1
|
Zych MG, Contreras M, Vashisth M, Mammel AE, Ha G, Hatch EM. RCC1 depletion drives protein transport defects and rupture in micronuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611299. [PMID: 39282444 PMCID: PMC11398501 DOI: 10.1101/2024.09.04.611299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Micronuclei (MN) are a commonly used marker of chromosome instability that form when missegregated chromatin recruits its own nuclear envelope (NE) after mitosis. MN frequently rupture, which results in genome instability, upregulation of metastatic genes, and increased immune signaling. MN rupture is linked to NE defects, but the cause of these defects is poorly understood. Previous work from our lab found that chromosome identity correlates with rupture timing for small MN, i.e. MN containing a short chromosome, with more euchromatic chromosomes forming more stable MN with fewer nuclear lamina gaps. Here we demonstrate that histone methylation promotes rupture and nuclear lamina defects in small MN. This correlates with increased MN size, and we go on to find that all MN have a constitutive nuclear export defect that drives MN growth and nuclear lamina gap expansion, making the MN susceptible to rupture. We demonstrate that these export defects arise from decreased RCC1 levels in MN and that additional loss of RCC1 caused by low histone methylation in small euchromatic MN results in additional import defects that suppress nuclear lamina gaps and MN rupture. Through analysis of mutational signatures associated with early and late rupturing chromosomes in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, we identify an enrichment of APOBEC and DNA polymerase E hypermutation signatures in chromothripsis events on early and mid rupturing chromosomes, respectively, suggesting that MN rupture timing could determine the landscape of structural variation in chromothripsis. Our study defines a new model of MN rupture where increased MN growth, caused by defects in protein export, drives gaps in nuclear lamina organization that make the MN susceptible to membrane rupture with long-lasting effects on genome architecture.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maya Contreras
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Manasvita Vashisth
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gavin Ha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
2
|
Hazawa M, Ikliptikawati DK, Iwashima Y, Lin DC, Jiang Y, Qiu Y, Makiyama K, Matsumoto K, Kobayashi A, Nishide G, Keesiang L, Yoshino H, Minamoto T, Suzuki T, Kobayashi I, Meguro-Horike M, Jiang YY, Nishiuchi T, Konno H, Koeffler HP, Hosomichi K, Tajima A, Horike SI, Wong RW. Super-enhancer trapping by the nuclear pore via intrinsically disordered regions of proteins in squamous cell carcinoma cells. Cell Chem Biol 2024; 31:792-804.e7. [PMID: 37924814 DOI: 10.1016/j.chembiol.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Iwashima
- Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - De-Chen Lin
- Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Yuan Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Yujia Qiu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kei Makiyama
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Koki Matsumoto
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Goro Nishide
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Lim Keesiang
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makiko Meguro-Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yan-Yi Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Takumi Nishiuchi
- Division of Integrated Omics research, Bioscience Core Facility Research Center for Experimental Modeling of Human Disease, Kanazawa University 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Shin-Ichi Horike
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
3
|
Cho UH, Hetzer MW. Caspase-mediated nuclear pore complex trimming in cell differentiation and endoplasmic reticulum stress. eLife 2023; 12:RP89066. [PMID: 37665327 PMCID: PMC10476967 DOI: 10.7554/elife.89066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
During apoptosis, caspases degrade 8 out of ~30 nucleoporins to irreversibly demolish the nuclear pore complex. However, for poorly understood reasons, caspases are also activated during cell differentiation. Here, we show that sublethal activation of caspases during myogenesis results in the transient proteolysis of four peripheral Nups and one transmembrane Nup. 'Trimmed' NPCs become nuclear export-defective, and we identified in an unbiased manner several classes of cytoplasmic, plasma membrane, and mitochondrial proteins that rapidly accumulate in the nucleus. NPC trimming by non-apoptotic caspases was also observed in neurogenesis and endoplasmic reticulum stress. Our results suggest that caspases can reversibly modulate nuclear transport activity, which allows them to function as agents of cell differentiation and adaptation at sublethal levels.
Collapse
Affiliation(s)
- Ukrae H Cho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| |
Collapse
|
4
|
Tingey M, Li Y, Yu W, Young A, Yang W. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus 2022; 13:170-193. [PMID: 35593254 PMCID: PMC9132428 DOI: 10.1080/19491034.2022.2076965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Albert Young
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Coyne AN, Rothstein JD. Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat Rev Neurol 2022; 18:348-362. [PMID: 35488039 PMCID: PMC10015220 DOI: 10.1038/s41582-022-00653-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings and end-stage pathological hallmarks of neurodegenerative diseases are increasingly well defined, but the cellular pathophysiology of disease initiation and propagation remains poorly understood, especially in sporadic forms of these diseases. Altered nucleocytoplasmic transport is emerging as a prominent pathomechanism of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia and Huntington disease. The nuclear pore complex (NPC) and interactions between its individual nucleoporin components and nuclear transport receptors regulate nucleocytoplasmic transport, as well as genome organization and gene expression. Specific nucleoporin abnormalities have been identified in sporadic and familial forms of neurodegenerative disease, and these alterations are thought to contribute to disrupted nucleocytoplasmic transport. The specific nucleoporins and nucleocytoplasmic transport proteins that have been linked to different neurodegenerative diseases are partially distinct, suggesting that NPC injury contributes to the cellular specificity of neurodegenerative disease and could be an early initiator of the pathophysiological cascades that underlie neurodegenerative disease. This concept is consistent with the fact that rare genetic mutations in some nucleoporins cause cell-type-specific neurological disease. In this Review, we discuss nucleoporin and NPC disruptions and consider their impact on cellular function and the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Raices M, D'Angelo MA. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Cold Spring Harb Perspect Biol 2022; 14:a040691. [PMID: 34312247 PMCID: PMC8789946 DOI: 10.1101/cshperspect.a040691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the genetic material is segregated inside the nucleus. This compartmentalization of the genome requires a transport system that allows cells to move molecules across the nuclear envelope, the membrane-based barrier that surrounds the chromosomes. Nuclear pore complexes (NPCs) are the central component of the nuclear transport machinery. These large protein channels penetrate the nuclear envelope, creating a passage between the nucleus and the cytoplasm through which nucleocytoplasmic molecule exchange occurs. NPCs are one of the largest protein assemblies of eukaryotic cells and, in addition to their critical function in nuclear transport, these structures also play key roles in many cellular processes in a transport-independent manner. Here we will review the current knowledge of the NPC structure, the cellular mechanisms that regulate their formation and maintenance, and we will provide a brief description of a variety of processes that NPCs regulate.
