1
|
Paul S, Arias MA, Wen L, Liao SE, Zhang J, Wang X, Regev O, Fei J. RNA molecules display distinctive organization at nuclear speckles. iScience 2024; 27:109603. [PMID: 38638569 PMCID: PMC11024929 DOI: 10.1016/j.isci.2024.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
RNA molecules often play critical roles in assisting the formation of membraneless organelles in eukaryotic cells. Yet, little is known about the organization of RNAs within membraneless organelles. Here, using super-resolution imaging and nuclear speckles as a model system, we demonstrate that different sequence domains of RNA transcripts exhibit differential spatial distributions within speckles. Specifically, we image transcripts containing a region enriched in binding motifs of serine/arginine-rich (SR) proteins and another region enriched in binding motifs of heterogeneous nuclear ribonucleoproteins (hnRNPs). We show that these transcripts localize to the outer shell of speckles, with the SR motif-rich region localizing closer to the speckle center relative to the hnRNP motif-rich region. Further, we identify that this intra-speckle RNA organization is driven by the strength of RNA-protein interactions inside and outside speckles. Our results hint at novel functional roles of nuclear speckles and likely other membraneless organelles in organizing RNA substrates for biochemical reactions.
Collapse
Affiliation(s)
- Sneha Paul
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Institute for System Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Li Wen
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Susan E. Liao
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jiacheng Zhang
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoshu Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Esparza M, Bhat P, Fontoura BMA. Viral-host interactions during splicing and nuclear export of influenza virus mRNAs. Curr Opin Virol 2022; 55:101254. [PMID: 35908311 PMCID: PMC9945342 DOI: 10.1016/j.coviro.2022.101254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
As influenza-A viruses (IAV) replicate in the host cell nucleus, intranuclear pathways are usurped for viral gene expression. The eight genomic viral ribonucleoproteins (vRNPs) segments of IAV are transcribed and two generate viral mRNAs (M and NS) that undergo alternative splicing followed by export from the nucleus. The focus of this review is on viral RNA splicing and nuclear export. Recent mechanistic advances on M and NS splicing show differential regulation by RNA-binding proteins as well as distinct intranuclear localization. After a review of IAV splicing, we will discuss the nuclear export of viral mRNAs, which occur by interacting with specific constituents of the host mRNA export machinery that translocate viral mRNAs through the nuclear pore complex for translation in the cytoplasm.
Collapse
|
3
|
Górka S, Kubiak D, Ciesińska M, Niedojadło K, Tyburski J, Niedojadło J. Function of Cajal Bodies in Nuclear RNA Retention in A. thaliana Leaves Subjected to Hypoxia. Int J Mol Sci 2022; 23:ijms23147568. [PMID: 35886915 PMCID: PMC9321658 DOI: 10.3390/ijms23147568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Retention of RNA in the nucleus precisely regulates the time and rate of translation and controls transcriptional bursts that can generate profound variability in mRNA levels among identical cells in tissues. In this study, we investigated the function of Cajal bodies (CBs) in RNA retention in A. thaliana leaf nuclei during hypoxia stress was investigated. It was observed that in ncb-1 mutants with a complete absence of CBs, the accumulation of poly(A+) RNA in the leaf nuclei was lower than that in wt under stress. Moreover, unlike in root cells, CBs store less RNA, and RNA retention in the nuclei is much less intense. Our results reveal that the function of CBs in the accumulation of RNA in nuclei under stress depends on the plant organ. Additionally, in ncb-1, retention of introns of mRNA RPB1 (largest subunit of RNA polymerase II) mRNA was observed. However, this isoform is highly accumulated in the nucleus. It thus follows that intron retention in transcripts is more important than CBs for the accumulation of RNA in nuclei. Accumulated mRNAs with introns in the nucleus could escape transcript degradation by NMD (nonsense-mediated mRNA decay). From non-fully spliced mRNAs in ncb-1 nuclei, whose levels increase during hypoxia, introns are removed during reoxygenation. Then, the mRNA is transferred to the cytoplasm, and the RPB1 protein is translated. Despite the accumulation of isoforms in nuclei with retention of introns in reoxygenation, ncb-1 coped much worse with long hypoxia, and manifested faster yellowing and shrinkage of leaves.
Collapse
Affiliation(s)
- Sylwia Górka
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Dawid Kubiak
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Małgorzata Ciesińska
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
4
|
Faber GP, Nadav-Eliyahu S, Shav-Tal Y. Nuclear speckles - a driving force in gene expression. J Cell Sci 2022; 135:275909. [PMID: 35788677 DOI: 10.1242/jcs.259594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear speckles are dynamic membraneless bodies located in the cell nucleus. They harbor RNAs and proteins, many of which are splicing factors, that together display complex biophysical properties dictating nuclear speckle formation and maintenance. Although these nuclear bodies were discovered decades ago, only recently has in-depth genomic analysis begun to unravel their essential functions in modulation of gene activity. Major advancements in genomic mapping techniques combined with microscopy approaches have enabled insights into the roles nuclear speckles may play in enhancing gene expression, and how gene positioning to specific nuclear landmarks can regulate gene expression and RNA processing. Some studies have drawn a link between nuclear speckles and disease. Certain maladies either involve nuclear speckles directly or dictate the localization and reorganization of many nuclear speckle factors. This is most striking during viral infection, as viruses alter the entire nuclear architecture and highjack host machinery. As discussed in this Review, nuclear speckles represent a fascinating target of study not only to reveal the links between gene positioning, genome subcompartments and gene activity, but also as a potential target for therapeutics.
Collapse
Affiliation(s)
- Gabriel P Faber
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shani Nadav-Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
5
|
Dumbović G, Braunschweig U, Langner HK, Smallegan M, Biayna J, Hass EP, Jastrzebska K, Blencowe B, Cech TR, Caruthers MH, Rinn JL. Nuclear compartmentalization of TERT mRNA and TUG1 lncRNA is driven by intron retention. Nat Commun 2021; 12:3308. [PMID: 34083519 PMCID: PMC8175569 DOI: 10.1038/s41467-021-23221-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
The spatial partitioning of the transcriptome in the cell is an important form of gene-expression regulation. Here, we address how intron retention influences the spatio-temporal dynamics of transcripts from two clinically relevant genes: TERT (Telomerase Reverse Transcriptase) pre-mRNA and TUG1 (Taurine-Upregulated Gene 1) lncRNA. Single molecule RNA FISH reveals that nuclear TERT transcripts uniformly and robustly retain specific introns. Our data suggest that the splicing of TERT retained introns occurs during mitosis. In contrast, TUG1 has a bimodal distribution of fully spliced cytoplasmic and intron-retained nuclear transcripts. We further test the functionality of intron-retention events using RNA-targeting thiomorpholino antisense oligonucleotides to block intron excision. We show that intron retention is the driving force for the nuclear compartmentalization of these RNAs. For both RNAs, altering this splicing-driven subcellular distribution has significant effects on cell viability. Together, these findings show that stable retention of specific introns can orchestrate spatial compartmentalization of these RNAs within the cell. This process reveals that modulating RNA localization via targeted intron retention can be utilized for RNA-based therapies.
