1
|
Ahn SY, Bagheri Varzaneh M, Zhao Y, Rozynek J, Ravindran S, Banks J, Chaudhry M, Reed DA. NG2/CSPG4 attenuates motility in mandibular fibrochondrocytes under serum starvation conditions. Front Cell Dev Biol 2023; 11:1240920. [PMID: 38020894 PMCID: PMC10662293 DOI: 10.3389/fcell.2023.1240920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The migration of mandibular fibrochondrocytes is important for the development of the mandible, the homeostasis of the mandibular cartilage, and for the capacity of the tissue to respond to injury. Mandibular fibrochondrocytes have to overcome formidable obstacles during migration including a dense and heterogeneous three-dimensional matrix. Guiding the direction of cell migration and commitment to a migratory phenotype in this microenvironment necessitates a multivalent response to chemotactic and extracellular matrix-mediated stimuli. One of the key matrix components in the cartilage of the temporomandibular joint is type VI collagen. Neuron/glial antigen 2 (NG2/CSPG4) is a transmembrane proteoglycan that binds with collagen VI and has been implicated in a wide range of cell behaviors including cell migration, motility, adhesion, and proliferation. While NG2/CSPG4 has been shown to be a key regulator of mandibular cartilage homeostasis, its role in the migration of mandibular fibrochondrocytes during normal and cell stress conditions has yet to be resolved. Here, we address this gap in knowledge by characterizing NG2/CSPG4-dependent migration in mandibular fibrochondrocytes using primary mandibular fibrochondrocytes isolated from control and full length NG2/CSPG4 knockout mice, in primary mandibular fibrochondrocytes isolated from NG2|DsRed reporter mice and in an immortalized mandibular fibrochondrocyte cell line with a mutated NG2/CSPG4 ectodomain. All three cells demonstrate similar results, with loss of the full length or truncated NG2/CSPG4 increasing the rate of cell migration in serum starvation/cell stress conditions. These findings clearly implicate NG2/CSPG4 as a key molecule in the regulation of cell migration in mandibular fibrochondrocytes in normal and cell stress conditions, underscoring the role of NG2/CSPG4 as a mechanosensitive signaling hub in the mandibular cartilage.
Collapse
Affiliation(s)
- Shin Young Ahn
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Mina Bagheri Varzaneh
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Yan Zhao
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Jacob Rozynek
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Jonathan Banks
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Minahil Chaudhry
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - David A. Reed
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Kapustin A, Tsakali SS, Whitehead M, Chennell G, Wu MY, Molenaar C, Kutikhin A, Bogdanov L, Sinitsky M, Rubina K, Clayton A, Verweij FJ, Pegtel DM, Zingaro S, Lobov A, Zainullina B, Owen D, Parsons M, Cheney RE, Warren D, Humphries MJ, Iskratsch T, Holt M, Shanahan CM. Extracellular vesicles stimulate smooth muscle cell migration by presenting collagen VI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.551257. [PMID: 37645762 PMCID: PMC10462164 DOI: 10.1101/2023.08.17.551257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix (ECM) supports blood vessel architecture and functionality and undergoes active remodelling during vascular repair and atherogenesis. Vascular smooth muscle cells (VSMCs) are essential for vessel repair and, via their secretome, are able to invade from the vessel media into the intima to mediate ECM remodelling. Accumulation of fibronectin (FN) is a hallmark of early vascular repair and atherosclerosis and here we show that FN stimulates VSMCs to secrete small extracellular vesicles (sEVs) by activating the β1 integrin/FAK/Src pathway as well as Arp2/3-dependent branching of the actin cytoskeleton. Spatially, sEV were secreted via filopodia-like cellular protrusions at the leading edge of migrating cells. We found that sEVs are trapped by the ECM in vitro and colocalise with FN in symptomatic atherosclerotic plaques in vivo. Functionally, ECM-trapped sEVs induced the formation of focal adhesions (FA) with enhanced pulling forces at the cellular periphery. Proteomic and GO pathway analysis revealed that VSMC-derived sEVs display a cell adhesion signature and are specifically enriched with collagen VI. In vitro assays identified collagen VI as playing the key role in cell adhesion and invasion. Taken together our data suggests that the accumulation of FN is a key early event in vessel repair acting to promote secretion of collage VI enriched sEVs by VSMCs. These sEVs stimulate migration and invasion by triggering peripheral focal adhesion formation and actomyosin contraction to exert sufficient traction forces to enable VSMC movement within the complex vascular ECM network.
