1
|
Charlton SJ, Flury V, Kanoh Y, Genzor AV, Kollenstart L, Ao W, Brøgger P, Weisser MB, Adamus M, Alcaraz N, Delvaux de Fenffe CM, Mattiroli F, Montoya G, Masai H, Groth A, Thon G. The fork protection complex promotes parental histone recycling and epigenetic memory. Cell 2024; 187:5029-5047.e21. [PMID: 39094569 PMCID: PMC11383432 DOI: 10.1016/j.cell.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2023] [Revised: 03/16/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
Collapse
Affiliation(s)
- Sebastian Jespersen Charlton
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yutaka Kanoh
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Wantong Ao
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Marek Adamus
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
You Z, Masai H. Assembly, Activation, and Helicase Actions of MCM2-7: Transition from Inactive MCM2-7 Double Hexamers to Active Replication Forks. BIOLOGY 2024; 13:629. [PMID: 39194567 DOI: 10.3390/biology13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
3
|
Kanoh Y, Ueno M, Hayano M, Kudo S, Masai H. Aberrant association of chromatin with nuclear periphery induced by Rif1 leads to mitotic defect. Life Sci Alliance 2023; 6:e202201603. [PMID: 36750367 PMCID: PMC9909590 DOI: 10.26508/lsa.202201603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The architecture and nuclear location of chromosomes affect chromatin events. Rif1, a crucial regulator of replication timing, recognizes G-quadruplex and inhibits origin firing over the 50-100-kb segment in fission yeast, Schizosaccharomyces pombe, leading us to postulate that Rif1 may generate chromatin higher order structures inhibitory for initiation. However, the effects of Rif1 on chromatin localization in nuclei have not been known. We show here that Rif1 overexpression causes growth inhibition and eventually, cell death in fission yeast. Chromatin-binding activity of Rif1, but not recruitment of phosphatase PP1, is required for growth inhibition. Overexpression of a PP1-binding site mutant of Rif1 does not delay the S-phase, but still causes cell death, indicating that cell death is caused not by S-phase problems but by issues in other phases of the cell cycle, most likely the M-phase. Indeed, Rif1 overexpression generates cells with unequally segregated chromosomes. Rif1 overexpression relocates chromatin near nuclear periphery in a manner dependent on its chromatin-binding ability, and this correlates with growth inhibition. Thus, coordinated progression of S- and M-phases may require regulated Rif1-mediated chromatin association with the nuclear periphery.
Collapse
Affiliation(s)
- Yutaka Kanoh
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Motoshi Hayano
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Satomi Kudo
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
4
|
González‐Garrido C, Prado F. Novel insights into the roles of Cdc7 in response to replication stress. FEBS J 2022. [DOI: 10.1111/febs.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Cristina González‐Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| |
Collapse
|
5
|
Richards L, Das S, Nordman JT. Rif1-Dependent Control of Replication Timing. Genes (Basel) 2022; 13:genes13030550. [PMID: 35328102 PMCID: PMC8955891 DOI: 10.3390/genes13030550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Successful duplication of the genome requires the accurate replication of billions of base pairs of DNA within a relatively short time frame. Failure to accurately replicate the genome results in genomic instability and a host of diseases. To faithfully and rapidly replicate the genome, DNA replication must be tightly regulated and coordinated with many other nuclear processes. These regulations, however, must also be flexible as replication kinetics can change through development and differentiation. Exactly how DNA replication is regulated and how this regulation changes through development is an active field of research. One aspect of genome duplication where much remains to be discovered is replication timing (RT), which dictates when each segment of the genome is replicated during S phase. All organisms display some level of RT, yet the precise mechanisms that govern RT remain are not fully understood. The study of Rif1, a protein that actively regulates RT from yeast to humans, provides a key to unlock the underlying molecular mechanisms controlling RT. The paradigm for Rif1 function is to delay helicase activation within certain regions of the genome, causing these regions to replicate late in S phase. Many questions, however, remain about the intricacies of Rif1 function. Here, we review the current models for the activity of Rif1 with the goal of trying to understand how Rif1 functions to establish the RT program.
Collapse
|
6
|
Mfarej MG, Skibbens RV. DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLoS One 2020; 15:e0242968. [PMID: 33373396 PMCID: PMC7771704 DOI: 10.1371/journal.pone.0242968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast Eco1 (ESCO2 in humans) acetyltransferase converts chromatin-bound cohesins to a DNA tethering state, thereby establishing sister chromatid cohesion. Eco1 establishes cohesion during DNA replication, after which Eco1 is targeted for degradation by SCF E3 ubiquitin ligase. SCF E3 ligase, and sequential phosphorylations that promote Eco1 ubiquitination and degradation, remain active throughout the M phase. In this way, Eco1 protein levels are high during S phase, but remain low throughout the remaining cell cycle. In response to DNA damage during M phase, however, Eco1 activity increases-providing for a new wave of cohesion establishment (termed Damage-Induced Cohesion, or DIC) which is critical for efficient DNA repair. To date, little evidence exists as to the mechanism through which Eco1 activity increases during M phase in response to DNA damage. Possibilities include that either the kinases or E3 ligase, that target Eco1 for degradation, are inhibited in response to DNA damage. Our results reveal instead that the degradation machinery remains fully active during M phase, despite the presence of DNA damage. In testing alternate models through which Eco1 activity increases in response to DNA damage, the results reveal that DNA damage induces new transcription of ECO1 and at a rate that exceeds the rate of Eco1 turnover, providing for rapid accumulation of Eco1 protein. We further show that DNA damage induction of ECO1 transcription is in part regulated by Yap5-a stress-induced transcription factor. Given the role for mutated ESCO2 (homolog of ECO1) in human birth defects, this study highlights the complex nature through which mutation of ESCO2, and defects in ESCO2 regulation, may promote developmental abnormalities and contribute to various diseases including cancer.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
7
|
Yang CC, Kato H, Shindo M, Masai H. Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells. eLife 2019; 8:50796. [PMID: 31889509 PMCID: PMC6996922 DOI: 10.7554/elife.50796] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2019] [Accepted: 12/30/2019] [Indexed: 01/05/2023] Open
Abstract
Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA replication at replication origins, has been implicated in checkpoint activation but how it is involved in this pathway has not been known. Here, we show that Cdc7 is required for Claspin-Chk1 interaction in human cancer cells by phosphorylating CKBD (Chk1-binding-domain) of Claspin. The residual Chk1 activation in Cdc7-depleted cells is lost upon further depletion of casein kinase1 (CK1γ1), previously reported to phosphorylate CKBD. Thus, Cdc7, in conjunction with CK1γ1, facilitates the interaction between Claspin and Chk1 through phosphorylating CKBD. We also show that, whereas Cdc7 is predominantly responsible for CKBD phosphorylation in cancer cells, CK1γ1 plays a major role in non-cancer cells, providing rationale for targeting Cdc7 for cancer cell-specific cell killing.