Collapse
Affiliation(s)
- Gabrijela Dumbović
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | | | - Heera K Langner
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Michael Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Josep Biayna
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain
| | - Evan P Hass
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Katarzyna Jastrzebska
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Marvin H Caruthers
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
6
|
Gordon JM, Phizicky DV, Neugebauer KM. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr Opin Genet Dev 2021; 67:67-76. [PMID: 33291060 PMCID: PMC8084925 DOI: 10.1016/j.gde.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Thousands of genes produce polyadenylated mRNAs that still contain one or more introns. These transcripts are known as retained intron RNAs (RI-RNAs). In the past 10 years, RI-RNAs have been linked to post-transcriptional alternative splicing in a variety of developmental contexts, but they can also be dead-end products fated for RNA decay. Here we discuss the role of intron retention in shaping gene expression programs, as well as recent evidence suggesting that the biogenesis and fate of RI-RNAs is regulated by nuclear organization. We discuss the possibility that proximity of RNA to nuclear speckles - biomolecular condensates that are highly enriched in splicing factors and other RNA binding proteins - is associated with choices ranging from efficient co-transcriptional splicing, export and stability to regulated post-transcriptional splicing and possible vulnerability to decay.
Collapse
Affiliation(s)
- Jackson M Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - David V Phizicky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res 2021; 49:636-645. [PMID: 33337476 PMCID: PMC7826271 DOI: 10.1093/nar/gkaa1209] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Phase-separated membraneless bodies play important roles in nucleic acid biology. While current models for the roles of phase separation largely focus on the compartmentalization of constituent proteins, we reason that other properties of phase separation may play functional roles. Specifically, we propose that interfaces of phase-separated membraneless bodies could have functional roles in spatially organizing biochemical reactions. Here we propose such a model for the nuclear speckle, a membraneless body implicated in RNA splicing. In our model, sequence-dependent RNA positioning along the nuclear speckle interface coordinates RNA splicing. Our model asserts that exons are preferentially sequestered into nuclear speckles through binding by SR proteins, while introns are excluded through binding by nucleoplasmic hnRNP proteins. As a result, splice sites at exon-intron boundaries are preferentially positioned at nuclear speckle interfaces. This positioning exposes splice sites to interface-localized spliceosomes, enabling the subsequent splicing reaction. Our model provides a simple mechanism that seamlessly explains much of the complex logic of splicing. This logic includes experimental results such as the antagonistic duality between splicing factors, the position dependence of splicing sequence motifs, and the collective contribution of many motifs to splicing decisions. Similar functional roles for phase-separated interfaces may exist for other membraneless bodies.
Collapse
Affiliation(s)
- Susan E Liao
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Oded Regev
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| |
Collapse
|
8
|
Hasenson SE, Shav‐Tal Y. Speculating on the Roles of Nuclear Speckles: How RNA‐Protein Nuclear Assemblies Affect Gene Expression. Bioessays 2020; 42:e2000104. [DOI: 10.1002/bies.202000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah E. Hasenson
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| | - Yaron Shav‐Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| |
Collapse
|
9
|
Esparza M, Mor A, Niederstrasser H, White K, White A, Zhang K, Gao S, Wang J, Liang J, Sho S, Sakthivel R, Sathe AA, Xing C, Muñoz-Moreno R, Shay JW, García-Sastre A, Ready J, Posner B, Fontoura BMA. Chemical intervention of influenza virus mRNA nuclear export. PLoS Pathog 2020; 16:e1008407. [PMID: 32240278 PMCID: PMC7117665 DOI: 10.1371/journal.ppat.1008407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/05/2023] Open
Abstract
Influenza A viruses are human pathogens with limited therapeutic options. Therefore, it is crucial to devise strategies for the identification of new classes of antiviral medications. The influenza A virus genome is constituted of 8 RNA segments. Two of these viral RNAs are transcribed into mRNAs that are alternatively spliced. The M1 mRNA encodes the M1 protein but is also alternatively spliced to yield the M2 mRNA during infection. M1 to M2 mRNA splicing occurs at nuclear speckles, and M1 and M2 mRNAs are exported to the cytoplasm for translation. M1 and M2 proteins are critical for viral trafficking, assembly, and budding. Here we show that gene knockout of the cellular protein NS1-BP, a constituent of the M mRNA speckle-export pathway and a binding partner of the virulence factor NS1 protein, inhibits M mRNA nuclear export without altering bulk cellular mRNA export, providing an avenue to preferentially target influenza virus. We performed a high-content, image-based chemical screen using single-molecule RNA-FISH to label viral M mRNAs followed by multistep quantitative approaches to assess cellular mRNA and cell toxicity. We identified inhibitors of viral mRNA biogenesis and nuclear export that exhibited no significant activity towards bulk cellular mRNA at non-cytotoxic concentrations. Among the hits is a small molecule that preferentially inhibits nuclear export of a subset of viral and cellular mRNAs without altering bulk cellular mRNA export. These findings underscore specific nuclear export requirements for viral mRNAs and phenocopy down-regulation of the mRNA export factor UAP56. This RNA export inhibitor impaired replication of diverse influenza A virus strains at non-toxic concentrations. Thus, this screening strategy yielded compounds that alone or in combination may serve as leads to new ways of treating influenza virus infection and are novel tools for studying viral RNA trafficking in the nucleus.