Collapse
Affiliation(s)
- Marcela Raices
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Maximiliano A D'Angelo
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| |
Collapse
|
7
|
Distinct roles of nuclear basket proteins in directing the passage of mRNA through the nuclear pore. Proc Natl Acad Sci U S A 2021; 118:2015621118. [PMID: 34504007 DOI: 10.1073/pnas.2015621118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
The in vivo characterization of the exact copy number and the specific function of each composite protein within the nuclear pore complex (NPC) remains both desirable and challenging. Through the implementation of live-cell high-speed super-resolution single-molecule microscopy, we first quantified the native copies of nuclear basket (BSK) proteins (Nup153, Nup50, and Tpr) prior to knocking them down in a highly specific manner via an auxin-inducible degron strategy. Second, we determined the specific roles that BSK proteins play in the nuclear export kinetics of model messenger RNA (mRNA) substrates. Finally, the three-dimensional (3D) nuclear export routes of these mRNA substrates through native NPCs in the absence of specific BSK proteins were obtained and further validated via postlocalization computational simulations. We found that these BSK proteins possess the stoichiometric ratio of 1:1:1 and play distinct roles in the nuclear export of mRNAs within live cells. The absence of Tpr from the NPC predominantly reduces the probability of nuclear mRNAs entering the NPC for export. Complete depletion of Nup153 and Nup50 results in an mRNA nuclear export efficiency decrease of approximately four folds. mRNAs can gain their maximum successful export efficiency as the copy number of Nup153 increased from zero to only half the full complement natively within the NPC. Lastly, the absence of Tpr or Nup153 seems to alter the 3D export routes of mRNAs as they pass through the NPC. However, the removal of Nup50 alone has almost no impact upon mRNA export route and kinetics.
Collapse
|
8
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
9
|
Yoo TY, Mitchison TJ. O-GlcNAc modification of nuclear pore complexes accelerates bidirectional transport. J Cell Biol 2021; 220:212033. [PMID: 33909044 PMCID: PMC8091080 DOI: 10.1083/jcb.202010141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
Macromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG-repeat domains in NPCs are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated transport of proteins in both directions, and decreasing modification slowed transport. Superresolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the nonspecific permeability of the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.
Collapse
Affiliation(s)
- Tae Yeon Yoo
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Timothy J Mitchison
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
11
|
The Nuclear Pore Complex and mRNA Export in Cancer. Cancers (Basel) 2020; 13:cancers13010042. [PMID: 33375634 PMCID: PMC7796397 DOI: 10.3390/cancers13010042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Export of mRNAs from the nucleus to the cytoplasm is a key regulatory step in the expression of proteins. mRNAs are transported through the nuclear pore complex (NPC). Export of mRNAs responds to a variety of cellular stimuli and stresses. Revelations of the specific effects elicited by NPC components and associated co-factors provides a molecular basis for the export of selected RNAs, independent of bulk mRNA export. Aberrant RNA export has been observed in primary human cancer specimens. These cargo RNAs encode factors involved in nearly all facets of malignancy. Indeed, the NPC components involved in RNA export as well as the RNA export machinery can be found to be dysregulated, mutated, or impacted by chromosomal translocations in cancer. The basic mechanisms associated with RNA export with relation to export machinery and relevant NPC components are described. Therapeutic strategies targeting this machinery in clinical trials is also discussed. These findings firmly position RNA export as a targetable feature of cancer along with transcription and translation.
Collapse
|
12
|
Gene Architecture and Sequence Composition Underpin Selective Dependency of Nuclear Export of Long RNAs on NXF1 and the TREX Complex. Mol Cell 2020; 79:251-267.e6. [PMID: 32504555 DOI: 10.1016/j.molcel.2020.05.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
The core components of the nuclear RNA export pathway are thought to be required for export of virtually all polyadenylated RNAs. Here, we depleted different proteins that act in nuclear export in human cells and quantified the transcriptome-wide consequences on RNA localization. Different genes exhibited substantially variable sensitivities, with depletion of NXF1 and TREX components causing some transcripts to become strongly retained in the nucleus while others were not affected. Specifically, NXF1 is preferentially required for export of single- or few-exon transcripts with long exons or high A/U content, whereas depletion of TREX complex components preferentially affects spliced and G/C-rich transcripts. Using massively parallel reporter assays, we identified short sequence elements that render transcripts dependent on NXF1 for their export and identified synergistic effects of splicing and NXF1. These results revise the current model of how nuclear export shapes the distribution of RNA within human cells.
Collapse
|
13
|
Burdine RD, Preston CC, Leonard RJ, Bradley TA, Faustino RS. Nucleoporins in cardiovascular disease. J Mol Cell Cardiol 2020; 141:43-52. [PMID: 32209327 DOI: 10.1016/j.yjmcc.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is a pressing health problem with significant global health, societal, and financial burdens. Understanding the molecular basis of polygenic cardiac pathology is thus essential to devising novel approaches for management and treatment. Recent identification of uncharacterized regulatory functions for a class of nuclear envelope proteins called nucleoporins offers the opportunity to understand novel putative mechanisms of cardiac disease development and progression. Consistent reports of nucleoporin deregulation associated with ischemic and dilated cardiomyopathies, arrhythmias and valvular disorders suggests that nucleoporin impairment may be a significant but understudied variable in cardiopathologic disorders. This review discusses and converges existing literature regarding nuclear pore complex proteins and their association with cardiac pathologies, and proposes a role for nucleoporins as facilitators of cardiac disease.
Collapse
Affiliation(s)
- Ryan D Burdine
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; School of Health Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, United States of America
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Riley J Leonard
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Tyler A Bradley
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22(nd) Street, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
14
|
Al-Darkazly IAA, Hasan SMR. Extra-Low-Frequency Pulse Stimulated Conformational Change in Blood-Cell Proteins and Consequent Immune Activity Transformation. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2020; 8:4100113. [PMID: 31998567 PMCID: PMC6984198 DOI: 10.1109/jtehm.2020.2963894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/12/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022]
Abstract
Objective: investigation of the extra-low-frequency (ELF) stimulation effect on blood-cell proteins, that causes variation in its electrostatic-state. A hypothesis that this results in the conformational change in the blood-cell proteins which could enhance immune activity is explored. Since HIV-1 and host-cell engage through charge-charge interactions, an electrical-pulse may cause charge redistribution, hypothetically resulting in host-cell proteins to be isolated from viral access. Methods: Buffy coat samples were exposed to ELF square waveform pulses of 5Hz, 10Hz and 1MHz, for 2-hours, and were then examined using immunofluorescence technique. The expression of glycoprotein CD4, and co-receptor protein CCR5, were investigated. Also, the binding activity of the N-terminal domain of CCR5 and the distribution of the nuclear-pore-complex (NPC) transport factor, FGNup153 were investigated. Comparison with control samples were carried out. Results: Increased CD4 count, which could enhance the immune system. In addition, the inability of N-terminus-specific antibody 3A9 to bind to CCR5 N-terminal, could be due to the interactions with the ELF electric-field, which may also hypothetically inhibit HIV-1 attachment. Furthermore, the electrostatic interactions between the ELF pulse and the FGNup153 induces redistribution in its disorder sequence and possibly causes conformational change. This could possibly prevent large virus particle transport through the NPC. Conclusion: Novel concept of ELF stimulation of blood cellular proteins has been developed leading to transformation of immune activity. Clinical-Impact: The translational aspect is the use of ELF as an avenue of electro-medicine and the results are a possible foundation for the clinical application of ELF stimulation in immune response.