Collapse
Affiliation(s)
- Chi-Chun Yang
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroyuki Kato
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mayumi Shindo
- Protein Analyses Laboratory, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Song Y, Tang Y, Yang Q, Li T, He Z, Wu Y, He Q, Li T, Li C, Long M, Chen J, Wei J, Bao J, Shen Z, Meng X, Pan G, Zhou Z. Proliferation characteristics of the intracellular microsporidian pathogen Nosema bombycis in congenitally infected embryos. J Invertebr Pathol 2019; 169:107310. [PMID: 31862268 DOI: 10.1016/j.jip.2019.107310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2019] [Revised: 12/14/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Nosema bombycis is an obligate intracellular pathogen that can be transmitted vertically from infected females to eggs, resulting in congenital infections in embryos. Here we investigated the proliferation characteristics of N. bombycis in silkworm embryos using a histopathological approach and deep RNA sequencing. We found that N. bombycis proliferated mainly around yolk granules at the early stage of the embryonic development, 1-2 days post oviposition (dpo). At 4-6 dpo, a portion of N. bombycis in different stages adjacent to the embryo were packaged into the newly formed intestinal lumen, while the remaining parasites continued to proliferate around yolk granules. In the newly hatched larvae (9 dpo), the newly formed spores accumulated in the gut lumen and immediately were released into the environment via the faeces. Transcriptional profiling of N. bombycis further confirmed multiplication of N. bombycis throughout every stage of embryonic development. Additionally, the increased transcriptional level of spore wall proteins and polar tube proteins from 4 dpo indicated an active formation of mature spores. Taken together, our results have provided a characterization of the proliferation of this intracellular microsporidian pathogen in congenitally infected embryos leading to vertical transmission.
Collapse
Affiliation(s)
- Yue Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Yunlin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Qiong Yang
- Sericulture and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tangxin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Zhangshuai He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Yujiao Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Zigang Shen
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Ravi M, Ramanathan S, Krishna K. Factors, mechanisms and implications of chromatin condensation and chromosomal structural maintenance through the cell cycle. J Cell Physiol 2019; 235:758-775. [PMID: 31264212 DOI: 10.1002/jcp.29038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
A series of well-orchestrated events help in the chromatin condensation and the formation of chromosomes. Apart from the formation of chromosomes, maintenance of their structure is important, especially for the cell division. The structural maintenance of chromosome (SMC) proteins, the non-SMC proteins and the SMC complexes are critical for the maintenance of chromosome structure. While condensins have roles for the DNA compaction, organization, and segregation, the cohesin functions in a cyclic manner through the cell cycle, as a "cohesin cycle." Specific mechanisms maintain the architecture of the centromere, the kinetochore and the telomeres which are in tandem with the cell cycle checkpoints. The presence of chromosomal territories and compactness differences through the length of the chromosomes might have implications on selective susceptibility of specific chromosomes for induced genotoxicity.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Srishti Ramanathan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Krupa Krishna
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
10
|
Modulation of Gene Silencing by Cdc7p via H4 K16 Acetylation and Phosphorylation of Chromatin Assembly Factor CAF-1 in Saccharomyces cerevisiae. Genetics 2019; 211:1219-1237. [PMID: 30728156 DOI: 10.1534/genetics.118.301858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
CAF-1 is an evolutionarily conserved H3/H4 histone chaperone that plays a key role in replication-coupled chromatin assembly and is targeted to the replication fork via interactions with PCNA, which, if disrupted, leads to epigenetic defects. In Saccharomyces cerevisiae, when the silent mating-type locus HMR contains point mutations within the E silencer, Sir protein association and silencing is lost. However, mutation of CDC7, encoding an S-phase-specific kinase, or subunits of the H4 K16-specific acetyltransferase complex SAS-I, restore silencing to this crippled HMR, HMR a e** Here, we observed that loss of Cac1p, the largest subunit of CAF-1, also restores silencing at HMR a e**, and silencing in both cac1Δ and cdc7 mutants is suppressed by overexpression of SAS2 We demonstrate Cdc7p and Cac1p interact in vivo in S phase, but not in G1, consistent with observed cell cycle-dependent phosphorylation of Cac1p, and hypoacetylation of chromatin at H4 K16 in both cdc7 and cac1Δ mutants. Moreover, silencing at HMR a e** is restored in cells expressing cac1p mutants lacking Cdc7p phosphorylation sites. We also discovered that cac1Δ and cdc7-90 synthetically interact negatively in the presence of DNA damage, but that Cdc7p phosphorylation sites on Cac1p are not required for responses to DNA damage. Combined, our results support a model in which Cdc7p regulates replication-coupled histone modification via a CAC1-dependent mechanism involving H4 K16ac deposition, and thereby silencing, while CAF-1-dependent replication- and repair-coupled chromatin assembly per se are functional in the absence of phosphorylation of Cdc7p consensus sites on CAF-1.
Collapse
|
11
|
Sasi NK, Coquel F, Lin YL, MacKeigan JP, Pasero P, Weinreich M. DDK Has a Primary Role in Processing Stalled Replication Forks to Initiate Downstream Checkpoint Signaling. Neoplasia 2018; 20:985-995. [PMID: 30157471 PMCID: PMC6111017 DOI: 10.1016/j.neo.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
CDC7-DBF4 kinase (DDK) initiates DNA replication in eukaryotes by activating the replicative MCM helicase. DDK has diverse and apparently conflicting roles in the replication checkpoint response in various organisms, but the underlying mechanisms are far from settled. We show that human DDK promotes limited resection of newly synthesized DNA at stalled replication forks or sites of DNA damage to initiate replication checkpoint signaling. DDK is also required for efficient fork restart and G2/M cell cycle arrest. DDK exhibits genetic interactions with the ssDNA exonuclease EXO1 and phosphorylates EXO1 in vitro. EXO1 is also required for nascent strand degradation following exposure to HU, so DDK might regulate EXO1 directly. Lastly, sublethal DDK inhibition causes various mitotic abnormalities, which is consistent with a checkpoint deficiency. In summary, DDK has a primary and previously undescribed role in the replication checkpoint to promote ssDNA accumulation at stalled forks, which is required to initiate a robust checkpoint response and cell cycle arrest to maintain genome integrity.