Collapse
Affiliation(s)
- Alexander Kapustin
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Sofia Serena Tsakali
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Meredith Whitehead
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - George Chennell
- Wohl Cellular Imaging Centre, King’s College London, 5 Cutcombe Road, London, SE5 9NU
| | - Meng-Ying Wu
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Chris Molenaar
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Anton Kutikhin
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Leo Bogdanov
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Maxim Sinitsky
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Kseniya Rubina
- Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia, tel/fax +74959329904
| | - Aled Clayton
- Tissue Microenvironment Research Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff, UK, CF14 2XN
| | - Frederik J Verweij
- Division of Cell Biology, Neurobiology & Biophysics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Dirk Michiel Pegtel
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Simona Zingaro
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL UK
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretskiy Prospekt, 194064, St. Petersburg, Russia
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, Research Park, St. Petersburg State University, 7/9 Universitetskaya Embankment, 199034, St. Petersburg, Russia
| | - Dylan Owen
- Institute of Immunology and Immunotherapy, School of Mathematics and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL UK
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK, NR4 7TJ
| | - Martin James Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Engineering Building, Mile End Road, E1 4NS
| | - Mark Holt
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Catherine M Shanahan
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| |
Collapse
|
3
|
Przyklenk M, Heumüller SE, Freiburg C, Lütke S, Sengle G, Koch M, Paulsson M, Schiavinato A, Wagener R. Lack of evidence for a role of anthrax toxin receptors as surface receptors for collagen VI and for its cleaved-off C5 domain/endotrophin. iScience 2022; 25:105116. [PMID: 36185380 PMCID: PMC9515600 DOI: 10.1016/j.isci.2022.105116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
The microfibril-forming collagen VI is proteolytically cleaved and it was proposed that the released C-terminal Kunitz domain (C5) of the α3 chain is an adipokine important for tumor progression and fibrosis. Designated “endotrophin,” C5 is a potent biomarker for fibroinflammatory diseases. However, the biochemical mechanisms behind endotrophin activity were not investigated. Earlier, anthrax toxin receptor 1 was found to bind C5, but this potential interaction was not further studied. Given the proposed physiological role of endotrophin, we aimed to determine how the signal is transmitted. Surprisingly, we could not detect any interaction between endotrophin and anthrax toxin receptor 1 or its close relative, anthrax toxin receptor 2. Moreover, we detect no binding of fully assembled collagen VI to either receptor. We also studied the collagen VI receptor NG2 (CSPG4) and confirmed that NG2 binds assembled collagen VI, but not cleaved C5/endotrophin. A cellular receptor for C5/endotrophin, therefore, still remains elusive. ANTXR1 does not support collagen VI or C5/endotrophin binding to the cell surface ANTXR2 does not support collagen VI or C5/endotrophin binding to the cell surface NG2/CSPG4 supports collagen VI, but not C5/endotrophin binding to the cell surface
Collapse
|
4
|
Reciprocal Interactions between Oligodendrocyte Precursor Cells and the Neurovascular Unit in Health and Disease. Cells 2022; 11:cells11121954. [PMID: 35741083 PMCID: PMC9221698 DOI: 10.3390/cells11121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are mostly known for their capability to differentiate into oligodendrocytes and myelinate axons. However, they have been observed to frequently interact with cells of the neurovascular unit during development, homeostasis, and under pathological conditions. The functional consequences of these interactions are largely unclear, but are increasingly studied. Although OPCs appear to be a rather homogenous cell population in the central nervous system (CNS), they present with an enormous potential to adapt to their microenvironment. In this review, it is summarized what is known about the various roles of OPC-vascular interactions, and the circumstances under which they have been observed.