Collapse
Affiliation(s)
- Ibtisam A. Abbas Al-Darkazly
- Center for Research in Analog and VLSI Microsystems Design (CRAVE), School of Advanced TechnologyMassey UniversityAuckland0632New Zealand
| | - S. M. Rezaul Hasan
- Center for Research in Analog and VLSI Microsystems Design (CRAVE), School of Advanced TechnologyMassey UniversityAuckland0632New Zealand
| |
Collapse
|
15
|
Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochem J 2020; 477:23-44. [DOI: 10.1042/bcj20190132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.
Collapse
|
16
|
Singh SP, Raja S, Mahalingam S. Viral protein X unlocks the nuclear pore complex through a human Nup153-dependent pathway to promote nuclear translocation of the lentiviral genome. Mol Biol Cell 2020; 31:304-317. [PMID: 31913756 PMCID: PMC7183765 DOI: 10.1091/mbc.e19-08-0438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Simian immunodeficiency virus (SIV) and human immunodeficiency virus 2 (HIV-2) display unique ability to infect nondividing target cells. Viral protein X (Vpx) of HIV-2/SIV is known to be involved in the nuclear import of viral genome in nondividing cells, but the mechanism remains poorly understood. In the present investigation for the first time we provide evidence that Vpx of SIVsmPBj1.9 physically interacts with human nucleoporin 153 (Nup153), which is known to provide a docking site for protein-cargo complexes at the nuclear pore complex (NPC). Results from superresolution-structured illumination microscopy studies reveal that Vpx interaction with NPC-associated Nup153 is critical for its efficient nuclear translocation. Virion-associated MAPK/ERK-2-mediated phosphorylation of Vpx plays a critical role in its interaction with human Nup153 and this interaction was found to be evolutionarily conserved in various SIV isolates and HIV-2. Interestingly, MAPK/ERK-2 packaging defective SIV failed to promote the efficient nuclear import of viral genome and suggests that MAPK/ERK-2-mediated Vpx phosphorylation is important for its interaction with Nup153, which is critical for lentiviruses to establish infection in nondividing target cells. Together, our data elucidate the mechanism by which Vpx orchestrates the challenging task of nuclear translocation of HIV-2/SIV genome in nondividing target cells.
Collapse
Affiliation(s)
- Satya Prakash Singh
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India.,National Cancer Tissue Biobank, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
17
|
Zhang K, Xie Y, Muñoz-Moreno R, Wang J, Zhang L, Esparza M, García-Sastre A, Fontoura BMA, Ren Y. Structural basis for influenza virus NS1 protein block of mRNA nuclear export. Nat Microbiol 2019; 4:1671-1679. [PMID: 31263181 PMCID: PMC6754785 DOI: 10.1038/s41564-019-0482-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Influenza viruses antagonize key immune defence mechanisms via the virulence factor non-structural protein 1 (NS1). A key mechanism of virulence by NS1 is blocking nuclear export of host messenger RNAs, including those encoding immune factors1-3; however, the direct cellular target of NS1 and the mechanism of host mRNA export inhibition are not known. Here, we identify the target of NS1 as the mRNA export receptor complex, nuclear RNA export factor 1-nuclear transport factor 2-related export protein 1 (NXF1-NXT1), which is the principal receptor mediating docking and translocation of mRNAs through the nuclear pore complex via interactions with nucleoporins4,5. We determined the crystal structure of NS1 in complex with NXF1-NXT1 at 3.8 Å resolution. The structure reveals that NS1 prevents binding of NXF1-NXT1 to nucleoporins, thereby inhibiting mRNA export through the nuclear pore complex into the cytoplasm for translation. We demonstrate that a mutant influenza virus deficient in binding NXF1-NXT1 does not block host mRNA export and is attenuated. This attenuation is marked by the release of mRNAs encoding immune factors from the nucleus. In sum, our study uncovers the molecular basis of a major nuclear function of influenza NS1 protein that causes potent blockage of host gene expression and contributes to inhibition of host immunity.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
18
|
Hochberg-Laufer H, Schwed-Gross A, Neugebauer KM, Shav-Tal Y. Uncoupling of nucleo-cytoplasmic RNA export and localization during stress. Nucleic Acids Res 2019; 47:4778-4797. [PMID: 30864659 PMCID: PMC6511838 DOI: 10.1093/nar/gkz168] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic cells contain sub-cellular compartments that are not membrane bound. Some structures are always present, such as nuclear speckles that contain RNA-binding proteins (RBPs) and poly(A)+ RNAs. Others, like cytoplasmic stress granules (SGs) that harbor mRNAs and RBPs, are induced upon stress. When we examined the formation and composition of nuclear speckles during stress induction with tubercidin, an adenosine analogue previously shown to affect nuclear speckle composition, we unexpectedly found that it also led to the formation of SGs and to the inhibition of several crucial steps of RNA metabolism in cells, thereby serving as a potent inhibitor of the gene expression pathway. Although transcription and splicing persisted under this stress, RBPs and mRNAs were mislocalized in the nucleus and cytoplasm. Specifically, lncRNA and RBP localization to nuclear speckles was disrupted, exon junction complex (EJC) recruitment to mRNA was reduced, mRNA export was obstructed, and cytoplasmic poly(A)+ RNAs localized in SGs. Furthermore, nuclear proteins that participate in mRNA export, such as nucleoporins and mRNA export adaptors, were mislocalized to SGs. This study reveals structural aspects of granule assembly in cells, and describes how the flow of RNA from the nucleus to the cytoplasm is severed under stress.
Collapse
Affiliation(s)
- Hodaya Hochberg-Laufer
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Avital Schwed-Gross
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
19
|
Fu G, Tu LC, Zilman A, Musser SM. Investigating molecular crowding within nuclear pores using polarization-PALM. eLife 2017; 6:e28716. [PMID: 28949296 PMCID: PMC5693140 DOI: 10.7554/elife.28716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
The key component of the nuclear pore complex (NPC) controlling permeability, selectivity, and the speed of nucleocytoplasmic transport is an assembly of natively unfolded polypeptides, which contain phenylalanine-glycine (FG) binding sites for nuclear transport receptors. The architecture and dynamics of the FG-network have been refractory to characterization due to the paucity of experimental methods able to probe the mobility and density of the FG-polypeptides and embedded macromolecules within intact NPCs. Combining fluorescence polarization, super-resolution microscopy, and mathematical analyses, we examined the rotational mobility of fluorescent probes at various locations within the FG-network under different conditions. We demonstrate that polarization PALM (p-PALM) provides a rich source of information about low rotational mobilities that are inaccessible with bulk fluorescence anisotropy approaches, and anticipate that p-PALM is well-suited to explore numerous crowded cellular environments. In total, our findings indicate that the NPC's internal organization consists of multiple dynamic environments with different local properties.