Collapse
Affiliation(s)
- Nanda Kumar Sasi
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503; Laboratory of Systems Biology, VARI; Graduate Program in Genetics, Michigan State University, East Lansing, MI 48824
| | - Flavie Coquel
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Yea-Lih Lin
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | | | - Philippe Pasero
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503.
| |
Collapse
|
12
|
Abstract
Hsk1 (homologue of Cdc7 kinase 1) of the fission yeast is a member of the conserved Cdc7 (cell division cycle 7) kinase family, and promotes initiation of chromosome replication by phosphorylating Mcm (minichromosome maintenance) subunits, essential components for the replicative helicase. Recent studies, however, indicate more diverse roles for Hsk1/Cdc7 in regulation of various chromosome dynamics, including initiation of meiotic recombination, meiotic chromosome segregation, DNA repair, replication checkpoints, centromeric heterochromatin formation and so forth. Hsk1/Cdc7, with its unique target specificity, can now be regarded as an important modulator of various chromosome transactions.
Collapse
|
13
|
Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet 2013; 29:449-60. [DOI: 10.1016/j.tig.2013.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2013] [Revised: 04/27/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022]
|
14
|
Chen YC, Kenworthy J, Gabrielse C, Hänni C, Zegerman P, Weinreich M. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae. Genetics 2013; 194:389-401. [PMID: 23564203 PMCID: PMC3664849 DOI: 10.1534/genetics.113.149740] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2013] [Accepted: 03/21/2013] [Indexed: 12/25/2022] Open
Abstract
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.
Collapse
Affiliation(s)
- Ying-Chou Chen
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
- Michigan State University, Genetics Program, East Lansing, Michigan 48824
| | - Jessica Kenworthy
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Carrie Gabrielse
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Christine Hänni
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Philip Zegerman
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
15
|
Lyons NA, Fonslow BR, Diedrich JK, Yates JR, Morgan DO. Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat Struct Mol Biol 2013; 20:194-201. [PMID: 23314252 PMCID: PMC3565030 DOI: 10.1038/nsmb.2478] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2012] [Accepted: 11/27/2012] [Indexed: 02/06/2023]
Abstract
Sister-chromatid cohesion is established during S phase when Eco1 acetylates cohesin. In budding yeast, Eco1 activity falls after S phase due to Cdk1-dependent phosphorylation, which triggers ubiquitination by SCF(Cdc4). We show here that Eco1 degradation requires the sequential actions of Cdk1 and two additional kinases, Cdc7-Dbf4 and the GSK-3 homolog Mck1. These kinases recognize motifs primed by previous phosphorylation, resulting in an ordered sequence of three phosphorylation events on Eco1. Only the latter two phosphorylation sites are spaced correctly to bind Cdc4, resulting in strict discrimination between phosphates added by Cdk1 and by Cdc7. Inhibition of Cdc7 by the DNA damage response prevents Eco1 destruction, allowing establishment of cohesion after S phase. This elaborate regulatory system, involving three independent kinases and stringent substrate selection by a ubiquitin ligase, enables robust control of cohesion establishment during normal growth and after stress.
Collapse
Affiliation(s)
- Nicholas A Lyons
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
16
|
Sabatinos SA, Green MD, Forsburg SL. Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. Mol Cell Biol 2012; 32:4986-97. [PMID: 23045396 PMCID: PMC3510540 DOI: 10.1128/mcb.01060-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023] Open
Abstract
Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork "collapse point" in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.
Collapse
Affiliation(s)
- Sarah A Sabatinos
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| | | | | |
Collapse
|
17
|
Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg Med Chem Lett 2012; 22:3727-31. [PMID: 22560567 DOI: 10.1016/j.bmcl.2012.04.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
CDC7 is a serine/threonine kinase that has been shown to be required for the initiation and maintenance of DNA replication. Up-regulation of CDC7 is detected in multiple tumor cell lines, with inhibition of CDC7 resulting in cell cycle arrest. In this paper, we disclose the discovery of a potent and selective CDC7 inhibitor, XL413 (14), which was advanced into Phase 1 clinical trials. Starting from advanced lead 3, described in a preceding communication, we optimized the CDC7 potency and selectivity to demonstrate in vitro CDC7 dependent cell cycle arrest and in vivo tumor growth inhibition in a Colo-205 xenograft model.
Collapse
|
18
|
Matsumoto S, Hayano M, Kanoh Y, Masai H. Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation. ACTA ACUST UNITED AC 2011; 195:387-401. [PMID: 22024164 PMCID: PMC3206344 DOI: 10.1083/jcb.201107025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
A number of different genetic backgrounds and growth conditions bypass DNA replication defects caused by the absence of yeast Hsk1 kinase, demonstrating the plasticity of the eukaryotic DNA replication program. Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication that potentially regulates timing and locations of replication origin firing. Here, we show that viability of fission yeast hsk1Δ cells can be restored by loss of mrc1, which is required for maintenance of replication fork integrity, by cds1Δ, or by a checkpoint-deficient mutant of mrc1. In these mutants, normally inactive origins are activated in the presence of hydroxyurea and binding of Cdc45 to MCM is stimulated. mrc1Δ bypasses hsk1Δ more efficiently because of its checkpoint-independent inhibitory functions. Unexpectedly, hsk1Δ is viable at 37°C. More DNA is synthesized, and some dormant origins fire in the presence of hydroxyurea at 37°C. Furthermore, hsk1Δ bypass strains grow poorly at 25°C compared with higher temperatures. Our results show that Hsk1 functions for DNA replication can be bypassed by different genetic backgrounds as well as under varied physiological conditions, providing additional evidence for plasticity of the replication program in eukaryotes.
Collapse
Affiliation(s)
- Seiji Matsumoto
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | | | | | | |
Collapse
|
19
|
Kitamura R, Fukatsu R, Kakusho N, Cho YS, Taniyama C, Yamazaki S, Toh GT, Yanagi K, Arai N, Chang HJ, Masai H. Molecular mechanism of activation of human Cdc7 kinase: bipartite interaction with Dbf4/activator of S phase kinase (ASK) activation subunit stimulates ATP binding and substrate recognition. J Biol Chem 2011; 286:23031-43. [PMID: 21536671 DOI: 10.1074/jbc.m111.243311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase.
Collapse
Affiliation(s)
- Ryo Kitamura
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Paek AL, Weinert T. Choreography of the 9-1-1 checkpoint complex: DDK puts a check on the checkpoints. Mol Cell 2010; 40:505-6. [PMID: 21095580 DOI: 10.1016/j.molcel.2010.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Abstract
Checkpoint proteins respond to DNA damage by halting the cell cycle until the damage is repaired. In this issue of Molecular Cell, Furuya et al. (2010) provide evidence that checkpoint proteins need to be removed from sites of damage in order to properly repair it.