Collapse
|
5
|
Arnesen VS, Gras Navarro A, Chekenya M. Challenges and Prospects for Designer T and NK Cells in Glioblastoma Immunotherapy. Cancers (Basel) 2021; 13:4986. [PMID: 34638471 PMCID: PMC8507952 DOI: 10.3390/cancers13194986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent, aggressive primary brain tumour with a dismal prognosis. Treatment at diagnosis has limited efficacy and there is no standardised treatment at recurrence. New, personalised treatment options are under investigation, although challenges persist for heterogenous tumours such as GBM. Gene editing technologies are a game changer, enabling design of novel molecular-immunological treatments to be used in combination with chemoradiation, to achieve long lasting survival benefits for patients. Here, we review the literature on how cutting-edge molecular gene editing technologies can be applied to known and emerging tumour-associated antigens to enhance chimeric antigen receptor T and NK cell therapies for GBM. A tight balance of limiting neurotoxicity, avoiding tumour antigen loss and therapy resistance, while simultaneously promoting long-term persistence of the adoptively transferred cells must be maintained to significantly improve patient survival. We discuss the opportunities and challenges posed by the brain contexture to the administration of the treatments and achieving sustained clinical responses.
Collapse
Affiliation(s)
| | - Andrea Gras Navarro
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| |
Collapse
|
6
|
The Potential Role of FREM1 and Its Isoform TILRR in HIV-1 Acquisition through Mediating Inflammation. Int J Mol Sci 2021; 22:ijms22157825. [PMID: 34360591 PMCID: PMC8346017 DOI: 10.3390/ijms22157825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
FREM1 (Fras-related extracellular matrix 1) and its splice variant TILRR (Toll-like interleukin-1 receptor regulator) have been identified as integral components of innate immune systems. The potential involvement of FREM1 in HIV-1 (human immunodeficiency virus 1) acquisition was suggested by a genome-wide SNP (single nucleotide polymorphism) analysis of HIV-1 resistant and susceptible sex workers enrolled in the Pumwani sex worker cohort (PSWC) in Nairobi, Kenya. The studies showed that the minor allele of a FREM1 SNP rs1552896 is highly enriched in the HIV-1 resistant female sex workers. Subsequent studies showed that FREM1 mRNA is highly expressed in tissues relevant to mucosal HIV-1 infection, including cervical epithelial tissues, and TILRR is a major modulator of many genes in the NF-κB signal transduction pathway. In this article, we review the role of FREM1 and TILRR in modulating inflammatory responses and inflammation, and how their influence on inflammatory responses of cervicovaginal tissue could enhance the risk of vaginal HIV-1 acquisition.
Collapse
|
7
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
8
|
Ho CM, Chang TH, Yen TL, Hong KJ, Huang SH. Collagen type VI regulates the CDK4/6-p-Rb signaling pathway and promotes ovarian cancer invasiveness, stemness, and metastasis. Am J Cancer Res 2021; 11:668-690. [PMID: 33791147 PMCID: PMC7994167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023] Open
Abstract
The expression of collagen VI in primary ovarian tumors may correlate with tumor grade and response to chemotherapy. We have sought to elucidate the role of collagen VI in promoting ovarian cancer tumor growth and metastasis. Here we examined the effects of collagen VI on ovarian carcinoma stromal progenitor cells (OCSPCs). Epithelial-like OCSPCs (epi-OCSPCs) and mesenchymal-like OCSPCs (msc-OCSPCs) were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Differentially expressed genes were integrated with survival-related genes using The Cancer Genome Atlas (TCGA) data and confirmed in our samples. The roles of candidate genes and signaling pathways were further explored. We found that SKOV3/msc-OCSPCs possessed greater migration, invasion, and spheroid formation than SKOV3/epi-OCSPCs (P < 0.001). Expression of collagen alpha-3 (VI; COL6A3), which encodes collagen VI, was 90-fold higher in msc-OCSPCs than in epi-OCSPCs. Analysis of TCGA data and our samples indicated that high expression of COL6A3 was correlated with advanced-stage carcinoma (P < 0.01) and shorter overall survival (P < 0.01). In vitro, adding collagen VI, msc-OCSPCs, or knockdown collagen VI in msc-OCSPCs to epithelial ovarian carcinoma (EOC) cells augmented or decreased invasion and spheroid formation. Tumor dissemination to the peritoneal cavity and lung in mice following intraperitoneal coinjection with msc-OCSPCs and SKOV3-Luc cells and intravenous injection with COL6A3 and ES2 cells derived spheroids was significantly greater compare to coinjection with SKOV3-Luc cells alone or in combination with msc-OCSPCs/shCOL6A3 cells and msc-OCSPCs and ES2 derived spheroids. Knockdown of COL6A3 abolished the expression of DNMT1, CDK4, CDK6, and p-Rb in msc-OCSPCs and EOC spheroids. In contrast, overexpression of COL6A3 enhanced the expression of CDK4, CDK6, and p-Rb in SKOV3 cells. EOC spheroid formation, invasion, tumor growth, and metastasis were inhibited when COL6A3 downstream signaling pathway was blocked using CDK4/6 inhibitor LEE011. Our results suggested that collagen VI regulates the CDK4/6-p-Rb signaling pathway and promotes EOC invasiveness, stemness, and metastasis.