Collapse
Affiliation(s)
- Guo Fu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Li-Chun Tu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Anton Zilman
- Department of PhysicsUniversity of TorontoTorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| |
Collapse
|
20
|
The functional versatility of the nuclear pore complex proteins. Semin Cell Dev Biol 2017; 68:2-9. [DOI: 10.1016/j.semcdb.2017.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022]
|
21
|
Li P, Noegel AA. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export. Nucleic Acids Res 2015; 43:9874-88. [PMID: 26476453 PMCID: PMC4787764 DOI: 10.1093/nar/gkv1058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/01/2015] [Indexed: 11/12/2022] Open
Abstract
Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.
Collapse
Affiliation(s)
- Ping Li
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| |
Collapse
|
22
|
Sloan KE, Gleizes PE, Bohnsack MT. Nucleocytoplasmic Transport of RNAs and RNA-Protein Complexes. J Mol Biol 2015; 428:2040-59. [PMID: 26434509 DOI: 10.1016/j.jmb.2015.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
Abstract
RNAs and ribonucleoprotein complexes (RNPs) play key roles in mediating and regulating gene expression. In eukaryotes, most RNAs are transcribed, processed and assembled with proteins in the nucleus and then either function in the cytoplasm or also undergo a cytoplasmic phase in their biogenesis. This compartmentalization ensures that sequential steps in gene expression and RNP production are performed in the correct order and it allows important quality control mechanisms that prevent the involvement of aberrant RNAs/RNPs in these cellular pathways. The selective exchange of RNAs/RNPs between the nucleus and cytoplasm is enabled by nuclear pore complexes, which function as gateways between these compartments. RNA/RNP transport is facilitated by a range of nuclear transport receptors and adaptors, which are specifically recruited to their cargos and mediate interactions with nucleoporins to allow directional translocation through nuclear pore complexes. While some transport factors are only responsible for the export/import of a certain class of RNA/RNP, others are multifunctional and, in the case of large RNPs, several export factors appear to work together to bring about export. Recent structural studies have revealed aspects of the mechanisms employed by transport receptors to enable specific cargo recognition, and genome-wide approaches have provided the first insights into the diverse composition of pre-mRNPs during export. Furthermore, the regulation of RNA/RNP export is emerging as an important means to modulate gene expression under stress conditions and in disease.
Collapse
Affiliation(s)
- Katherine E Sloan
- Institute for Molecular Biology, Goettingen University Medical Department, 37073 Goettingen, Germany
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Université de Toulouse-Paul Sabatier, CNRS, Toulouse, France
| | - Markus T Bohnsack
- Institute for Molecular Biology, Goettingen University Medical Department, 37073 Goettingen, Germany; Goettingen Centre for Molecular Biosciences, Georg-August-University, 37075 Goettingen, Germany.
| |
Collapse
|
23
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
24
|
Kim NH, Pham NB, Quinn RJ, Shim JS, Cho H, Cho SM, Park SW, Kim JH, Seok SH, Oh JW, Kwon HJ. The Small Molecule R-(-)-β-O-Methylsynephrine Binds to Nucleoporin 153 kDa and Inhibits Angiogenesis. Int J Biol Sci 2015. [PMID: 26221075 PMCID: PMC4515819 DOI: 10.7150/ijbs.10603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
R-(-)-β-O-methylsynephrine (OMe-Syn) is a naturally occurring small molecule that was identified in a previous screen as an inhibitor of angiogenesis. In this study, we conducted two animal model experiments to investigate the in vivo antiangiogenic activity of OMe-Syn. OMe-Syn significantly inhibited angiogenesis in a transgenic zebrafish model as well as in a mouse retinopathy model. To elucidate the underlying mechanisms responsible for the antiangiogenic activity of OMe-Syn, we used phage display cloning to isolate potential OMe-Syn binding proteins from human cDNA libraries and identified nucleoporin 153 kDa (NUP153) as a primary binding partner of OMe-Syn. OMe-Syn competitively inhibited mRNA binding to the RNA-binding domain of NUP153. Furthermore, depletion of NUP153 in human cells or zebrafish embryos led to an inhibition of angiogenesis, in a manner similar to that seen in response to OMe-Syn treatment. These data suggest that OMe-Syn is a promising candidate for the development of a novel antiangiogenic agent and that inhibition of NUP153 is possibly responsible for the antiangiogenic activity of OMe-Syn.
Collapse
Affiliation(s)
- Nam Hee Kim
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Ngoc Bich Pham
- 2. Eskitis Institute, Griffith University, Brisbane QLD 4111, Australia
| | - Ronald J Quinn
- 2. Eskitis Institute, Griffith University, Brisbane QLD 4111, Australia
| | - Joong Sup Shim
- 3. Faculty of Health Sciences, University of Macau, Av. Universidade, Taipa, Macau SAR, China
| | - Hee Cho
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sung Min Cho
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sung Wook Park
- 4. Department of Ophthalmology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jeong Hun Kim
- 4. Department of Ophthalmology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Seung Hyeok Seok
- 5. Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jong-Won Oh
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Ho Jeong Kwon
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea ; 6. Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| |
Collapse
|
25
|
Wickramasinghe VO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 2015; 16:431-42. [PMID: 26081607 DOI: 10.1038/nrm4010] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear export of mRNAs is a crucial step in the regulation of gene expression, linking transcription in the nucleus to translation in the cytoplasm. Although important components of the mRNA export machinery are well characterized, such as transcription-export complexes TREX and TREX-2, recent work has shown that, in some instances, mammalian mRNA export can be selective and can regulate crucial biological processes such as DNA repair, gene expression, maintenance of pluripotency, haematopoiesis, proliferation and cell survival. Such findings show that mRNA export is an unexpected, yet potentially important, mechanism for the control of gene expression and of the mammalian transcriptome.
Collapse
Affiliation(s)
- Vihandha O Wickramasinghe
- Medical Research Centre (MRC) Cancer Unit, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Ronald A Laskey
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
26
|
Jacinto FV, Benner C, Hetzer MW. The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev 2015; 29:1224-38. [PMID: 26080816 PMCID: PMC4495395 DOI: 10.1101/gad.260919.115] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022]
Abstract
Nucleoporins (Nups) are a family of proteins best known as the constituent building blocks of nuclear pore complexes (NPCs), membrane-embedded channels that mediate nuclear transport across the nuclear envelope. Recent evidence suggests that several Nups have additional roles in controlling the activation and silencing of developmental genes; however, the mechanistic details of these functions remain poorly understood. Here, we show that depletion of Nup153 in mouse embryonic stem cells (mESCs) causes the derepression of developmental genes and induction of early differentiation. This loss of stem cell identity is not associated with defects in the nuclear import of key pluripotency factors. Rather, Nup153 binds around the transcriptional start site (TSS) of developmental genes and mediates the recruitment of the polycomb-repressive complex 1 (PRC1) to a subset of its target loci. Our results demonstrate a chromatin-associated role of Nup153 in maintaining stem cell pluripotency by functioning in mammalian epigenetic gene silencing.