Collapse
Affiliation(s)
- Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Amir Mor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hanspeter Niederstrasser
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alexander White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shengyan Gao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Juan Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sei Sho
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ramanavelan Sakthivel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Adwait A. Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Joseph Ready
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bruce Posner
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
10
|
Chen Y, Belmont AS. Genome organization around nuclear speckles. Curr Opin Genet Dev 2019; 55:91-99. [PMID: 31394307 DOI: 10.1016/j.gde.2019.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Higher eukaryotic cell nuclei are highly compartmentalized into bodies and structural assemblies of specialized functions. Nuclear speckles/IGCs are one of the most prominent nuclear bodies, yet their functional significance remains largely unknown. Recent advances in sequence-based mapping of nuclear genome organization now provide genome-wide analysis of chromosome organization relative to nuclear speckles. Here we review older microscopy-based studies on a small number of genes with the new genomic mapping data suggesting a significant fraction of the genome is almost deterministically positioned near nuclear speckles. Both microscopy and genomic-based approaches support the concept of the nuclear speckle periphery as a major active chromosomal compartment which may play an important role in fine-tuning gene regulation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Berkeley, CA 94720, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, B107 CLSL, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Castillo-Iglesias MS, Berciano MT, Narcis JO, Val-Bernal JF, Rodriguez-Rey JC, Tapia O, Lafarga M. Reorganization of the nuclear compartments involved in transcription and RNA processing in myonuclei of type I spinal muscular atrophy. Histochem Cell Biol 2019; 152:227-237. [PMID: 31183542 DOI: 10.1007/s00418-019-01792-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by the loss or mutation of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to the degeneration of motor neurons and muscular atrophy. In this study, we analyzed the nuclear reorganization in human skeletal myofibers from a type I SMA patient carrying a deletion of exons 7 and 8 in the SMN1 gene and two SMN2 gene copies and showing reduced SMN protein levels in the muscle compared with those in control samples. The morphometric analysis of myofiber size revealed the coexistence of atrophic and hypertrophic myofibers in SMA samples. Compared with controls, both nuclear size and the nuclear shape factor were significantly reduced in SMA myonuclei. Nuclear reorganization in SMA myonuclei was characterized by extensive heterochromatinization, the aggregation of splicing factors in large interchromatin granule clusters, and nucleolar alterations with the accumulation of the granular component and a loss of fibrillar center/dense fibrillar component units. These nuclear alterations reflect a severe perturbation of global pre-mRNA transcription and splicing, as well as nucleolar dysfunction, in SMA myofibers. Moreover, the finding of similar nuclear reorganization in both atrophic and hypetrophic myofibers provides additional support that the SMN deficiency in SMA patients may primarily affect the skeletal myofibers.
Collapse
Affiliation(s)
- María S Castillo-Iglesias
- Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - María T Berciano
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - J Oriol Narcis
- Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - J Fernando Val-Bernal
- Unidad de Patología, Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - José C Rodriguez-Rey
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Olga Tapia
- Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain.
| | - Miguel Lafarga
- Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain.
| |
Collapse
|
12
|
Hochberg-Laufer H, Schwed-Gross A, Neugebauer KM, Shav-Tal Y. Uncoupling of nucleo-cytoplasmic RNA export and localization during stress. Nucleic Acids Res 2019; 47:4778-4797. [PMID: 30864659 PMCID: PMC6511838 DOI: 10.1093/nar/gkz168] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic cells contain sub-cellular compartments that are not membrane bound. Some structures are always present, such as nuclear speckles that contain RNA-binding proteins (RBPs) and poly(A)+ RNAs. Others, like cytoplasmic stress granules (SGs) that harbor mRNAs and RBPs, are induced upon stress. When we examined the formation and composition of nuclear speckles during stress induction with tubercidin, an adenosine analogue previously shown to affect nuclear speckle composition, we unexpectedly found that it also led to the formation of SGs and to the inhibition of several crucial steps of RNA metabolism in cells, thereby serving as a potent inhibitor of the gene expression pathway. Although transcription and splicing persisted under this stress, RBPs and mRNAs were mislocalized in the nucleus and cytoplasm. Specifically, lncRNA and RBP localization to nuclear speckles was disrupted, exon junction complex (EJC) recruitment to mRNA was reduced, mRNA export was obstructed, and cytoplasmic poly(A)+ RNAs localized in SGs. Furthermore, nuclear proteins that participate in mRNA export, such as nucleoporins and mRNA export adaptors, were mislocalized to SGs. This study reveals structural aspects of granule assembly in cells, and describes how the flow of RNA from the nucleus to the cytoplasm is severed under stress.
Collapse
Affiliation(s)
- Hodaya Hochberg-Laufer
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Avital Schwed-Gross
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
13
|
Wang K, Wang L, Wang J, Chen S, Shi M, Cheng H. Intronless mRNAs transit through nuclear speckles to gain export competence. J Cell Biol 2018; 217:3912-3929. [PMID: 30194269 PMCID: PMC6219727 DOI: 10.1083/jcb.201801184] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
Nuclear speckles (NSs) store splicing factors. Wang et al. show that many naturally intronless mRNAs associate with NSs and that speckle association enhances their export by facilitating TREX recruitment, suggesting that trafficking to NSs could be an important quality control step in intronless mRNA export. Nuclear speckles (NSs) serve as splicing factor storage sites. In this study, we unexpectedly found that many endogenous intronless mRNAs, which do not undergo splicing, associate with NSs. These associations do not require transcription, polyadenylation, or the polyA tail. Rather, exonic splicing enhancers present in intronless mRNAs and their binding partners, SR proteins, promote intronless mRNA localization to NSs. Significantly, speckle targeting of mRNAs promotes the recruitment of the TREX export complex and their TREX-dependent nuclear export. Furthermore, TREX, which accumulates in NSs, is required for releasing intronless mRNAs from NSs, whereas NXF1, which is mainly detected at nuclear pores, is not. Upon NXF1 depletion, the TREX protein UAP56 loses speckle concentration but coaccumulates with intronless mRNAs and polyA RNAs in the nucleoplasm, and these RNAs are trapped in NSs upon UAP56 codepletion. We propose that the export-competent messenger RNP assembly mainly occurs in NSs for intronless mRNAs and that entering NSs serves as a quality control step in mRNA export.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Lee ES, Palazzo AF. Assessing mRNA nuclear export in mammalian cells by microinjection. Methods 2017; 126:76-85. [DOI: 10.1016/j.ymeth.2017.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 11/17/2022] Open
|
15
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Mor A, White A, Zhang K, Thompson M, Esparza M, Muñoz-Moreno R, Koide K, Lynch KW, García-Sastre A, Fontoura BM. Influenza virus mRNA trafficking through host nuclear speckles. Nat Microbiol 2016; 1:16069. [PMID: 27572970 PMCID: PMC4917225 DOI: 10.1038/nmicrobiol.2016.69] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/20/2016] [Indexed: 12/26/2022]
Abstract
Influenza A virus is a human pathogen with a genome composed of eight viral RNA segments that replicate in the nucleus. Two viral mRNAs are alternatively spliced. The unspliced M1 mRNA is translated into the matrix M1 protein, while the ion channel M2 protein is generated after alternative splicing. These proteins are critical mediators of viral trafficking and budding. We show that the influenza virus uses nuclear speckles to promote post-transcriptional splicing of its M1 mRNA. We assign previously unknown roles for the viral NS1 protein and cellular factors to an intranuclear trafficking pathway that targets the viral M1 mRNA to nuclear speckles, mediates splicing at these nuclear bodies and exports the spliced M2 mRNA from the nucleus. Given that nuclear speckles are storage sites for splicing factors, which leave these sites to splice cellular pre-mRNAs at transcribing genes, we reveal a functional subversion of nuclear speckles to promote viral gene expression.