Collapse
Affiliation(s)
- Chih-Ming Ho
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General HospitalTaipei, Taiwan
- School of Medicine, Fu Jen Catholic UniversityHsinchuang, New Taipei, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical UniversityTaipei, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General HospitalNew Taipei, Taiwan
| | - Kun-Jing Hong
- Department of Medical Research, Cathay General HospitalNew Taipei, Taiwan
| | - Shih-Hung Huang
- Department of Pathology, Cathay General HospitalTaipei, Taiwan
| |
Collapse
|
9
|
Pham HT, Kram V, Dar QA, Komori T, Ji Y, Mohassel P, Rooney J, Li L, Kilts TM, Bonnemann C, Lamande S, Young MF. Collagen VIα2 chain deficiency causes trabecular bone loss by potentially promoting osteoclast differentiation through enhanced TNFα signaling. Sci Rep 2020; 10:13749. [PMID: 32792616 PMCID: PMC7426410 DOI: 10.1038/s41598-020-70730-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in Col6α2-KO mice compared with WT. Dynamic histomorphometry showed no differences in trabecular bone formation between WT and Col6α2-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with WT mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and Col6α2-KO mice were treated with rmTNFα protein, the Col6α2-KO cells expressed higher levels of TNFα mRNA compared with WT cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from Col6α2-KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.
Collapse
Affiliation(s)
- Hai T Pham
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Qurratul-Ain Dar
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Youngmi Ji
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jachinta Rooney
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Li
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Tina M Kilts
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Carsten Bonnemann
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shireen Lamande
- Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Girolamo F, Errede M, Longo G, Annese T, Alias C, Ferrara G, Morando S, Trojano M, Kerlero de Rosbo N, Uccelli A, Virgintino D. Defining the role of NG2-expressing cells in experimental models of multiple sclerosis. A biofunctional analysis of the neurovascular unit in wild type and NG2 null mice. PLoS One 2019; 14:e0213508. [PMID: 30870435 PMCID: PMC6417733 DOI: 10.1371/journal.pone.0213508] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/24/2019] [Indexed: 01/09/2023] Open
Abstract
During experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis associated with blood-brain barrier (BBB) disruption, oligodendrocyte precursor cells (OPCs) overexpress proteoglycan nerve/glial antigen 2 (NG2), proliferate, and make contacts with the microvessel wall. To explore whether OPCs may actually be recruited within the neurovascular unit (NVU), de facto intervening in its cellular and molecular composition, we quantified by immunoconfocal morphometry the presence of OPCs in contact with brain microvessels, during postnatal cerebral cortex vascularization at postnatal day 6, in wild-type (WT) and NG2 knock-out (NG2KO) mice, and in the cortex of adult naïve and EAE-affected WT and NG2KO mice. As observed in WT mice during postnatal development, a higher number of juxtavascular and perivascular OPCs was revealed in adult WT mice during EAE compared to adult naïve WT mice. In EAE-affected mice, OPCs were mostly associated with microvessels that showed altered claudin-5 and occludin tight junction (TJ) staining patterns and barrier leakage. In contrast, EAE-affected NG2KO mice, which did not show any significant increase in vessel-associated OPCs, seemed to retain better preserved TJs and BBB integrity. As expected, absence of NG2, in both OPCs and pericytes, led to a reduced content of vessel basal lamina molecules, laminin, collagen VI, and collagen IV. In addition, analysis of the major ligand/receptor systems known to promote OPC proliferation and migration indicated that vascular endothelial growth factor A (VEGF-A), platelet-derived growth factor-AA (PDGF-AA), and the transforming growth factor-β (TGF-β) were the molecules most likely involved in proliferation and recruitment of vascular OPCs during EAE. These results were confirmed by real time-PCR that showed Fgf2, Pdgfa and Tgfb expression on isolated cerebral cortex microvessels and by dual RNAscope-immunohistochemistry/in situ hybridization (IHC/ISH), which detected Vegfa and Vegfr2 transcripts on cerebral cortex sections. Overall, this study suggests that vascular OPCs, in virtue of their developmental arrangement and response to neuroinflammation and growth factors, could be integrated among the classical NVU cell components. Moreover, the synchronized activation of vascular OPCs and pericytes during both BBB development and dysfunction, points to NG2 as a key regulator of vascular interactions.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail: (DV); (FG)