Collapse
Affiliation(s)
- Filipe V Jacinto
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037 California, USA
| | - Chris Benner
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037 California, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037 California, USA
| |
Collapse
|
27
|
Nup153 Recruits the Nup107-160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly. Dev Cell 2015; 33:717-28. [DOI: 10.1016/j.devcel.2015.04.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/27/2015] [Accepted: 04/28/2015] [Indexed: 11/20/2022]
|
28
|
LU XIAODONG, CHEN YUANYUAN, ZENG TIANTIAN, CHEN LUFANG, SHAO QIXIANG, QIN WENXIN. Knockout of the HCC suppressor gene Lass2 downregulates the expression level of miR-694. Oncol Rep 2014; 32:2696-702. [DOI: 10.3892/or.2014.3527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/02/2014] [Indexed: 11/06/2022] Open
|
29
|
Bonnet A, Palancade B. Regulation of mRNA trafficking by nuclear pore complexes. Genes (Basel) 2014; 5:767-91. [PMID: 25184662 PMCID: PMC4198930 DOI: 10.3390/genes5030767] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed.
Collapse
Affiliation(s)
- Amandine Bonnet
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France.
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France.
| |
Collapse
|
30
|
Le Sage V, Mouland AJ, Valiente-Echeverría F. Roles of HIV-1 capsid in viral replication and immune evasion. Virus Res 2014; 193:116-29. [PMID: 25036886 DOI: 10.1016/j.virusres.2014.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
The primary roles of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein are to encapsidate and protect the viral RNA genome. It is becoming increasing apparent that HIV-1 CA is a multifunctional protein that acts early during infection to coordinate uncoating, reverse transcription, nuclear import of the pre-integration complex and integration of double stranded viral DNA into the host genome. Additionally, numerous recent studies indicate that CA is playing a crucial function in HIV-1 immune evasion. Here we summarize the current knowledge on HIV-1 CA and its interactions with the host cell to promote infection. The fact that CA engages in a number of different protein-protein interactions with the host makes it an interesting target for the development of new potent antiviral agents.
Collapse
Affiliation(s)
- Valerie Le Sage
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A2B4, Canada
| | - Fernando Valiente-Echeverría
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.
| |
Collapse
|
31
|
Abstract
Nuclear pore complexes (NPCs) are the sole gateways between the nucleus and the cytoplasm of eukaryotic cells and they mediate all macromolecular trafficking between these cellular compartments. Nucleocytoplasmic transport is highly selective and precisely regulated and as such an important aspect of normal cellular function. Defects in this process or in its machinery have been linked to various human diseases, including cancer. Nucleoporins, which are about 30 proteins that built up NPCs, are critical players in nucleocytoplasmic transport and have also been shown to be key players in numerous other cellular processes, such as cell cycle control and gene expression regulation. This review will focus on the three nucleoporins Nup98, Nup214, and Nup358. Common to them is their significance in nucleocytoplasmic transport, their multiple other functions, and being targets for chromosomal translocations that lead to haematopoietic malignancies, in particular acute myeloid leukaemia. The underlying molecular mechanisms of nucleoporin-associated leukaemias are only poorly understood but share some characteristics and are distinguished by their poor prognosis and therapy outcome.
Collapse
|
32
|
Zheng B, Zhou Q, Guo Y, Shao B, Zhou T, Wang L, Zhou Z, Sha J, Guo X, Huang X. Establishment of a proteomic profile associated with gonocyte and spermatogonial stem cell maturation and differentiation in neonatal mice. Proteomics 2014; 14:274-85. [DOI: 10.1002/pmic.201300395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/08/2013] [Accepted: 12/01/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Bo Zheng
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Quan Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Binbin Shao
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Lei Wang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| |
Collapse
|
33
|
Matreyek KA, Yücel SS, Li X, Engelman A. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog 2013; 9:e1003693. [PMID: 24130490 PMCID: PMC3795039 DOI: 10.1371/journal.ppat.1003693] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/24/2013] [Indexed: 12/13/2022] Open
Abstract
Lentiviruses can infect non-dividing cells, and various cellular transport proteins provide crucial functions for lentiviral nuclear entry and integration. We previously showed that the viral capsid (CA) protein mediated the dependency on cellular nucleoporin (NUP) 153 during HIV-1 infection, and now demonstrate a direct interaction between the CA N-terminal domain and the phenylalanine-glycine (FG)-repeat enriched NUP153 C-terminal domain (NUP153C). NUP153C fused to the effector domains of the rhesus Trim5α restriction factor (Trim-NUP153C) potently restricted HIV-1, providing an intracellular readout for the NUP153C-CA interaction during retroviral infection. Primate lentiviruses and equine infectious anemia virus (EIAV) bound NUP153C under these conditions, results that correlated with direct binding between purified proteins in vitro. These binding phenotypes moreover correlated with the requirement for endogenous NUP153 protein during virus infection. Mutagenesis experiments concordantly identified NUP153C and CA residues important for binding and lentiviral infectivity. Different FG motifs within NUP153C mediated binding to HIV-1 versus EIAV capsids. HIV-1 CA binding mapped to residues that line the common alpha helix 3/4 hydrophobic pocket that also mediates binding to the small molecule PF-3450074 (PF74) inhibitor and cleavage and polyadenylation specific factor 6 (CPSF6) protein, with Asn57 (Asp58 in EIAV) playing a particularly important role. PF74 and CPSF6 accordingly each competed with NUP153C for binding to the HIV-1 CA pocket, and significantly higher concentrations of PF74 were needed to inhibit HIV-1 infection in the face of Trim-NUP153C expression or NUP153 knockdown. Correlation between CA mutant viral cell cycle and NUP153 dependencies moreover indicates that the NUP153C-CA interaction underlies the ability of HIV-1 to infect non-dividing cells. Our results highlight similar mechanisms of binding for disparate host factors to the same region of HIV-1 CA during viral ingress. We conclude that a subset of lentiviral CA proteins directly engage FG-motifs present on NUP153 to affect viral nuclear import. Lentiviruses such as HIV-1 possess mechanisms to bypass the nuclear envelope and reach the nuclear interior for viral DNA integration. Numerous nuclear transport proteins are important for HIV-1 infection, suggesting the viral nucleoprotein complex enters the nucleus by passing through nuclear pore complexes. HIV-1 was previously found to utilize cellular nucleoporin (NUP) 153 protein in a manner determined by the viral capsid protein. Here, we show HIV-1 capsid directly binds NUP153 in a phenylalanine-glycine motif-dependent manner; such motifs form the general selectivity barrier that restricts transport through the nuclear pore. We find that NUP153 binds a hydrophobic pocket found on capsid proteins from both primate and equine lentiviruses, suggesting an evolutionary predilection for this interaction. The pocket on HIV-1 capsid also binds phenylalanine moieties present in a small molecule inhibitor of HIV-1 infection, as well as a separate host factor implicated in the nuclear import pathway. We found that these molecules compete for NUP153 binding, providing insight into their mechanisms of action during HIV-1 infection. These results demonstrate a previously unknown interaction important for HIV-1 nuclear trafficking, and posit direct binding of viral capsids with phenylalanine-glycine motifs as a novel example of viral hijacking of a fundamental cellular process.
