microscopy revealed that histones, splicing factor SC35, spliceosomal components, such as U1-70k or SmB/B('), and PML partially colocalize with 20S proteasomes in nucleoplasmic substructures, whereas the centromeric and nucleolar proteins topoisomerase I, fibrillarin, and UBF did not overlap with proteasomes. The specific inhibition of proteasomal processing with lactacystin induced accumulation of histone protein H2A, SC35, spliceosomal components, and PML, suggesting that these proteins are normally degraded by proteasomes. In contrast, concentrations of centromeric proteins CENP-B and -C and nucleolar proteins remained constant during inhibition of proteasomes. Quantification of fluorescence intensities corroborated that nuclear proteins which colocalize with proteasomes are degraded by proteasome-dependent proteolysis within the nucleoplasm. These data provide evidence that the proteasome proteolytic pathway is involved in processing of nuclear components, and thus may play an important role in the regulation of nuclear structure and function.
Collapse
Affiliation(s)
- Thomas Dino Rockel
- Institut für umweltmedizinische Forschung (IUF), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|