Collapse
Affiliation(s)
- Amir Mor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Alexander White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Matthew Thompson
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beatriz M.A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| |
Collapse
|
17
|
Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev 2015; 29:63-80. [PMID: 25561496 PMCID: PMC4281565 DOI: 10.1101/gad.247361.114] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts. Boutz et al. identified thousands of these “detained” introns (DIs) in human and mouse cell lines as well as the adult mouse liver. Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs, altering transcript pools of >300 genes. Srsf4 regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.
Collapse
Affiliation(s)
- Paul L Boutz
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arjun Bhutkar
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Phillip A Sharp
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
18
|
Niedojadło J, Kubicka E, Kalich B, Smoliński DJ. Poly(A) RNAs including coding proteins RNAs occur in plant Cajal bodies. PLoS One 2014; 9:e111780. [PMID: 25369024 PMCID: PMC4219776 DOI: 10.1371/journal.pone.0111780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The localisation of poly(A) RNA in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus, Arabidopsis thaliana) nuclei was studied through in situ hybridisation. In both types of nuclei, the amount of poly(A) RNA was much greater in the nucleus than in the cytoplasm. In the nuclei, poly(A) RNA was present in structures resembling nuclear bodies. The molecular composition as well as the characteristic ultrastructure of the bodies containing poly(A) RNA demonstrated that they were Cajal bodies. We showed that some poly(A) RNAs in Cajal bodies code for proteins. However, examination of the localisation of active RNA polymerase II and in situ run-on transcription assays both demonstrated that CBs are not sites of transcription and that BrU-containing RNA accumulates in these structures long after synthesis. In addition, it was demonstrated that accumulation of poly(A) RNA occurs in the nuclei and CBs of hypoxia-treated cells. Our findings indicated that CBs may be involved in the later stages of poly(A) RNA metabolism, playing a role storage or retention.
Collapse
Affiliation(s)
- Janusz Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
- * E-mail:
| | - Ewa Kubicka
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Beata Kalich
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Dariusz J. Smoliński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
19
|
A genetic program theory of aging using an RNA population model. Ageing Res Rev 2014; 13:46-54. [PMID: 24263168 DOI: 10.1016/j.arr.2013.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
Abstract
Aging is a common characteristic of multicellular eukaryotes. Copious hypotheses have been proposed to explain the mechanisms of aging, but no single theory is generally acceptable. In this article, we refine the RNA population gene activating model (Lv et al., 2003) based on existing reports as well as on our own latest findings. We propose the RNA population model as a genetic theory of aging. The new model can also be applied to differentiation and tumorigenesis and could explain the biological significance of non-coding DNA, RNA, and repetitive sequence DNA. We provide evidence from the literature as well as from our own findings for the roles of repetitive sequences in gene activation. In addition, we predict several phenomena related to aging and differentiation based on this model.
Collapse
|
20
|
Burgute BD, Peche VS, Steckelberg AL, Glöckner G, Gaßen B, Gehring NH, Noegel AA. NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Res 2013; 42:3177-93. [PMID: 24353314 PMCID: PMC3950704 DOI: 10.1093/nar/gkt1311] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NKAP is a highly conserved protein with roles in transcriptional repression, T-cell development, maturation and acquisition of functional competency and maintenance and survival of adult hematopoietic stem cells. Here we report the novel role of NKAP in splicing. With NKAP-specific antibodies we found that NKAP localizes to nuclear speckles. NKAP has an RS motif at the N-terminus followed by a highly basic domain and a DUF 926 domain at the C-terminal region. Deletion analysis showed that the basic domain is important for speckle localization. In pull-down experiments, we identified RNA-binding proteins, RNA helicases and splicing factors as interaction partners of NKAP, among them FUS/TLS. The FUS/TLS–NKAP interaction takes place through the RS domain of NKAP and the RGG1 and RGG3 domains of FUS/TLS. We analyzed the ability of NKAP to interact with RNA using in vitro splicing assays and found that NKAP bound both spliced messenger RNA (mRNA) and unspliced pre-mRNA. Genome-wide analysis using crosslinking and immunoprecipitation-seq revealed NKAP association with U1, U4 and U5 small nuclear RNA, and we also demonstrated that knockdown of NKAP led to an increase in pre-mRNA percentage. Our results reveal NKAP as nuclear speckle protein with roles in RNA splicing and processing.
Collapse
Affiliation(s)
- Bhagyashri D Burgute
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), 50931 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany, Institute of Genetics, University of Cologne, 50931 Cologne, Germany and Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301, 12587 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Akef A, Zhang H, Masuda S, Palazzo AF. Trafficking of mRNAs containing ALREX-promoting elements through nuclear speckles. Nucleus 2013; 4:326-40. [PMID: 23934081 PMCID: PMC3810340 DOI: 10.4161/nucl.26052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In vertebrates, the majority of mRNAs that encode secreted, membrane-bound or mitochondrial proteins contain RNA elements that activate an alternative mRNA nuclear export (ALREX) pathway. Here we demonstrate that mRNAs containing ALREX-promoting elements are trafficked through nuclear speckles. Although ALREX-promoting elements enhance nuclear speckle localization, additional features within the mRNA largely drive this process. Depletion of two TREX-associated RNA helicases, UAP56 and its paralog URH49, or inhibition of the TREX-associated nuclear transport factor, TAP, not only inhibits ALREX, but also appears to trap these mRNAs in nuclear speckles. mRNAs that contain ALREX-promoting elements associate with UAP56 in vivo. Finally, we demonstrate that mRNAs lacking a poly(A)-tail are not efficiently exported by the ALREX pathway and show enhanced association with nuclear speckles. Our data suggest that within the speckle, ALREX-promoting elements, in conjunction with the poly(A)-tail, likely stimulate UAP56/URH49 and TAP dependent steps that lead to the eventual egress of the export-competent mRNP from these structures.
Collapse
Affiliation(s)
- Abdalla Akef
- Department of Biochemistry; University of Toronto; Toronto, ON Canada; Division of Integrated Life Science; Graduate School of Biostudies; Kyoto University; Kyoto, Japan
| | | | | | | |
Collapse
|
22
|
Girard C, Will CL, Peng J, Makarov EM, Kastner B, Lemm I, Urlaub H, Hartmuth K, Lührmann R. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat Commun 2012; 3:994. [PMID: 22871813 DOI: 10.1038/ncomms1998] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/10/2012] [Indexed: 12/26/2022] Open
Abstract
There is little quantitative information regarding how much splicing occurs co-transcriptionally in higher eukaryotes, and it remains unclear where precisely splicing occurs in the nucleus. Here we determine the global extent of co- and post-transcriptional splicing in mammalian cells, and their respective subnuclear locations, using antibodies that specifically recognize phosphorylated SF3b155 (P-SF3b155) found only in catalytically activated/active spliceosomes. Quantification of chromatin- and nucleoplasm-associated P-SF3b155 after fractionation of HeLa cell nuclei, reveals that ~80% of pre-mRNA splicing occurs co-transcriptionally. Active spliceosomes localize in situ to regions of decompacted chromatin, at the periphery of or within nuclear speckles. Immunofluorescence microscopy with anti-P-SF3b155 antibodies, coupled with transcription inhibition and a block in splicing after SF3b155 phosphorylation, indicates that post-transcriptional splicing occurs in nuclear speckles and that release of post-transcriptionally spliced mRNA from speckles is coupled to the nuclear mRNA export pathway. Our data provide new insights into when and where splicing occurs in cells.