Collapse
Affiliation(s)
- Kenneth A. Matreyek
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara S. Yücel
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiang Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Viral subversion of the nuclear pore complex. Viruses 2013; 5:2019-42. [PMID: 23959328 PMCID: PMC3761240 DOI: 10.3390/v5082019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022] Open
Abstract
The nuclear pore complex (NPC) acts as a selective barrier between the nucleus and the cytoplasm and is responsible for mediating communication by regulating the transport of RNA and proteins. Numerous viral pathogens have evolved different mechanisms to hijack the NPC in order to regulate trafficking of viral proteins, genomes and even capsids into and out of the nucleus thus promoting virus replication. The present review examines the different strategies and the specific nucleoporins utilized during viral infections as a means of promoting their life cycle and inhibiting host viral defenses.
Collapse
|
35
|
Hahm JB, Privalsky ML. Research resource: identification of novel coregulators specific for thyroid hormone receptor-β2. Mol Endocrinol 2013; 27:840-59. [PMID: 23558175 DOI: 10.1210/me.2012-1117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone receptors (TRs) are expressed as a series of interrelated isoforms that perform distinct biological roles. The TRβ2 isoform is found predominantly in the hypothalamus, pituitary, retina, and cochlea and displays unique transcriptional properties relative to the other TR isoforms. To more fully understand the isoform-specific biological and molecular properties of TRβ2, we have identified a series of previously unrecognized proteins that selectively interact with TRβ2 compared with the more widely expressed TRβ1. Several of these proteins preferentially enhance the transcriptional activity of TRβ2 when coexpressed in cells and are likely to represent novel, isoform-specific coactivators. Additional proteins were also identified in our screen that bind equally to TRβ1 and TRβ2 and may function as isoform-independent auxiliary proteins for these and/or other nuclear receptors. We propose that a combination of isoform-specific recruitment and tissue-specific expression of these newly identified coregulator candidates serves to customize TR function for different biological purposes in different cell types.
Collapse
Affiliation(s)
- Johnnie B Hahm
- Department of Microbiology, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
36
|
Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, Roux P, Shorte S, Charneau P, Diaz-Griffero F, Arhel NJ. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration. PLoS One 2012; 7:e46037. [PMID: 23049930 PMCID: PMC3457934 DOI: 10.1371/journal.pone.0046037] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022] Open
Abstract
The nuclear pore complex (NPC) mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV) has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | | | - Thomas Fricke
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Patricio Perez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juliette Fernandez
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | | | | | | | - Pierre Charneau
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nathalie J. Arhel
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
37
|
Lussi YC, Shumaker DK, Shimi T, Fahrenkrog B. The nucleoporin Nup153 affects spindle checkpoint activity due to an association with Mad1. Nucleus 2012; 1:71-84. [PMID: 21327106 DOI: 10.4161/nucl.1.1.10244] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/29/2009] [Accepted: 10/07/2009] [Indexed: 01/10/2023] Open
Abstract
The nucleoporin Nup153 is known to play pivotal roles in nuclear import and export in interphase cells and as the cell transitions into mitosis, Nup153 is involved in nuclear envelope breakdown. In this study, we demonstrate that the interaction of Nup153 with the spindle assembly checkpoint protein Mad1 is important in the regulation of the spindle checkpoint. Overexpression of human Nup153 in HeLa cells leads to the appearance of multinucleated cells and induces the formation of multipolar spindles. Importantly, it causes inactivation of the spindle checkpoint due to hypophosphorylation of Mad1. Depletion of Nup153 using RNA interference results in the decline of Mad1 at nuclear pores during interphase and more significantly causes a delayed dissociation of Mad1 from kinetochores in metaphase and an increase in the number of unresolved midbodies. In the absence of Nup153 the spindle checkpoint remains active. In vitro studies indicate direct binding of Mad1 to the N-terminal domain of Nup153. Importantly, Nup153 binding to Mad1 affects Mad1's phosphorylation status, but not its ability to interact with Mad2. Our data suggest that Nup153 levels regulate the localization of Mad1 during the metaphase/anaphase transition thereby affecting its phoshorylation status and in turn spindle checkpoint activity and mitotic exit.
Collapse
Affiliation(s)
- Yvonne C Lussi
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
38
|
Vagnarelli P, Earnshaw WC. Repo-Man-PP1: a link between chromatin remodelling and nuclear envelope reassembly. Nucleus 2012; 3:138-42. [PMID: 22555598 DOI: 10.4161/nucl.19267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coordination of late mitotic events is crucial for the maintenance of genome stability and for the control of gene expression after cell division. Reversible protein phosphorylation regulates this process by de-phosphorylation of mitotic phospho-proteins in a sequential and coordinated manner: this allows an orderly sequence of events to take place during mitotic exit. We have identified Repo-Man/PP1 as a phosphatase complex that regulates temporally and spatially chromatin re-organization and nuclear envelope re-formation during anaphase-telophase.
Collapse
Affiliation(s)
- Paola Vagnarelli
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
39
|
Malecki M, Malecki B. Nuclear routing networks span between nuclear pore complexes and genomic DNA to guide nucleoplasmic trafficking of biomolecules. ACTA ACUST UNITED AC 2012; 2. [PMID: 23275893 DOI: 10.4172/2165-7491.1000112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In health and disease, biomolecules, which are involved in gene expression, recombination, or reprogramming have to traffic through the nucleoplasm, between nuclear pore complexes (NPCs) and genomic DNA (gDNA). This trafficking is guided by the recently revealed nuclear routing networks (NRNs).In this study, we aimed to investigate, if the NRNs have established associations with the genomic DNA in situ and if the NRNs have capabilities to bind the DNA de novo. Moreover, we aimed to study further, if nucleoplasmic trafficking of the histones, rRNA, and transgenes' vectors, between the NPCs and gDNA, is guided by the NRNs.We used Xenopus laevis oocytes as the model system. We engineered the transgenes' DNA vectors equipped with the SV40 LTA nuclear localization signals (NLS) and/or HIV Rev nuclear export signals (NES). We purified histones, 5S rRNA, and gDNA. We rendered all these molecules superparamagnetic and fluorescent for detection with nuclear magnetic resonance (NMR), total reflection x-ray fluorescence (TXRF), energy dispersive x-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS).The NRNs span between the NPCs and genomic DNA. They form firm bonds with the gDNA in situ. After complete digestion of the nucleic acids with the RNases and DNases, the newly added DNA - modified with the dNTP analogs, bonds firmly to the NRNs. Moreover, the NRNs guide the trafficking of the DNA transgenes' vectors - modified with the SV40 LTA NLS, following their import into the nuclei through the NPCs. The pathway is identical to that of histones. The NRNs also guide the trafficking of the DNA transgenes' vectors, modified with the HIV Rev NES, to the NPCs, followed by their export out of the nuclei. Ribosomal RNAs follow the same pathway.To summarize, the NRNs are the structures connecting the NPCs and the gDNA. They guide the trafficking of the biomolecules between the NPCs and the gDNA.