Collapse
Affiliation(s)
- Andrew L Paek
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
21
|
Furuya K, Miyabe I, Tsutsui Y, Paderi F, Kakusho N, Masai H, Niki H, Carr AM. DDK phosphorylates checkpoint clamp component Rad9 and promotes its release from damaged chromatin. Mol Cell 2010; 40:606-18. [PMID: 21095590 DOI: 10.1016/j.molcel.2010.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2010] [Revised: 08/11/2010] [Accepted: 08/27/2010] [Indexed: 01/22/2023]
Abstract
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.
Collapse
Affiliation(s)
- Kanji Furuya
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Matsumoto S, Shimmoto M, Kakusho N, Yokoyama M, Kanoh Y, Hayano M, Russell P, Masai H. Hsk1 kinase and Cdc45 regulate replication stress-induced checkpoint responses in fission yeast. Cell Cycle 2010; 9:4627-37. [PMID: 21099360 DOI: 10.4161/cc.9.23.13937] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1(Chk2/Rad53) through the Rad3(ATR/Mec1)-Mrc1(Claspin) pathway. Hsk1, the Cdc7 homologue of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not in an mcm2 or polε mutant. The results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.
Collapse
Affiliation(s)
- Seiji Matsumoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kundu LR, Kumata Y, Kakusho N, Watanabe S, Furukohri A, Waga S, Seki M, Masai H, Enomoto T, Tada S. Deregulated Cdc6 inhibits DNA replication and suppresses Cdc7-mediated phosphorylation of Mcm2-7 complex. Nucleic Acids Res 2010; 38:5409-18. [PMID: 20421204 PMCID: PMC2938227 DOI: 10.1093/nar/gkq262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022] Open
Abstract
Mcm2–7 is recruited to eukaryotic origins of DNA replication by origin recognition complex, Cdc6 and Cdt1 thereby licensing the origins. Cdc6 is essential for origin licensing during DNA replication and is readily destabilized from chromatin after Mcm2–7 loading. Here, we show that after origin licensing, deregulation of Cdc6 suppresses DNA replication in Xenopus egg extracts without the involvement of ATM/ATR-dependent checkpoint pathways. DNA replication is arrested specifically after chromatin binding of Cdc7, but before Cdk2-dependent pathways and deregulating Cdc6 after this step does not impair activation of origin firing or elongation. Detailed analyses revealed that Cdc6 deregulation leads to strong suppression of Cdc7-mediated hyperphosphorylation of Mcm4 and subsequent chromatin loading of Cdc45, Sld5 and DNA polymerase α. Mcm2 phosphorylation is also repressed although to a lesser extent. Remarkably, Cdc6 itself does not directly inhibit Cdc7 kinase activity towards Mcm2–4–6–7 in purified systems, rather modulates Mcm2–7 phosphorylation on chromatin context. Taken together, we propose that Cdc6 on chromatin acts as a modulator of Cdc7-mediated phosphorylation of Mcm2–7, and thus destabilization of Cdc6 from chromatin after licensing is a key event ensuring proper transition to the initiation of DNA replication.
Collapse
Affiliation(s)
- Lena R Kundu
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hsk1- and SCF(Pof3)-dependent proteolysis of S. pombe Ams2 ensures histone homeostasis and centromere function. Dev Cell 2010; 18:385-96. [PMID: 20230746 PMCID: PMC2880248 DOI: 10.1016/j.devcel.2009.12.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2009] [Revised: 11/03/2009] [Accepted: 12/22/2009] [Indexed: 12/18/2022]
Abstract
Schizosaccharomyces pombe GATA factor Ams2 is responsible for cell cycle-dependent transcriptional activation of all the core histone genes peaking at G1/S phase. Intriguingly, its own protein level also fluctuates concurrently. Here, we show that Ams2 is ubiquitylated and degraded through the SCF (Skp1-Cdc53/Cullin-1-F-box) ubiquitin ligase, in which F box protein Pof3 binds this protein. Ams2 is phosphorylated at multiple sites, which is required for SCFPof3-dependent proteolysis. Hsk1/Cdc7 kinase physically associates with and phosphorylates Ams2. Even mild overexpression of Ams2 induces constitutive histone expression and chromosome instability, and its toxicity is exaggerated when Hsk1 function is compromised. This is partly attributable to abnormal incorporation of canonical H3 into the central CENP-A/Cnp1-rich centromere, thereby reversing specific chromatin structures to apparently normal nucleosomes. We propose that Hsk1 plays a vital role during post S phase in genome stability via SCFPof3-mediated degradation of Ams2, thereby maintaining centromere integrity.
Collapse
|
25
|
Fission yeast Hsk1 (Cdc7) kinase is required after replication initiation for induced mutagenesis and proper response to DNA alkylation damage. Genetics 2010; 185:39-53. [PMID: 20176980 DOI: 10.1534/genetics.109.112284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Genome stability in fission yeast requires the conserved S-phase kinase Hsk1 (Cdc7) and its partner Dfp1 (Dbf4). In addition to their established function in the initiation of DNA replication, we show that these proteins are important in maintaining genome integrity later in S phase and G2. hsk1 cells suffer increased rates of mitotic recombination and require recombination proteins for survival. Both hsk1 and dfp1 mutants are acutely sensitive to alkylation damage yet defective in induced mutagenesis. Hsk1 and Dfp1 are associated with the chromatin even after S phase, and normal response to MMS damage correlates with the maintenance of intact Dfp1 on chromatin. A screen for MMS-sensitive mutants identified a novel truncation allele, rad35 (dfp1-(1-519)), as well as alleles of other damage-associated genes. Although Hsk1-Dfp1 functions with the Swi1-Swi3 fork protection complex, it also acts independently of the FPC to promote DNA repair. We conclude that Hsk1-Dfp1 kinase functions post-initiation to maintain replication fork stability, an activity potentially mediated by the C terminus of Dfp1.