Collapse
Affiliation(s)
- Cyrille Girard
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bogolyubov DS, Kiselyov AM, Shabelnikov SV, Parfenov VN. Polyadenylated RNA and mRNA export factors in extrachromosomal nuclear domains of vitellogenic oocytes in the yellow mealworm Tenebrio molitor. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12050045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bengoechea R, Tapia O, Casafont I, Berciano J, Lafarga M, Berciano MT. Nuclear speckles are involved in nuclear aggregation of PABPN1 and in the pathophysiology of oculopharyngeal muscular dystrophy. Neurobiol Dis 2012; 46:118-29. [PMID: 22249111 DOI: 10.1016/j.nbd.2011.12.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/19/2011] [Accepted: 12/31/2011] [Indexed: 10/14/2022] Open
Abstract
Nuclear speckles are essential nuclear compartments involved in the assembly, delivery and recycling of pre-mRNA processing factors, and in the post-transcriptional processing of pre-mRNAs. Oculopharyngeal muscular dystrophy (OPMD) is caused by a small expansion of the polyalanine tract in the poly(A)-binding protein nuclear 1 (PABPN1). Aggregation of expanded PABPN1 into intranuclear inclusions (INIs) in skeletal muscle fibers is the pathological hallmark of OPMD. In this study what we have analyzed in muscle fibers of OPMD patients and in primary cultures of human myoblasts are the relationships between nuclear speckles and INIs, and the contribution of the former to the biogenesis of the latter. While nuclear speckles concentrate snRNP splicing factors and PABPN1 in control muscle fibers, they are depleted of PABPN1 and appear closely associated with INIs in muscle fibers of OPMD patients. The induction of INI formation in human myoblasts expressing either wild type GFP-PABPN1 or expanded GFP-PABPN1-17ala demonstrates that the initial aggregation of PABPN1 proteins and their subsequent growth in INIs occurs at the edges of the nuclear speckles. Moreover, the growing of INIs gradually depletes PABPN1 proteins and poly(A) RNA from nuclear speckles, although the existence of these nuclear compartments is preserved. Time-lapse experiments in cultured myoblasts confirm nuclear speckles as biogenesis sites of PABPN1 inclusions. Given the functional importance of nuclear speckles in the post-transcriptional processing of pre-mRNAs, the INI-dependent molecular reorganization of these nuclear compartments in muscle fibers may cause a severe dysfunction in nuclear trafficking and processing of polyadenylated mRNAs, thereby contributing to the molecular pathophysiology of OPMD. Our results emphasize the potential importance of nuclear speckles as nuclear targets of neuromuscular disorders.
Collapse
Affiliation(s)
- Rocío Bengoechea
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Cantabria, Santander, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Dias AP, Dufu K, Lei H, Reed R. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat Commun 2010; 1:97. [PMID: 20981025 DOI: 10.1038/ncomms1103] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 09/24/2010] [Indexed: 11/09/2022] Open
Abstract
The TREX complex, which functions in mRNA export, is recruited to mRNA during splicing. Both the splicing machinery and the TREX complex are concentrated in 20-50 discrete foci known as nuclear speckle domains. In this study, we use a model system where DNA constructs are microinjected into HeLa cell nuclei, to follow the fates of the transcripts. We show that transcripts lacking functional splice sites, which are inefficiently exported, do not associate with nuclear speckle domains but are instead distributed throughout the nucleoplasm. In contrast, pre-mRNAs containing functional splice sites accumulate in nuclear speckles, and our data suggest that splicing occurs in these domains. When the TREX components UAP56 or Aly are knocked down, spliced mRNA, as well as total polyA+ RNA, accumulates in nuclear speckle domains. Together, our data raise the possibility that pre-mRNA undergoes splicing in nuclear speckle domains, before their release by TREX components for efficient export to the cytoplasm.
Collapse
Affiliation(s)
- Anusha P Dias
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
26
|
Interchromatin granule clusters of the scorpionfly oocytes contain poly(A)+RNA, heterogeneous ribonucleoproteins A/B and mRNA export factor NXF1. Cell Biol Int 2010; 34:1163-70. [DOI: 10.1042/cbi20090434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Bogolyubova I, Bogolyubov D, Parfenov V. Localization of poly(A)+ RNA and mRNA export factors in interchromatin granule clusters of two-cell mouse embryos. Cell Tissue Res 2009; 338:271-81. [DOI: 10.1007/s00441-009-0860-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
|
28
|
Casafont I, Bengoechea R, Tapia O, Berciano MT, Lafarga M. TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J Struct Biol 2009; 167:235-41. [PMID: 19539030 DOI: 10.1016/j.jsb.2009.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/04/2009] [Accepted: 06/10/2009] [Indexed: 12/30/2022]
Abstract
TDP-43 is a RNA/DNA-binding protein structurally related to nuclear hnRNP proteins. Previous biochemical studies have shown that this nuclear protein plays a role in the regulation of gene transcription, alternative splicing and mRNA stability. Despite the ubiquitous distribution of TDP-43, the growing list of TDP-43 proteinopathies is primarily associated with neurodegenerative disorders. Particularly, TDP-43 redistributes to the cytoplasm and forms pathological inclusions in amyotrophic lateral sclerosis and several forms of sporadic and familiar frontotemporal lobar degeneration. Here, we have studied the nuclear compartmentalization of TDP-43 in normal rat neurons by using light and electron microscopy immunocytochemistry with molecular markers for nuclear compartments, a transcription assay with 5'-fluorouridine, and in situ hybridization for telomeric DNA. TDP-43 is concentrated in euchromatin domains, specifically in perichromatin fibrils, nuclear sites of transcription and cotranscriptional splicing. In these structures, TDP-43 colocalizes with 5'-fluorouridine incorporation sites into nascent pre-mRNA. TDP-43 is absent in transcriptionally silent centromeric and telomeric heterochromatin, as well as in the Cajal body, a transcription free nuclear compartment. Furthermore, a weak TDP-43 immunolabeling is found in nuclear speckles of splicing factors. The specific localization of TDP-43 in active sites of transcription and cotranscriptional splicing is consistent with biochemical data indicating a role of TDP-43 in the regulation of transcription and alternative splicing.