Collapse
Affiliation(s)
- Marek Malecki
- University of Wisconsin, Madison, WI, USA and Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| | | |
Collapse
|
40
|
Rajanala K, Nandicoori VK. Localization of nucleoporin Tpr to the nuclear pore complex is essential for Tpr mediated regulation of the export of unspliced RNA. PLoS One 2012; 7:e29921. [PMID: 22253824 PMCID: PMC3258255 DOI: 10.1371/journal.pone.0029921] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/06/2011] [Indexed: 01/12/2023] Open
Abstract
Nucleoporin Tpr is a component of the nuclear pore complex (NPC) that localizes exclusively to intranuclear filaments. Tpr functions as a scaffolding element in the nuclear phase of the NPC and plays a role in mitotic spindle checkpoint signalling. Export of intron-containing mRNA in Mason Pfizer Monkey Virus is regulated by direct interaction of cellular proteins with the cis-acting Constitutive Transport Element (CTE). In mammalian cells, the transport of Gag/Pol-CTE reporter construct is not very efficient, suggesting a regulatory mechanism to retain this unspliced RNA. Here we report that the knockdown of Tpr in mammalian cells leads to a drastic enhancement in the levels of Gag proteins (p24) in the cytoplasm, which is rescued by siRNA resistant Tpr. Tpr's role in the retention of unspliced RNA is independent of the functions of Sam68 and Tap/Nxf1 proteins, which are reported to promote CTE dependent export. Further, we investigated the possible role for nucleoporins that are known to function in nucleocytoplasmic transport in modulating unspliced RNA export. Results show that depletion of Nup153, a nucleoporin required for NPC anchoring of Tpr, plays a role in regulating the export, while depletion of other FG repeat-containing nucleoporins did not alter the unspliced RNA export. Results suggest that Tpr and Nup153 both regulate the export of unspliced RNA and they are most likely functioning through the same pathway. Importantly, we find that localization of Tpr to the NPC is necessary for Tpr mediated regulation of unspliced RNA export. Collectively, the data indicates that perinuclear localization of Tpr at the nucleopore complex is crucial for regulating intron containing mRNA export by directly or indirectly participating in the processing and degradation of aberrant mRNA transcripts.
Collapse
Affiliation(s)
- Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
41
|
Datta S, Chowdhury A, Ghosh M, Das K, Jha P, Colah R, Mukerji M, Majumder PP. A genome-wide search for non-UGT1A1 markers associated with unconjugated bilirubin level reveals significant association with a polymorphic marker near a gene of the nucleoporin family. Ann Hum Genet 2011; 76:33-41. [PMID: 22118420 DOI: 10.1111/j.1469-1809.2011.00688.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Variants in the UGT1A1 gene and its promoter are known to determine levels of unconjugated bilirubin (UCB), but do not explain all cases of unconjugated hyperbilirubinemia. To discover associations with variants in genes other than UGT1A1, we undertook a genome-wide association study. We recruited 200 participants to cover the entire range of quantitative variation in UCB level. The data set -- after data curation, including analyses for population stratification and cryptic relatedness -- comprised genotypes at 512,349 SNP loci on 182 individuals. Quantitative trait locus (QTL) association analyses were performed, after adjusting the UCB level for effects of age, gender, and genotype at the dinucleotide (TA) insertion locus in UGT1A1 that is known to significantly modulate UCB level. A significant association of a polymorphic marker (rs2328136) near the NUP153 gene (which produces a 153 kDa nucleoporin) was obtained (p = 0.002, after multiple-testing correction). The frequency of the variant allele (A) at the rs2328136 locus in our study population is 40%, higher than most global populations. NUP153, whose product is a major regulatory factor in bidirectional transport of biomolecules across nucleus to cytosol, is associated with the transport of biliverdin reductase, which is important for bilirubin conjugation.
Collapse
Affiliation(s)
- Shalini Datta
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Monette A, Panté N, Mouland AJ. Examining the requirements for nucleoporins by HIV-1. Future Microbiol 2011; 6:1247-50. [DOI: 10.2217/fmb.11.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Matreyek KA, Engelman A. The requirement for nucleoporin Nup153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J. Virol. 85(15), 7818–7827 (2011). A hallmark of HIV type 1 and other lentiviruses is their ability to infect and replicate in nondividing cells by commandeering host nuclear transport factors. During the early stages of infection, this is expected to permit the safe passage of viral preintegration complexes (PICs) through nuclear pores. Numerous nuclear transport factors have been identified as essential for HIV-1 infection by genome-wide small interfering RNA screens, and many of these are currently under investigation. Here, using knockdown studies, Matreyek and Engelman further characterize the importance of transportin-3 and nuclear pore complex component nucleoporin 153 for the early stages of HIV-1 infection and show that these two proteins operate synergistically. Also, as was previously observed for transportin-3, they show that the requirement of nucleoporin 153 for PIC nuclear entry is determined by the HIV-1 Capsid protein. The refinement of the list of key nuclear pore complex and transport proteins required for PIC entry, along with a better understanding of the specific mechanisms employed, will undoubtedly lead to the development of future antiretroviral therapies that will have the potential to block HIV-1 viral DNA integration.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, H3A 1A3, Canada
| | - Nelly Panté
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Andrew J Mouland
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| |
Collapse
|
43
|
The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Lett 2010; 584:3013-20. [PMID: 20561986 DOI: 10.1016/j.febslet.2010.05.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 02/05/2023]
Abstract
Nucleoporin 153 (Nup153), a component of the nuclear pore complex (NPC), has been implicated in the interaction of the NPC with the nuclear lamina. Here we show that depletion of Nup153 by RNAi results in alteration of the organization of the nuclear lamina and the nuclear lamin-binding protein Sun1. More striking, Nup153 depletion induces a dramatic cytoskeletal rearrangement that impairs cell migration in human breast carcinoma cells. Our results point to a very prominent role of Nup153 in connection to cell motility that could be exploited in order to develop novel anti-cancer therapy.