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Carlotta Alias
- B+LabNet—Environmental Sustainability Lab, University of Brescia, Brescia, Italy
| | - Giovanni Ferrara
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Sara Morando
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino–IRCCS, Genoa, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail: (DV); (FG)
| |
Collapse
|
11
|
Tamburini E, Dallatomasina A, Quartararo J, Cortelazzi B, Mangieri D, Lazzaretti M, Perris R. Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. FASEB J 2018; 33:3112-3128. [PMID: 30550356 DOI: 10.1096/fj.201801670r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chondroitin sulfate proteoglycan 4 ( CSPG4) gene encodes a transmembrane proteoglycan (PG) constituting the largest and most structurally complex macromolecule of the human surfaceome. Its transcript shows an extensive evolutionary conservation and, due to the elaborated intracellular processing of the translated protein, it generates an array of glycoforms with the potential to exert variant-specific functions. CSPG4-mediated molecular events are articulated through the interaction with more than 40 putative ligands and the concurrent involvement of the ectodomain and cytoplasmic tail. Alternating inside-out and outside-in signal transductions may thereby be elicited through a tight functional connection of the PG with the cytoskeleton and its regulators. The potential of CSPG4 to influence both types of signaling mechanisms is also asserted by its lateral mobility along the plasma membrane and its intersection with microdomain-restricted internalization and endocytic trafficking. Owing to the multitude of molecular interplays that CSPG4 may engage, and thanks to a differential phosphorylation of its intracellular domain accounted by crosstalking signaling pathways, the PG stands out for its unique capability to affect numerous cellular phenomena, including those purporting pathologic conditions. We discuss here the progresses made in advancing our understanding about the structural-functional bases for the ability of CSPG4 to widely impact on cell behavior, such as to highlight how its multivalency may be exploited to interfere with disease progression.-Tamburini, E., Dallatomasina, A., Quartararo, J., Cortelazzi, B., Mangieri, D., Lazzaretti, M., Perris, R. Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality.
Collapse
Affiliation(s)
- Elisa Tamburini
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Alice Dallatomasina
- Division of Experimental Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; and
| | - Jade Quartararo
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Barbara Cortelazzi
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | | | - Mirca Lazzaretti
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Roberto Perris
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| |
Collapse
|
12
|
Tang F, Lord MS, Stallcup WB, Whitelock JM. Cell surface chondroitin sulphate proteoglycan 4 (CSPG4) binds to the basement membrane heparan sulphate proteoglycan, perlecan, and is involved in cell adhesion. J Biochem 2018; 163:399-412. [PMID: 29462330 DOI: 10.1093/jb/mvy008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
Chondroitin sulphate proteoglycan 4 (CSPG4) is a cell surface proteoglycan highly expressed by tumour, perivascular and oligodendrocyte cells and known to be involved cell adhesion and migration. This study showed that CSPG4 was present as a proteoglycan on the cell surface of two melanoma cell lines, MM200 and Me1007, as well as shed into the conditioned medium. CSPG4 from the two melanoma cell lines differed in the amount of chondroitin sulphate (CS) decoration, as well as the way the protein core was fragmented. In contrast, the CSPG4 expressed by a colon carcinoma cell line, WiDr, was predominantly as a protein core on the cell surface lacking glycosaminoglycan (GAG) chains. This study demonstrated that CSPG4 immunopurified from the melanoma cell lines formed a complex with perlecan synthesized by the same cultured cells. Mechanistic studies showed that CSPG4 bound to perlecan via hydrophobic protein-protein interactions involving multiple sites on perlecan including the C-terminal region. Furthermore, this study revealed that CSPG4 interacted with perlecan to support cell adhesion and actin polymerization. Together these data suggest a novel mechanism by which CSPG4 expressing cells might attach to perlecan-rich matrices so as those found in connective tissues and basement membranes.