Collapse
|
26
|
Yoshizawa-Sugata N, Masai H. Roles of human AND-1 in chromosome transactions in S phase. J Biol Chem 2009; 284:20718-28. [PMID: 19439411 PMCID: PMC2742837 DOI: 10.1074/jbc.m806711200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2008] [Revised: 03/02/2009] [Indexed: 11/06/2022] Open
Abstract
Coordinated execution of DNA replication, checkpoint activation, and postreplicative chromatid cohesion is intimately related to the replication fork machinery. Human AND-1/chromosome transmission fidelity 4 is localized adjacent to replication foci and is required for efficient DNA synthesis. In S phase, AND-1 is phosphorylated in response to replication arrest in a manner dependent on checkpoint kinase, ataxia telangiectasia-mutated, ataxia telangiectasia-mutated and Rad3-related protein, and Cdc7 kinase but not on Chk1. Depletion of AND-1 increases DNA damage, delays progression of S phase, leads to accumulation of late S and/or G2 phase cells, and induces cell death in cancer cells. It also elevated UV-radioresistant DNA synthesis and caused premature recovery of replication after hydroxyurea arrest, indicating that lack of AND-1 compromises checkpoint activation. This may be partly due to the decreased levels of Chk1 protein in AND-1-depleted cells. Furthermore, AND-1 interacts with cohesin proteins Smc1, Smc3, and Rad21/Scc1, consistent with proposed roles of yeast counterparts of AND-1 in sister chromatid cohesion. Depletion of AND-1 leads to significant inhibition of homologous recombination repair of an I-SceI-driven double strand break. Based on these data, we propose that AND-1 coordinates multiple cellular events in S phase and G2 phase, such as DNA replication, checkpoint activation, sister chromatid cohesion, and DNA damage repair, thus playing a pivotal role in maintenance of genome integrity.
Collapse
Affiliation(s)
- Naoko Yoshizawa-Sugata
- From the Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- From the Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
27
|
Miller CT, Gabrielse C, Chen YC, Weinreich M. Cdc7p-Dbf4p regulates mitotic exit by inhibiting Polo kinase. PLoS Genet 2009; 5:e1000498. [PMID: 19478884 PMCID: PMC2682205 DOI: 10.1371/journal.pgen.1000498] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2008] [Accepted: 04/29/2009] [Indexed: 01/14/2023] Open
Abstract
Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint. Cdc7p-Dbf4p is a two-subunit enzyme required to copy the genetic material present on every chromosome in a process termed DNA replication. Dbf4p is an essential regulatory subunit of this enzyme that likely directs the Cdc7p subunit to its targets within the cell. We found that Dbf4p physically interacts with another protein called Polo that acts during mitosis, a later step in the cell cycle when the newly copied chromosomes are equally divided to mother and daughter cells. Polo is a master regulator of mitosis and impacts many other proteins required for cell division. We determined that Cdc7p-Dbf4p is a Polo inhibitor and, further, that Cdc7p-Dbf4p delayed or prevented chromosome segregation when errors occurred during the cell division process. Interestingly, Dbf4p may bind the Polo substrate-binding domain using a type of interaction not previously described. Thus, we have uncovered a new activity for Cdc7p-Dbf4p in the cell cycle to inhibit chromosome segregation, and these findings impact multiple fields that investigate how cells accurately copy and segregate their chromosomes.
Collapse
Affiliation(s)
- Charles T. Miller
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Carrie Gabrielse
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Ying-Chou Chen
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Graduate Program in Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael Weinreich
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
28
|
Putnam CD, Jaehnig EJ, Kolodner RD. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:974-82. [PMID: 19477695 DOI: 10.1016/j.dnarep.2009.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimum threshold.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, United States.
| | | | | |
Collapse
|
29
|
Shimmoto M, Matsumoto S, Odagiri Y, Noguchi E, Russell P, Masai H. Interactions between Swi1-Swi3, Mrc1 and S phase kinase, Hsk1 may regulate cellular responses to stalled replication forks in fission yeast. Genes Cells 2009; 14:669-82. [PMID: 19422421 DOI: 10.1111/j.1365-2443.2009.01300.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
The Swi1-Swi3 replication fork protection complex and Mrc1 protein are required for stabilization of stalled replication forks in fission yeast. Hsk1 kinase also plays roles in checkpoint responses elicited by arrested replication forks. We show that both Swi1 and Swi3, the abundance of which are interdependent, are required for chromatin association of Mrc1. Co-immunoprecipitation experiments show the interactions of Swi1-Swi3, Mrc1 and Hsk1. Mrc1 interacts with Swi3 and Hsk1 proteins through its central segment (378-879) containing a SQ/TQ cluster, and this segment is sufficient for checkpoint reaction. The SQ/TQ cluster segment (536-673) is essential but not sufficient for the interactions and for resistance to replication inhibitor hydroxyurea. Mrc1 protein level is increased in hsk1-89 cells due to apparent stabilization, and we have identified a potential phosphodegron sequence. These results suggest that interactions of the Swi1-Swi3 complex and Hsk1 kinase with Mrc1 may play a role in cellular responses to stalled replication forks in fission yeast.
Collapse
Affiliation(s)
- Michie Shimmoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy target. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:255-64. [PMID: 19920912 PMCID: PMC2761190 DOI: 10.2147/dddt.s4303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect of less than viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.
Collapse
|
31
|
Abstract
We discuss the mechanisms regulating entry into and progression through S phase in eukaryotic cells. Methods to study the G1/S transition are briefly reviewed and an overview of G1/S-checkpoints is given, with particular emphasis on fission yeast. Thereafter we discuss different aspects of the intra-S checkpoint and introduce the main molecular players and mechanisms.
Collapse
Affiliation(s)
- Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | |
Collapse
|
32
|
Noguchi E, Ansbach AB, Noguchi C, Russell P. Assays used to study the DNA replication checkpoint in fission yeast. Methods Mol Biol 2009; 521:493-507. [PMID: 19563125 DOI: 10.1007/978-1-60327-815-7_28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
The DNA replication checkpoint, also known as the intra-S or S-phase checkpoint, plays a central role in ensuring the accuracy of DNA replication. When replication is impeded by DNA damage or other conditions, this checkpoint delays cell cycle progression and coordinates resumption of replication with DNA repair pathways. One of its critical functions is to stabilize stalled replication forks in a replication-competent state, presumably by maintaining proper assembly of replisome components and preserving DNA structures. Here we describe a series of assays used to study the replication checkpoint. These assays allow us to investigate the specific functions of proteins involved in the replication checkpoint in fission yeast.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Cohesin is a chromosome-associated multisubunit protein complex that is highly conserved in eukaryotes and has close homologs in bacteria. Cohesin mediates cohesion between replicated sister chromatids and is therefore essential for chromosome segregation in dividing cells. Cohesin is also required for efficient repair of damaged DNA and has important functions in regulating gene expression in both proliferating and post-mitotic cells. Here we discuss how cohesin associates with DNA, how these interactions are controlled during the cell cycle; how binding of cohesin to DNA may mediate sister chromatid cohesion, DNA repair, and gene regulation; and how defects in these processes can lead to human disease.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria.