Collapse
Affiliation(s)
- Iñigo Casafont
- Department of Anatomy and Cell Biology and Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria, 39011 Santander, Spain
| | | | | | | | | |
Collapse
|
29
|
Bogolyubov D, Stepanova I, Parfenov V. Universal nuclear domains of somatic and germ cells: some lessons from oocyte interchromatin granule cluster and Cajal body structure and molecular composition. Bioessays 2009; 31:400-9. [DOI: 10.1002/bies.200800100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Bogolyubov D, Parfenov V. Chapter 2 Structure of the Insect Oocyte Nucleus with Special Reference to Interchromatin Granule Clusters and Cajal Bodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:59-110. [DOI: 10.1016/s1937-6448(08)01002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Ishihama Y, Tadakuma H, Tani T, Funatsu T. The dynamics of pre-mRNAs and poly(A)+ RNA at speckles in living cells revealed by iFRAP studies. Exp Cell Res 2007; 314:748-62. [PMID: 18053984 DOI: 10.1016/j.yexcr.2007.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 11/19/2022]
Abstract
Speckles are subnuclear domains where pre-mRNA splicing factors accumulate in the interchromatin space. To investigate the dynamics of mRNAs at speckles, fluorescently labeled Drosophila Fushitarazu (ftz) pre-mRNAs were microinjected into the nuclei of Cos7 cells and the dissociation kinetics of pre-mRNAs from speckles was analyzed using photobleaching techniques. The microinjected ftz pre-mRNAs accumulated in speckles in an intron-dependent manner and were spliced and exported to the cytoplasm with a half-time of about 10 min. Dissociation of the accumulated pre-mRNAs in speckles exhibited rapid diffusion and slow-dissociation of about 100 s. The slow-dissociation required metabolic energy of ATP. Two types of splice-defective mutated mRNAs dissociated from the speckle with a time constant similar to that of wild-type mRNA, indicating that slow-dissociation was not coupled to the splicing reaction. Furthermore, some pre-mRNAs shuttled between speckles and nucleoplasm, suggesting that pre-mRNAs repeatedly associated with and dissociated from speckles until introns were removed. Next, endogenous poly(A)+ RNA was visualized by injecting Cy3-labeled 2'O-methyl oligo(U)22 probes. Some poly(A)+ RNA distributed diffusely within the nucleus, but some of them accumulated in speckles and dissociated at time constant of about 100 s.
Collapse
Affiliation(s)
- Yo Ishihama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | |
Collapse
|
32
|
Ihalainen TO, Niskanen EA, Jylhävä J, Turpeinen T, Rinne J, Timonen J, Vihinen-Ranta M. Dynamics and interactions of parvoviral NS1 protein in the nucleus. Cell Microbiol 2007; 9:1946-59. [PMID: 17419720 DOI: 10.1111/j.1462-5822.2007.00926.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nuclear positioning and dynamic interactions of viral proteins with nuclear substructures play essential roles during infection with DNA viruses. Visualization of the intranuclear interactions and motility of the parvovirus replication protein (NS1) in living cells gives insight into specific parvovirus protein-cellular structure interactions. Confocal analysis of highly synchronized infected Norden Laboratory Feline Kidney cells showed accumulation of nuclear NS1 in discrete interchromosomal foci. NS1 fused with enhanced yellow fluorescence protein (NS1-EYFP) provided a marker in live cells for dynamics of NS1 traced by photobleaching techniques. Fluorescence Recovery after Photobleaching suggested that the NS1 protein is not freely diffusing but undergoes transient interactions with nuclear compartments. Fluorescence Loss in Photobleaching demonstrated for the first time the shuttling of a parvoviral protein between the nucleus and the cytoplasm as assayed with NS1-EYFP. Finally, time-lapse imaging of infected cells revealed that the intranuclear distribution of NS1-EYFP evolves dramatically starting from the formation of NS1 foci and proceeding to a homogenous distribution extending throughout the nucleus.
Collapse
Affiliation(s)
- Teemu O Ihalainen
- Department of Biological and Environmental Science, NanoScience Center, University of Jyväskylä, Survontie 9, FI-40014 Jyväskylä, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Stepanova IS, Bogolyubov DS, Parfenov VN. Cajal bodies in insects. II. Molecular composition of cajal bodies in oocytes of house cricket. Relationship between cajal bodies and interchromatin granule clusters. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Tokunaga K, Shibuya T, Ishihama Y, Tadakuma H, Ide M, Yoshida M, Funatsu T, Ohshima Y, Tani T. Nucleocytoplasmic transport of fluorescent mRNA in living mammalian cells: nuclear mRNA export is coupled to ongoing gene transcription. Genes Cells 2006; 11:305-17. [PMID: 16483318 DOI: 10.1111/j.1365-2443.2006.00936.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells, export of mRNA from the nucleus to the cytoplasm is one of the essential steps in gene expression. To examine mechanisms involved in the nucleocytoplasmic transport of mRNA, we microinjected fluorescently labeled fushi tarazu (ftz) pre-mRNA into the nuclei of HeLa cells. The injected intron-containing ftz pre-mRNA was distributed to the SC35 speckles and exported to the cytoplasm after splicing by an energy-requiring active process. In contrast, the injected intron-less ftz mRNA was diffusely distributed in the nucleus and then presumably degraded. Interestingly, export of the ftz pre-mRNA was inhibited by treatment with transcriptional inhibitors (actinomycin D, alpha-amanitin or DRB). Cells treated with transcriptional inhibitor showed foci enriched with the injected mRNA, which localize side by side with SC35 speckles. Those nuclear foci, referred to as TIDRs (transcriptional-inactivation dependent RNA domain), do not overlap with paraspeckles. In addition, in situ hybridization analysis revealed that the export of endogenous poly(A)+ mRNA is also affected by transcriptional inactivation. These results suggest that nuclear mRNA export is coupled to ongoing gene transcription in mammalian cells.
Collapse
Affiliation(s)
- Kazuaki Tokunaga
- Department of Biological Science, Faculty of Science, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schmidt U, Richter K, Berger AB, Lichter P. In vivo BiFC analysis of Y14 and NXF1 mRNA export complexes: preferential localization within and around SC35 domains. ACTA ACUST UNITED AC 2006; 172:373-81. [PMID: 16431928 PMCID: PMC2063647 DOI: 10.1083/jcb.200503061] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bimolecular fluorescence complementation (BiFC) assay, which allows the investigation of interacting molecules in vivo, was applied to study complex formation between the splicing factor Y14 and nuclear export factor 1 (NXF1), which evidence indicates are functionally associated with nuclear mRNA. Y14 linked to the COOH terminus of yellow fluorescent protein (YFP; YC-Y14), and NXF1 fused to the NH2 terminus of YFP (YN-NXF1) expressed in MCF7 cells yielded BiFC upon specific binding. Fluorescence accumulated within and around nuclear speckles, suggesting the involvement of speckles in mRNA processing and export. Accordingly, BiFC depended on transcription and full-length NXF1. Coimmunoprecipitation of YC-Y14 with YN-NXF1, NXF1, Y14, and RNA indicated that YC-Y14 and YN-NXF1 functionally associate with RNA. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching revealed that roughly half of the accumulated BiFC complexes were immobile in vivo. This immobile fraction was readily depleted by adenosine triphosphate (ATP) administration in permeabilized cells. These results suggest that a fraction of RNA, which remains in the nucleus for several hours despite its association with splicing and export proteins, accumulates in speckles because of an ATP-dependent mechanism.