Collapse
Affiliation(s)
- Fengying Tang
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| | - William B Stallcup
- Tumour Microenvironment and Cancer Immunology Program, Cancer Centre, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John M Whitelock
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Kohara Y, Soeta S, Izu Y, Arai K, Amasaki H. Distribution of type VI collagen in association with osteoblast lineages in the groove of Ranvier during rat postnatal development. Ann Anat 2016; 208:58-68. [DOI: 10.1016/j.aanat.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 01/29/2023]
|
14
|
Sardone F, Santi S, Tagliavini F, Traina F, Merlini L, Squarzoni S, Cescon M, Wagener R, Maraldi NM, Bonaldo P, Faldini C, Sabatelli P. Collagen VI–NG2 axis in human tendon fibroblasts under conditions mimicking injury response. Matrix Biol 2016; 55:90-105. [DOI: 10.1016/j.matbio.2016.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/18/2016] [Accepted: 02/27/2016] [Indexed: 01/07/2023]
|
15
|
Li D, He L, Guo H, Chen H, Shan H. Targeting activated hepatic stellate cells (aHSCs) for liver fibrosis imaging. EJNMMI Res 2015; 5:71. [PMID: 26650603 PMCID: PMC4674461 DOI: 10.1186/s13550-015-0151-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022] Open
Abstract
Following injurious stimuli, quiescent hepatic stellate cells (qHSCs) transdifferentiate into activated HSCs (aHSCs). aHSCs play pivotal roles in the onset and progression of liver fibrosis. Therefore, molecular imaging of aHSCs in liver fibrosis will facilitate early diagnosis, prognosis prediction, and instruction and evaluation of aHSC-targeted treatment. To date, several receptors, such as integrin αvβ3, mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-IIR), collagen type VI receptor (CVIR), platelet-derived growth factor receptor-β (PDGFR-β), vimentin, and desmin, have been identified as biomarkers of aHSCs. Corresponding ligands to these receptors have also been developed. This review will discuss strategies for developing aHSC-targeted imaging in liver fibrosis.
Collapse
Affiliation(s)
- Dan Li
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, 510630, China
| | - Li He
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huizhuang Guo
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China.
| | - Hong Shan
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China. .,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, 510630, China. .,Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
16
|
Kohara Y, Soeta S, Izu Y, Amasaki H. Accumulation of type VI collagen in the primary osteon of the rat femur during postnatal development. J Anat 2015; 226:478-88. [PMID: 25943007 DOI: 10.1111/joa.12296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 12/17/2022] Open
Abstract
In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages.
Collapse
Affiliation(s)
- Yukihiro Kohara
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hajime Amasaki
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
17
|
Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 2014; 5:122. [PMID: 25376879 PMCID: PMC4445991 DOI: 10.1186/scrt512] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Fibrosis, or scar formation, is a pathological condition characterized by excessive production and accumulation of collagen, loss of tissue architecture, and organ failure in response to uncontrolled wound healing. Several cellular populations have been implicated, including bone marrow-derived circulating fibrocytes, endothelial cells, resident fibroblasts, epithelial cells, and recently, perivascular cells called pericytes. We previously demonstrated pericyte functional heterogeneity in skeletal muscle. Whether pericyte subtypes are present in other tissues and whether a specific pericyte subset contributes to organ fibrosis are unknown. Methods Here, we report the presence of two pericyte subtypes, type-1 (Nestin-GFP-/NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+), surrounding blood vessels in lungs, kidneys, heart, spinal cord, and brain. Using Nestin-GFP/NG2-DsRed transgenic mice, we induced pulmonary, renal, cardiac, spinal cord, and cortical injuries to investigate the contributions of pericyte subtypes to fibrous tissue formation in vivo. Results A fraction of the lung’s collagen-producing cells corresponds to type-1 pericytes and kidney and heart pericytes do not produce collagen in pathological fibrosis. Note that type-1, but not type-2, pericytes increase and accumulate near the fibrotic tissue in all organs analyzed. Surprisingly, after CNS injury, type-1 pericytes differ from scar-forming PDGFRβ + cells. Conclusions Pericyte subpopulations respond differentially to tissue injury, and the production of collagen by type-1 pericytes is organ-dependent. Characterization of the mechanisms underlying scar formation generates cellular targets for future anti-fibrotic therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/scrt512) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Binamé F. Transduction of extracellular cues into cell polarity: the role of the transmembrane proteoglycan NG2. Mol Neurobiol 2014; 50:482-93. [PMID: 24390567 DOI: 10.1007/s12035-013-8610-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/08/2013] [Indexed: 01/23/2023]
Abstract
Resident progenitor cells expressing nerve/glial antigen 2 (NG2) such as oligodendrocyte precursor cells (OPC) and pericytes persist in the adult brain. The transmembrane proteoglycan NG2 regulates migration of both these cell types in response to growth factors or specific components of the extracellular matrix. This role of NG2 is linked to the control of cell polarity. The polarization of OPC toward an acute lesion in the brain is impaired in NG2-deficient mice, supporting this concept. A review of the signaling pathways impinged on by NG2 reveals key proteins of cell polarity: phosphatidylinositol 3-kinase, focal adhesion kinase, Rho GTPases, and polarity complex proteins. In the scope of cell migration, I discuss here how the interplay of NG2 with signaling transmitted by extracellular cues can control the establishment of cell polarity, and I propose a model to integrate the apparent opposite effects of NG2 on cellular dynamics.