| | | | | |
Collapse
|
34
|
Checkpoint-dependent regulation of origin firing and replication fork movement in response to DNA damage in fission yeast. Mol Cell Biol 2008; 29:602-11. [PMID: 19001087 DOI: 10.1128/mcb.01319-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
To elucidate the checkpoint mechanism responsible for slowing passage through S phase when fission yeast cells are treated with the DNA-damaging agent methyl methanesulfonate (MMS), we carried out two-dimensional gel analyses of replication intermediates in cells synchronized by cdc10 block (in G(1)) followed by release into synchronous S phase. The results indicated that under these conditions early-firing centromeric origins were partially delayed but late-firing telomeric origins were not delayed. Replication intermediates persisted in MMS-treated cells, suggesting that replication fork movement was inhibited. These effects were dependent on the Cds1 checkpoint kinase and were abolished in cells overexpressing the Cdc25 phosphatase, suggesting a role for the Cdc2 cyclin-dependent kinase. We conclude that both partial inhibition of the firing of a subset of origins and inhibition of replication fork movement contribute to the slowing of S phase in MMS-treated fission yeast cells.
Collapse
|
35
|
Szyjka SJ, Aparicio JG, Viggiani CJ, Knott S, Xu W, Tavaré S, Aparicio OM. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Dev 2008; 22:1906-20. [PMID: 18628397 DOI: 10.1101/gad.1660408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2-Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Delta cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair.
Collapse
Affiliation(s)
- Shawn J Szyjka
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Takahashi TS, Basu A, Bermudez V, Hurwitz J, Walter JC. Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev 2008; 22:1894-905. [PMID: 18628396 PMCID: PMC2492736 DOI: 10.1101/gad.1683308] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2008] [Accepted: 05/23/2008] [Indexed: 12/23/2022]
Abstract
To establish functional cohesion between replicated sister chromatids, cohesin is recruited to chromatin before S phase. Cohesin is loaded onto chromosomes in the G1 phase by the Scc2-Scc4 complex, but little is known about how Scc2-Scc4 itself is recruited to chromatin. Using Xenopus egg extracts as a vertebrate model system, we showed previously that the chromatin association of Scc2 and cohesin is dependent on the prior establishment of prereplication complexes (pre-RCs) at origins of replication. Here, we report that Scc2-Scc4 exists in a stable complex with the Cdc7-Drf1 protein kinase (DDK), which is known to bind pre-RCs and activate them for DNA replication. Immunodepletion of DDK from Xenopus egg extracts impairs chromatin association of Scc2-Scc4, a defect that is reversed by wild-type, but not catalytically inactive DDK. A complex of Scc4 and the N terminus of Scc2 is sufficient for chromatin loading of Scc2-Scc4, but not for cohesin recruitment. These results show that DDK is required to tether Scc2-Scc4 to pre-RCs, and they underscore the intimate link between early steps in DNA replication and cohesion.
Collapse
Affiliation(s)
- Tatsuro S. Takahashi
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Abhijit Basu
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Vladimir Bermudez
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jerard Hurwitz
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Johannes C. Walter
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
38
|
Crosstalk between Nap1 protein and Cds1 checkpoint kinase to maintain chromatin integrity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1595-604. [PMID: 18474252 DOI: 10.1016/j.bbamcr.2008.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/22/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 11/22/2022]
Abstract
The nucleosome assembly protein Nap1 has been implicated in various cellular functions such as histone shuttling into the nucleus, nucleosome assembly, chromatin remodelling, transcriptional control and cell-cycle regulation in Saccharomyces cerevisiae. In Schizosaccharomyces pombe nap1 null mutant cells are viable but they showed a delay in the onset of mitosis which is rescued by the absence of the replication Cds1 checkpoint kinase. In contrast, the absence of the DNA-damage Chk1 checkpoint kinase is unable to rescue the delay. Moreover, the double nap1 cds1 mutant cells lose viability and cells show positive H2AX phosphorylation, suggesting that the viability of nap1-deleted cells is due to the Cds1 kinase. We also show that overexpression of Nap1 protein blocks the cell cycle in G1 phase.
Collapse
|
39
|
Díaz-Cuervo H, Bueno A. Cds1 controls the release of Cdc14-like phosphatase Flp1 from the nucleolus to drive full activation of the checkpoint response to replication stress in fission yeast. Mol Biol Cell 2008; 19:2488-99. [PMID: 18385517 DOI: 10.1091/mbc.e07-08-0737] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
Abstract
The Cdc14p-like phosphatase Flp1p (also known as Clp1p) is regulated by cell cycle-dependent changes in its subcellular localization. Flp1p is restricted to the nucleolus and spindle pole body until prophase, when it is dispersed throughout the nucleus, mitotic spindle, and medial ring. Once released, Flp1p antagonizes Cdc2p/cyclin activity by reverting Cdc2p-phosphorylation sites on Cdc25p. On replication stress, ataxia-telangiectasia mutated/ATM/Rad3-related kinase Rad3p activates Cds1p, which phosphorylates key proteins ensuring the stability of stalled DNA replication forks. Here, we show that replication stress induces changes in the subcellular localization of Flp1p in a checkpoint-dependent manner. Active Cds1p checkpoint kinase is required to release Flp1p into the nucleus. Consistently, a Flp1p mutant (flp1-9A) lacking all potential Cds1p phosphorylation sites fails to relocate in response to replication blocks and, similarly to cells lacking flp1 (Deltaflp1), presents defects in checkpoint response to replication stress. Deltaflp1 cells accumulate reduced levels of a less active Cds1p kinase in hydroxyurea (HU), indicating that nuclear Flp1p regulates Cds1p full activation. Consistently, Deltaflp1 and flp1-9A have an increased percentage of Rad22p-recombination foci during HU treatment. Together, our data show that by releasing Flp1p into the nucleus Cds1p checkpoint kinase modulates its own full activation during replication stress.
Collapse
Affiliation(s)
- Helena Díaz-Cuervo
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | | |
Collapse
|
40
|
Ogi H, Wang CZ, Nakai W, Kawasaki Y, Masumoto H. The role of the Saccharomyces cerevisiae Cdc7-Dbf4 complex in the replication checkpoint. Gene 2008; 414:32-40. [PMID: 18372119 DOI: 10.1016/j.gene.2008.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2007] [Revised: 02/03/2008] [Accepted: 02/11/2008] [Indexed: 01/23/2023]
Abstract
The Cdc7-Dbf4 complex is a conserved serine/threonine protein kinase essential for the initiation of eukaryotic DNA replication. Although an mcm5-bob1 mutation bypasses lethality conferred by mutations in CDC7 or DBF4, the Deltacdc7 mcm5-bob1 mutant is sensitive to hydroxyurea (HU), which induces replication stress. To elucidate the reasons for HU sensitivity conferred by deletion of CDC7, we examined the role of Cdc7-Dbf4 in the replication checkpoint. We found that in Cdc7-Dbf4-deficient cells exposed to replication stress, Rad53 remains in a hypophosphorylated form, anaphase spindle is elongated, and checkpoint-specific transcription is not induced. The hypophosphorylated Rad53 exhibits a low autophosphorylation activity, and recombinant Cdc7-Dbf4 phosphorylates Rad53 in vitro. These results suggest that Cdc7-Dbf4 is required for full activation of Rad53 in response to replication stress.