Collapse
|
44
|
Lachish-Zalait A, Lau CK, Fichtman B, Zimmerman E, Harel A, Gaylord MR, Forbes DJ, Elbaum M. Transportin mediates nuclear entry of DNA in vertebrate systems. Traffic 2010; 10:1414-28. [PMID: 19761539 DOI: 10.1111/j.1600-0854.2009.00968.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Delivery of DNA to the cell nucleus is an essential step in many types of viral infection, transfection, gene transfer by the plant pathogen Agrobacterium tumefaciens and in strategies for gene therapy. Thus, the mechanism by which DNA crosses the nuclear pore complex (NPC) is of great interest. Using nuclei reconstituted in vitro in Xenopus egg extracts, we previously studied DNA passage through the nuclear pores using a single-molecule approach based on optical tweezers. Fluorescently labeled DNA molecules were also seen to accumulate within nuclei. Here we find that this import of DNA relies on a soluble protein receptor of the importin family. To identify this receptor, we used different pathway-specific cargoes in competition studies as well as pathway-specific dominant negative inhibitors derived from the nucleoporin Nup153. We found that inhibition of the receptor transportin suppresses DNA import. In contrast, inhibition of importin beta has little effect on the nuclear accumulation of DNA. The dependence on transportin was fully confirmed in assays using permeabilized HeLa cells and a mammalian cell extract. We conclude that the nuclear import of DNA observed in these different vertebrate systems is largely mediated by the receptor transportin. We further report that histones, a known cargo of transportin, can act as an adaptor for the binding of transportin to DNA.
Collapse
Affiliation(s)
- Aurelie Lachish-Zalait
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kylberg K, Björk P, Fomproix N, Ivarsson B, Wieslander L, Daneholt B. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport. Exp Cell Res 2009; 316:1028-38. [PMID: 19853599 DOI: 10.1016/j.yexcr.2009.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/16/2009] [Indexed: 12/18/2022]
Abstract
We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.
Collapse
Affiliation(s)
- Karin Kylberg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. EUKARYOTIC CELL 2009; 8:1814-27. [PMID: 19801417 DOI: 10.1128/ec.00225-09] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nuclear envelope is a physical barrier between the nucleus and cytoplasm and, as such, separates the mechanisms of transcription from translation. This compartmentalization of eukaryotic cells allows spatial regulation of gene expression; however, it also necessitates a mechanism for transport between the nucleus and cytoplasm. Macromolecular trafficking of protein and RNA occurs exclusively through nuclear pore complexes (NPCs), specialized channels spanning the nuclear envelope. A novel family of NPC proteins, the FG-nucleoporins (FG-Nups), coordinates and potentially regulates NPC translocation. The extensive repeats of phenylalanine-glycine (FG) in each FG-Nup directly bind to shuttling transport receptors moving through the NPC. In addition, FG-Nups are essential components of the nuclear permeability barrier. In this review, we discuss the structural features, cellular functions, and evolutionary conservation of the FG-Nups.
Collapse
|
47
|
Obrdlik A, Louvet E, Kukalev A, Naschekin D, Kiseleva E, Fahrenkrog B, Percipalle P. Nuclear myosin 1 is in complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J 2009; 24:146-57. [PMID: 19729515 DOI: 10.1096/fj.09-135863] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In rRNA biogenesis, nuclear myosin 1 (NM1) and actin synergize to activate rRNA gene transcription. Evidence that actin is in preribosomal subunits and NM1 may control rRNA biogenesis post-transcriptionally prompted us to investigate whether NM1 associates with and accompanies rRNA to nuclear pores (NPC). Ultracentrifugation on HeLa nucleolar extracts showed RNA-dependent NM1 coelution with preribosomal subunits. In RNA immunoprecipitations (RIPs), NM1 coprecipitated with pre-rRNAs and 18S, 5.8S, and 28S rRNAs, but failed to precipitate 5S rRNA and 7SL RNA. In isolated nuclei and living HeLa cells, NM1 or actin inhibition and selective alterations in actin polymerization impaired 36S pre-rRNA processing. Immunoelectron microscopy (IEM) on sections of manually isolated Xenopus oocyte nuclei showed NM1 localization at the NPC basket. Field emission scanning IEM on isolated nuclear envelopes and intranuclear content confirmed basket localization and showed that NM1 decorates actin-rich pore-linked filaments. Finally, RIP and successive RIPs (reRIPs) on cross-linked HeLa cells demonstrated that NM1, CRM1, and Nup153 precipitate same 18S and 28S rRNAs but not 5S rRNA. We conclude that NM1 facilitates maturation and accompanies export-competent preribosomal subunits to the NPC, thus modulating export.
Collapse
Affiliation(s)
- Ales Obrdlik
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Crystallographic and biochemical analysis of the Ran-binding zinc finger domain. J Mol Biol 2009; 391:375-89. [PMID: 19505478 PMCID: PMC2716403 DOI: 10.1016/j.jmb.2009.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 01/07/2023]
Abstract
The nuclear pore complex (NPC) resides in circular openings within the nuclear envelope and serves as the sole conduit to facilitate nucleocytoplasmic transport in eukaryotes. The asymmetric distribution of the small G protein Ran across the nuclear envelope regulates directionality of protein transport. Ran interacts with the NPC of metazoa via two asymmetrically localized components, Nup153 at the nuclear face and Nup358 at the cytoplasmic face. Both nucleoporins contain a stretch of distinct, Ran-binding zinc finger domains. Here, we present six crystal structures of Nup153-zinc fingers in complex with Ran and a 1.48 A crystal structure of RanGDP. Crystal engineering allowed us to obtain well diffracting crystals so that all ZnF-Ran complex structures are refined to high resolution. Each of the four zinc finger modules of Nup153 binds one Ran molecule in apparently non-allosteric fashion. The affinity is measurably higher for RanGDP than for RanGTP and varies modestly between the individual zinc fingers. By microcalorimetric and mutational analysis, we determined that one specific hydrogen bond accounts for most of the differences in the binding affinity of individual zinc fingers. Genomic analysis reveals that only in animals do NPCs contain Ran-binding zinc fingers. We speculate that these organisms evolved a mechanism to maintain a high local concentration of Ran at the vicinity of the NPC, using this zinc finger domain as a sink.
Collapse
|
49
|
|
50
|
Duricka D, Ullman KS. Analysis of RNA export using Xenopus oocytes. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 11:Unit 11.14. [PMID: 18228305 DOI: 10.1002/0471143030.cb1114s10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit describes a procedure for monitoring RNA export in Xenopus oocytes. The technique involves synthesizing labeled RNA in vitro and microinjecting the RNA into oocyte nuclei. Following incubation the oocytes are dissected into nuclear and cytoplasmic fractions. These samples are then processed for RNA analysis, allowing the extent of export to be quantitatively assessed.
Collapse
Affiliation(s)
- D Duricka
- University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|