Collapse
Affiliation(s)
- Fabien Binamé
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany,
| |
Collapse
|
19
|
Cattaruzza S, Nicolosi PA, Braghetta P, Pazzaglia L, Benassi MS, Picci P, Lacrima K, Zanocco D, Rizzo E, Stallcup WB, Colombatti A, Perris R. NG2/CSPG4-collagen type VI interplays putatively involved in the microenvironmental control of tumour engraftment and local expansion. J Mol Cell Biol 2013; 5:176-93. [PMID: 23559515 DOI: 10.1093/jmcb/mjt010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- SOS for Experimental Oncology 2, The National Tumour Institute Aviano-CRO-IRCCS, Aviano (PN), Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lord MS, Whitelock JM. Recombinant production of proteoglycans and their bioactive domains. FEBS J 2013; 280:2490-510. [DOI: 10.1111/febs.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
21
|
Beck TF, Shchelochkov OA, Yu Z, Kim BJ, Hernández-García A, Zaveri HP, Bishop C, Overbeek PA, Stockton DW, Justice MJ, Scott DA. Novel frem1-related mouse phenotypes and evidence of genetic interactions with gata4 and slit3. PLoS One 2013; 8:e58830. [PMID: 23536828 PMCID: PMC3594180 DOI: 10.1371/journal.pone.0058830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/07/2013] [Indexed: 11/27/2022] Open
Abstract
The FRAS1-related extracellular matrix 1 (FREM1) gene encodes an extracellular matrix protein that plays a critical role in the development of multiple organ systems. In humans, recessive mutations in FREM1 cause eye defects, congenital diaphragmatic hernia, renal anomalies and anorectal malformations including anteriorly placed anus. A similar constellation of findings-microphthalmia, cryptophthalmos, congenital diaphragmatic hernia, renal agenesis and rectal prolapse-have been described in FREM1-deficient mice. In this paper, we identify a homozygous Frem1 missense mutation (c.1687A>T, p.Ile563Phe) in an N-ethyl-N-nitrosourea (ENU)-derived mouse strain, crf11, with microphthalmia, cryptophthalmos, renal agenesis and rectal prolapse. This mutation affects a highly conserved residue in FREM1's third CSPG domain. The p.Ile563Phe change is predicted to be deleterious and to cause decreased FREM1 protein stability. The crf11 allele also fails to complement the previously described eyes2 allele of Frem1 (p.Lys826*) providing further evidence that the crf11 phenotype is due to changes affecting Frem1 function. We then use mice bearing the crf11 and eyes2 alleles to identify lung lobulation defects and decreased anogenital distance in males as novel phenotypes associated with FREM1 deficiency in mice. Due to phenotypic overlaps between FREM1-deficient mice and mice that are deficient for the retinoic acid-responsive transcription factor GATA4 and the extracellular matrix protein SLIT3, we also perform experiments to look for in vivo genetic interactions between the genes that encode these proteins. These experiments reveal that Frem1 interacts genetically with Gata4 in the development of lung lobulation defects and with Slit3 in the development of renal agenesis. These results demonstrate that FREM1-deficient mice faithfully recapitulate many of the phenotypes seen in individuals with FREM1 deficiency and that variations in GATA4 and SLIT3 expression modulate some FREM1-related phenotypes in mice.