Collapse
Affiliation(s)
- Hiroo Ogi
- Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
41
|
Minichromosome maintenance proteins interact with checkpoint and recombination proteins to promote s-phase genome stability. Mol Cell Biol 2008; 28:1724-38. [PMID: 18180284 DOI: 10.1128/mcb.01717-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
The minichromosome maintenance (MCM) complex plays essential, conserved roles throughout DNA synthesis: first, as a component of the prereplication complex at origins and, then, as a helicase associated with replication forks. Here we use fission yeast (Schizosaccharomyces pombe) as a model to demonstrate a role for the MCM complex in protecting replication fork structure and promoting recovery from replication arrest. Loss of MCM function generates lethal double-strand breaks at sites of DNA synthesis during replication elongation, suggesting replication fork collapse. MCM function also maintains the stability of forks stalled by hydroxyurea that activate the replication checkpoint. In cells where the checkpoint is activated, Mcm4 binds the Cds1 kinase and undergoes Cds1-dependent phosphorylation. MCM proteins also interact with proteins involved in homologous recombination, which promotes recovery from arrest by ensuring normal mitosis. We suggest that the MCM complex links replication fork stabilization with checkpoint arrest and recovery through direct interactions with checkpoint and recombination proteins and that this role in S-phase genome stability is conserved from yeast to human cells.
Collapse
|
42
|
|
43
|
Ansbach AB, Noguchi C, Klansek IW, Heidlebaugh M, Nakamura TM, Noguchi E. RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe. Mol Biol Cell 2007; 19:595-607. [PMID: 18045993 DOI: 10.1091/mbc.e07-06-0618] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
Abstract
Sister chromatid cohesion is established during S phase near the replication fork. However, how DNA replication is coordinated with chromosomal cohesion pathway is largely unknown. Here, we report studies of fission yeast Ctf18, a subunit of the RFC(Ctf18) replication factor C complex, and Chl1, a putative DNA helicase. We show that RFC(Ctf18) is essential in the absence of the Swi1-Swi3 replication fork protection complex required for the S phase stress response. Loss of Ctf18 leads to an increased sensitivity to S phase stressing agents, a decreased level of Cds1 kinase activity, and accumulation of DNA damage during S phase. Ctf18 associates with chromatin during S phase, and it is required for the proper resumption of replication after fork arrest. We also show that chl1Delta is synthetically lethal with ctf18Delta and that a dosage increase of chl1(+) rescues sensitivities of swi1Delta to S phase stressing agents, indicating that Chl1 is involved in the S phase stress response. Finally, we demonstrate that inactivation of Ctf18, Chl1, or Swi1-Swi3 leads to defective centromere cohesion, suggesting the role of these proteins in chromosome segregation. We propose that RFC(Ctf18) and the Swi1-Swi3 complex function in separate and redundant pathways essential for replication fork stabilization to facilitate sister chromatid cohesion in fission yeast.
Collapse
Affiliation(s)
- Alison B Ansbach
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
44
|
Hirota K, Steiner WW, Shibata T, Ohta K. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast. EUKARYOTIC CELL 2007; 6:2072-80. [PMID: 17827346 PMCID: PMC2168419 DOI: 10.1128/ec.00246-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguroku, Tokyo 153-8902, Japan.
| | | | | | | |
Collapse
|
45
|
Xu H, Boone C, Brown GW. Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics 2007; 176:1417-29. [PMID: 17483413 PMCID: PMC1931553 DOI: 10.1534/genetics.107.072876] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022] Open
Abstract
Sister-chromatid cohesion, the process of pairing replicated chromosomes during mitosis and meiosis, is mediated through the essential cohesin complex and a number of nonessential cohesion genes, but the specific roles of these nonessential genes in sister-chromatid cohesion remain to be clarified. We analyzed sister-chromatid cohesion in double mutants of mrc1Delta, tof1Delta, and csm3Delta and identified additive cohesion defects that indicated the existence of at least two pathways that contribute to sister-chromatid cohesion. To understand the relationship of other nonessential cohesion genes with respect to these two pathways, pairwise combinations of deletion and temperature-sensitive alleles were tested for cohesion defects. These data defined two cohesion pathways, one containing CSM3, TOF1, CTF4, and CHL1, and the second containing MRC1, CTF18, CTF8, and DCC1. Furthermore, we found that the nonessential genes are not important for the maintenance of cohesion at G(2)/M. Thus, our data suggest that nonessential cohesion genes make critical redundant contributions to the establishment of sister-chromatid cohesion and define two cohesion pathways, thereby establishing a framework for understanding the role of nonessential genes in sister-chromatid cohesion.
Collapse
Affiliation(s)
- Hong Xu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
46
|
Heffernan TP, Ünsal-Kaçmaz K, Heinloth AN, Simpson DA, Paules RS, Sancar A, Cordeiro-Stone M, Kaufmann WK. Cdc7-Dbf4 and the human S checkpoint response to UVC. J Biol Chem 2007; 282:9458-9468. [PMID: 17276990 PMCID: PMC1839878 DOI: 10.1074/jbc.m611292200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
The S checkpoint response to ultraviolet radiation (UVC) that inhibits replicon initiation is dependent on the ATR and Chk1 kinases. Downstream effectors of this response, however, are not well characterized. Data reported here eliminated Cdc25A degradation and inhibition of Cdk2-cyclin E as intrinsic components of the UVC-induced pathway of inhibition of replicon initiation in human cells. A sublethal dose of UVC (1 J/m(2)), which selectively inhibits replicon initiation by 50%, failed to reduce the amount of Cdc25A protein or decrease Cdk2-cyclin E kinase activity. Cdc25A degradation was observed after irradiation with cytotoxic fluences of UVC, suggesting that severe inhibition of DNA chain elongation and activation of the replication checkpoint might be responsible for the UVC-induced degradation of Cdc25A. Another proposed effector of the S checkpoint is the Cdc7-Dbf4 complex. Dbf4 interacted weakly with Chk1 in vivo but was recognized as a substrate for Chk1-dependent phosphorylation in vitro. FLAG-Dbf4 formed complexes with endogenous Cdc7, and this interaction was stable in UVC-irradiated HeLa cells. Overexpression of FLAG- or Myc-tagged Dbf4 abrogated the S checkpoint response to UVC but not ionizing radiation. These findings implicate a Dbf4-dependent kinase as a possible target of the ATR- and Chk1-dependent S checkpoint response to UVC.