Collapse
Affiliation(s)
- Ute Schmidt
- Division Molecular Genetics, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
36
|
Molenaar C, Abdulle A, Gena A, Tanke HJ, Dirks RW. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. ACTA ACUST UNITED AC 2004; 165:191-202. [PMID: 15117966 PMCID: PMC2172041 DOI: 10.1083/jcb.200310139] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many of the protein factors that play a role in nuclear export of mRNAs have been identified, but still little is known about how mRNAs are transported through the cell nucleus and which nuclear compartments are involved in mRNA transport. Using fluorescent 2'O-methyl oligoribonucleotide probes, we investigated the mobility of poly(A)+ RNA in the nucleoplasm and in nuclear speckles of U2OS cells. Quantitative analysis of diffusion using photobleaching techniques revealed that the majority of poly(A)+ RNA move throughout the nucleus, including in and out of speckles (also called SC-35 domains), which are enriched for splicing factors. Interestingly, in the presence of the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, the association of poly(A)+ RNA with speckles remained dynamic. Our results show that RNA movement is energy dependent and that the proportion of nuclear poly(A)+ RNA that resides in speckles is a dynamic population that transiently interacts with speckles independent of the transcriptional status of the cell. Rather than the poly(A)+ RNA within speckles serving a stable structural role, our findings support the suggestion of a more active role of these regions in nuclear RNA metabolism and/or transport.
Collapse
Affiliation(s)
- Chris Molenaar
- Dept. of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Netherlands
| | | | | | | | | |
Collapse
|
37
|
Campalans A, Kondorosi A, Crespi M. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. THE PLANT CELL 2004; 16:1047-59. [PMID: 15037734 PMCID: PMC412876 DOI: 10.1105/tpc.019406] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In eukaryotes, diverse mRNAs containing only short open reading frames (sORF-mRNAs) are induced at specific stages of development. Their mechanisms of action may involve the RNA itself and/or sORF-encoded oligopeptides. Enod40 genes code for highly structured plant sORF-mRNAs involved in root nodule organogenesis. A novel RNA binding protein interacting with the enod40 RNA, MtRBP1 (for Medicago truncatula RNA Binding Protein 1), was identified using a yeast three-hybrid screening. Immunolocalization studies and use of a MtRBP1-DsRed2 fluorescent protein fusion showed that MtRBP1 localized to nuclear speckles in plant cells but was exported into the cytoplasm during nodule development in enod40-expressing cells. Direct involvement of the enod40 RNA in MtRBP1 relocalization into cytoplasmic granules was shown using a transient expression assay. Using a (green fluorescent protein)/MS2 bacteriophage system to tag the enod40 RNA, we detected in vivo colocalization of the enod40 RNA and MtRBP1 in these granules. This in vivo approach to monitor RNA-protein interactions allowed us to demonstrate that cytoplasmic relocalization of nuclear proteins is an RNA-mediated cellular function of a sORF-mRNA.
Collapse
Affiliation(s)
- Anna Campalans
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
38
|
Kiesler E, Visa N. Intranuclear pre-mRNA trafficking in an insect model system. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 35:99-118. [PMID: 15113081 DOI: 10.1007/978-3-540-74266-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Eva Kiesler
- Department of Molecular Biology and Functional Genomics, Stockholm University, 10961 Stockholm, Sweden
| | | |
Collapse
|
39
|
Abstract
Fluorescence in situ hybridization is a widely used technique in cell biology providing insight into the spatial organization of specific RNA transcripts in the cell nucleus. However, to further investigate the dynamics of the transcription process and the transport rates of RNAs through the nucleus, RNAs need to be visualized and tracked in the living cell. In past years, various methods have been developed with the aim of tagging specific RNAs with a fluorescent moiety without interfering with cell vitality. These methods include the delivery of probes into a living cell, the in vivo hybridization of fluorescent oligonucleotide probes to endogenous RNAs, and the microscopic imaging of the tagged RNAs in living cells. In this article, we review a number of methods for tagging and visualizing endogenous RNAs in living cells. In addition, a protocol is described that allows detection of various RNA types using fluorochrome-labeled 2(')-O-methyl oligoribonucleotide (2(')-OMe RNA) probes. Compared with conventional oligodeoxynucleotide probes, 2(')-OMe RNA probes are not degraded by nucleases, form stable hybrids with structured RNAs, and do not interfere with cell vitality.
Collapse
Affiliation(s)
- Roeland W Dirks
- Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands.
| | | | | |
Collapse
|
40
|
Abstract
Eukaryotic cells are highly compartmentalized, each compartment being surrounded by a lipid bilayer. This membrane-based organization allows cells to use their volumes to encode information. The lack of intranuclear membranes suggested that the nucleus was largely devoid of structural organization. However, recent work has defined numerous specialized nuclear subdomains. Importantly, RNA processing factors do not display random distribution but cluster in defined nuclear bodies. Although these structures are well characterized morphologically, their function in relation to RNA metabolism remains elusive. In this review, we will discuss the putative participation of nuclear substructures in a quality control step of RNA biogenesis, the nuclear retention of premature RNA.
Collapse
Affiliation(s)
- Olivier Gadal
- Unité de Biologie Cellulaire du Noyau, Institut Pasteur, 25 rue du Docteur Roux, Paris cedex, France.
| | | |
Collapse
|
41
|
Li J, Kinoshita T, Pandey S, Ng CKY, Gygi SP, Shimazaki KI, Assmann SM. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 2002; 418:793-7. [PMID: 12181571 DOI: 10.1038/nature00936] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases are involved in stress signalling in both plant and animal systems. The hormone abscisic acid mediates the responses of plants to stresses such as drought, salinity and cold. Abscisic-acid-activated protein kinase (AAPK -- found in guard cells, which control stomatal pores -- has been shown to regulate plasma membrane ion channels. Here we show that AAPK-interacting protein 1 (AKIP1), with sequence homology to heterogeneous nuclear RNA-binding protein A/B, is a substrate of AAPK. AAPK-dependent phosphorylation is required for the interaction of AKIP1 with messenger RNA that encodes dehydrin, a protein implicated in cell protection under stress conditions. AAPK and AKIP1 are present in the guard-cell nucleus, and in vivo treatment of such cells with abscisic acid enhances the partitioning of AKIP1 into subnuclear foci which are reminiscent of nuclear speckles. These results show that phosphorylation-regulated RNA target discrimination by heterogeneous nuclear RNA-binding proteins may be a general phenomenon in eukaryotes, and implicate a plant hormone in the regulation of protein dynamics during rapid subnuclear reorganization.