Collapse
Affiliation(s)
- Timothy P Heffernan
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Keziban Ünsal-Kaçmaz
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alexandra N Heinloth
- Growth Control and Cancer Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Dennis A Simpson
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Richard S Paules
- Growth Control and Cancer Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599; Center for Environmental Health and Susceptibility and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599; Center for Environmental Health and Susceptibility and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599; Center for Environmental Health and Susceptibility and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
47
|
Shikata M, Ishikawa F, Kanoh J. Tel2 is required for activation of the Mrc1-mediated replication checkpoint. J Biol Chem 2006; 282:5346-55. [PMID: 17189249 DOI: 10.1074/jbc.m607432200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Proteins belonging to the Tel2/Rad-5/Clk-2 family are conserved among eukaryotes and are involved in various cellular processes, such as cell proliferation, telomere maintenance, the biological clock, and the DNA damage checkpoint. However, the molecular mechanisms underlying the functions of these molecules remain largely unclear. Here we report that in the fission yeast, Schizosaccharomyces pombe, Tel2 is required for efficient phosphorylation of Mrc1, a mediator of DNA replication checkpoint signaling, and for activation of Cds1, a replication checkpoint kinase, when DNA replication is blocked by hydroxyurea. In fact, Tel2 is required for survival of replication fork arrest and for the replication checkpoint in cells lacking Chk1, another checkpoint kinase the role of which overlaps that of Cds1 in cell cycle arrest by replication block. In addition, Tel2 plays important roles in entry into S phase and in genome stability. Tel2 is essential for vegetative cell growth, and the tel2Delta strain accumulated cells with 1C DNA content after germination. In the absence of hydroxyurea, Tel2 is vital in the mutant lacking Swi1, a component of the replication fork protection complex, and multiple Rad22 DNA repair foci were frequently observed in Tel2-repressed swi1Delta cells especially at S phase. In contrast, the cds1Deltaswi1Delta mutant did not show such lethality. These results indicate that S. pombe Tel2 plays important roles in the Mrc1-mediated replication checkpoint as well as in the Cds1-independent regulation of genome integrity.
Collapse
Affiliation(s)
- Miho Shikata
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
48
|
Noguchi C, Noguchi E. Sap1 promotes the association of the replication fork protection complex with chromatin and is involved in the replication checkpoint in Schizosaccharomyces pombe. Genetics 2006; 175:553-66. [PMID: 17151242 PMCID: PMC1800610 DOI: 10.1534/genetics.106.065334] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Sap1 is involved in replication fork pausing at rDNA repeats and functions during mating-type switching in Schizosaccharomyces pombe. These two roles are dependent on the ability of Sap1 to bind specific DNA sequences at the rDNA and mating-type loci, respectively. In S. pombe, Swi1 and Swi3 form the replication fork protection complex (FPC) and play important roles in the activation of the replication checkpoint and the stabilization of stalled replication forks. Here we describe the roles of Sap1 in the replication checkpoint. We show that Sap1 is involved in the activation of the replication checkpoint kinase Cds1 and that sap1 mutant cells accumulate spontaneous DNA damage during the S- and G2-phases, which is indicative of fork damage. We also show that sap1 mutants have a defect in the resumption of DNA replication after fork arrest. Sap1 is localized at the replication origin ori2004 and this localization is required for the association of the FPC with chromatin. We propose that Sap1 is required to recruit the FPC to chromatin, thereby contributing to the activation of the replication checkpoint and the stabilization of replication forks.
Collapse
Affiliation(s)
- Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|
49
|
Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, Kim JM, Ishii A, Tanaka T, Kobayashi T, Tamai K, Ohtani K, Arai KI. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem 2006; 281:39249-61. [PMID: 17046832 DOI: 10.1074/jbc.m608935200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
Cdc7 kinase, conserved from yeasts to human, plays important roles in DNA replication. However, the mechanisms by which it stimulates initiation of DNA replication remain largely unclear. We have analyzed phosphorylation of MCM subunits during cell cycle by examining mobility shift on SDS-PAGE. MCM4 on the chromatin undergoes specific phosphorylation during S phase. Cdc7 phosphorylates MCM4 in the MCM complexes as well as the MCM4 N-terminal polypeptide. Experiments with phospho-amino acid-specific antibodies indicate that the S phase-specific mobility shift is due to the phosphorylation at specific N-terminal (S/T)(S/T)P residues of the MCM4 protein. These specific phosphorylation events are not observed in mouse ES cells deficient in Cdc7 or are reduced in the cells treated with siRNA specific to Cdc7, suggesting that they are mediated by Cdc7 kinase. The N-terminal phosphorylation of MCM4 stimulates association of Cdc45 with the chromatin, suggesting that it may be an important phosphorylation event by Cdc7 for activation of replication origins. Deletion of the N-terminal non-conserved 150 amino acids of MCM4 results in growth inhibition, and addition of amino acids carrying putative Cdc7 target sequences partially restores the growth. Furthermore, combination of MCM4 N-terminal deletion with alanine substitution and deletion of the N-terminal segments of MCM2 and MCM6, respectively, which contain clusters of serine/threonine and are also likely targets of Cdc7, led to an apparent nonviable phenotype. These results are consistent with the notion that the N-terminal phosphorylation of MCM2, MCM4, and MCM6 may play functionally redundant but essential roles in initiation of DNA replication.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yabuuchi H, Yamada Y, Uchida T, Sunathvanichkul T, Nakagawa T, Masukata H. Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J 2006; 25:4663-74. [PMID: 16990792 PMCID: PMC1589995 DOI: 10.1038/sj.emboj.7601347] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2006] [Accepted: 08/18/2006] [Indexed: 12/31/2022] Open
Abstract
Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature-sensitive fission yeast mutants. The psf3-1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull-down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7-Dbf4 kinase (DDK) but not cyclin-dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.
Collapse
Affiliation(s)
- Hayato Yabuuchi
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoshiki Yamada
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tomonori Uchida
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | - Takuro Nakagawa
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hisao Masukata
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. Tel.: +81 6 6850 5432; Fax: +81 6 6850 5440; E-mail:
| |
Collapse
|