Collapse
Affiliation(s)
- Jiaxu Li
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Aspegren A, Bridge E. Release of snRNP and RNA from transcription sites in adenovirus-infected cells. Exp Cell Res 2002; 276:273-83. [PMID: 12027457 DOI: 10.1006/excr.2002.5530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small nuclear ribonucleoprotein (snRNP) splicing factors colocalize with nascent RNA in the nucleus of adenovirus-infected cells in a pattern that appears as a series of rings surrounding viral replication centers. We have studied the release of snRNP and RNA from transcription sites following transcription inhibition by actinomycin D. SnRNP, poly(A) RNA, and viral RNA were no longer detected in the ring pattern following transcription inhibition and were instead detected in nuclear clusters. Release of snRNP from transcription sites was blocked when transcription was inhibited at 4 degrees C, suggesting that release requires temperature-dependent processes. Release of snRNP was also inhibited when transcription was blocked in the presence of 9-beta-D-arabinofuranosyladenine, to inhibit 3'-end cleavage and polyadenylation, or staurosporine, to inhibit kinases. By contrast, release of snRNP was not inhibited when transcription was blocked in the presence of cordycepin, to inhibit RNA polyadenylation without affecting 3'-end cleavage, or okadaic acid, to inhibit phosphatase activity. Our results suggest that temperature-dependent processes involved in the release of splicing factors from transcription sites could include 3'-end cleavage of pre-mRNA and phosphorylation events inhibited by stauropsorine.
Collapse
Affiliation(s)
- Anders Aspegren
- Department of Genetics and Pathology, Uppsala University, Sweden
| | | |
Collapse
|
43
|
Snaar SP, Verdijk P, Tanke HJ, Dirks RW. Kinetics of HCMV immediate early mRNA expression in stably transfected fibroblasts. J Cell Sci 2002; 115:321-8. [PMID: 11839784 DOI: 10.1242/jcs.115.2.321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compelling evidence supports an intimate link in time and space between eukaryotic pre-mRNA synthesis and processing and nucleocytoplasmic transport of mature mRNA. In this study, we analyzed the kinetic behavior of these processes in a quantitative manner. We used FISH and confocal scanning laser microscopy to detect transcripts produced by an inducible human cytomegalovirus immediate early (HCMV-IE) expression system. Upon induction, a large amount of pre-mRNA accumulated in nuclear foci at or near their transcription sites and, at later time, throughout the nucleoplasm. Inhibition of RNA polymerase II activity resulted in a rapid decrease in the number of transcripts in the nuclear RNA foci (half time ∼two minutes), indicating that accumulated transcripts were rapidly spliced and then released. The dispersed nucleoplasmic transcripts exited the nucleus with a half time of ∼10 minutes. Both processes were temperature dependent, suggesting that mRNA export is an active process. RNA polymerase II activation revealed that production of mature HCMV IE mRNAs required less than five minutes. Transcripts radiated from the gene at an average speed of ∼0.13 μm2/sec from this time on. Thus, it appears that these processes are tightly linked in time and space, with the splicing reaction as a rate-limiting factor.
Collapse
Affiliation(s)
- Sabine P Snaar
- Department of Molecular Cell Biology, Laboratory for Cytochemistry and Cytometry, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
44
|
Kues T, Dickmanns A, Lührmann R, Peters R, Kubitscheck U. High intranuclear mobility and dynamic clustering of the splicing factor U1 snRNP observed by single particle tracking. Proc Natl Acad Sci U S A 2001; 98:12021-6. [PMID: 11593012 PMCID: PMC59825 DOI: 10.1073/pnas.211250098] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are components of the splicing machinery that removes introns from precursor mRNA. Like other splicing factors, U snRNPs are diffusely distributed throughout the nucleus and, in addition, are concentrated in distinct nuclear substructures referred to as speckles. We have examined the intranuclear distribution and mobility of the splicing factor U1 snRNP on a single-molecule level. Isolated U1 snRNPs were fluorescently labeled and incubated with digitonin-permeabilized 3T3 cells in the presence of Xenopus egg extract. By confocal microscopy, U1 snRNPs were found to be imported into nuclei, yielding a speckled intranuclear distribution. Employing a laser video-microscope optimized for high sensitivity and high speed, single U1 snRNPs were visualized and tracked at a spatial precision of 35 nm and a time resolution of 30 ms. The single-particle data revealed that U1 snRNPs occurred in small clusters that colocalized with speckles. In the clusters, U1 snRNPs resided for a mean decay time of 84 ms before leaving the optical slice in the direction of the optical axis, which corresponded to a mean effective diffusion coefficient of 1 microm(2)/s. An analysis of the trajectories of single U1 snRNPs revealed that at least three kinetic classes of low, medium, and high mobility were present. Moreover, the mean square displacements of these fractions were virtually independent of time, suggesting arrays of binding sites. The results substantiate the view that nuclear speckles are not rigid structures but highly dynamic domains characterized by a rapid turnover of U1 snRNPs and other splicing factors.
Collapse
Affiliation(s)
- T Kues
- Institut für Medizinische Physik und Biophysik, Westfälische Wilhelms-Universität, Robert-Koch-Strasse 31, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
The advent of jellyfish green fluorescent protein and its spectral variants, together with promising new fluorescent proteins from other classes of the Cnidarian phylum (coral and anemones), has greatly enhanced and promises to further boost the detection and localization of proteins in cell biology. It has been less widely appreciated that highly sensitive methods have also recently been developed for detecting the movement and localization in living cells of the very molecules that precede proteins in the gene expression pathway, i.e. RNAs. These approaches include the microinjection of fluorescent RNAs into living cells, the in vivo hybridization of fluorescent oligonucleotides to endogenous RNAs and the expression in cells of fluorescent RNA-binding proteins. This new field of 'fluorescent RNA cytochemistry' is summarized in this article, with emphasis on the biological insights it has already provided. These new techniques are likely to soon collaborate with other emerging approaches to advance the investigation of RNA birth, RNA-protein assembly and ribonucleoprotein particle transport in systems such as oocytes, embryos, neurons and other somatic cells, and may even permit the observation of viral replication and transcription pathways as they proceed in living cells, ushering in a new era of nucleic acids research in vivo.
Collapse
Affiliation(s)
- T Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|