Collapse
Affiliation(s)
- Tyler F. Beck
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Oleg A. Shchelochkov
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Zhiyin Yu
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bum Jun Kim
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrés Hernández-García
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hitisha P. Zaveri
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Colin Bishop
- The Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Paul A. Overbeek
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David W. Stockton
- Departments of Pediatrics and Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Monica J. Justice
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
22
|
Ju PJ, Liu R, Yang HJ, Xia YY, Feng ZW. Clonal analysis for elucidating the lineage potential of embryonic NG2+ cells. Cytotherapy 2012; 14:608-20. [DOI: 10.3109/14653249.2011.651528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Garusi E, Rossi S, Perris R. Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci 2012; 69:553-79. [PMID: 21964924 PMCID: PMC11114698 DOI: 10.1007/s00018-011-0816-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs), a family of complex post-translationally sculptured macromolecules, are fundamental regulators of most normal and aberrant cellular functions. The unparalleled structural-functional diversity of PGs endows them with the ability to serve as critical mediators of the tumor cells' interaction with the host microenvironment, while directly contributing to the organization and dynamic remodeling of this milieu. Despite their indisputable importance during embryonic development and in the adult organism, and their frequent dysregulation in tumor lesions, their precise involvement in tumorigenesis awaits a more decisive demonstration. Particularly challenging is to ascertain to what extent selected PGs may catalyze tumor progression and to what extent they may inhibit it, implying antithetic functions of individual PGs. Integrated efforts are needed to consolidate the routine use of PGs in the clinical monitoring of cancer patients and to broaden the exploitation of these macromolecules as therapeutic targets. Several PGs have the required attributes to be contemplated as effective antigens for immunotherapeutic approaches, while the tangible results obtained in recent clinical trials targeting the NG2/CSPG4 transmembrane PG urge further development of PG-based cancer treatment modalities.
Collapse
Affiliation(s)
- Elena Garusi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Silvia Rossi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Roberto Perris
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- S.O.C. of Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Via Franco Gallini, 2, 33081 Aviano, PN Italy
| |
Collapse
|
24
|
Collagen VI ablation retards brain tumor progression due to deficits in assembly of the vascular basal lamina. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1145-1158. [PMID: 22200614 DOI: 10.1016/j.ajpath.2011.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 10/25/2011] [Accepted: 11/08/2011] [Indexed: 12/27/2022]
Abstract
To investigate the importance of the vascular basal lamina in tumor blood vessel morphogenesis and function, we compared vessel development, vessel function, and progression of B16F10 melanoma tumors in the brains of wild-type and collagen VI-null mice. In 7-day tumors in the absence of collagen VI, the width of the vascular basal lamina was reduced twofold. Although the ablation of collagen VI did not alter the abundance of blood vessels, a detailed analysis of the number of either pericytes or endothelial cells (or pericyte coverage of endothelial cells) showed that collagen VI-dependent defects during the assembly of the basal lamina have negative effects on both pericyte maturation and the sprouting and survival of endothelial cells. As a result of these deficits, vessel patency was reduced by 25%, and vessel leakiness was increased threefold, resulting in a 10-fold increase in tumor hypoxia along with a fourfold increase in hypoxia-inducible factor-1α expression. In 12-day collagen VI-null tumors, vascular endothelial growth factor expression was increased throughout the tumor stroma, in contrast to the predominantly vascular pattern of vascular endothelial growth factor expression in wild-type tumors. Vessel size was correspondingly reduced in 12-day collagen VI-null tumors. Overall, these vascular deficits produced a twofold decrease in tumor volume in collagen VI-null mice, confirming that collagen VI-dependent basal lamina assembly is a critical aspect of vessel development.
Collapse
|
25
|
Arafat H, Lazar M, Salem K, Chipitsyna G, Gong Q, Pan TC, Zhang RZ, Yeo CJ, Chu ML. Tumor-specific expression and alternative splicing of the COL6A3 gene in pancreatic cancer. Surgery 2011; 150:306-15. [PMID: 21719059 DOI: 10.1016/j.surg.2011.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/13/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease; a prominent desmoplastic reaction is a defining characteristic. Fibrillar collagens, such as collagen I and to a lesser extent, collagens III and V, comprise the majority of this stromal fibrosis. Type VI collagen (COL6) forms a microfibrillar network associated with type I collagen fibrils. The expression of COL6 has been linked with inflammation and survival. Importantly, tumor-specific alternative splicing in COL6A3 has been identified in several cancers by genome exon arrays. We evaluated the expression and localization of COL6A3 in PDA and premalignant lesions and explored the presence of alternative splicing events. METHODS We analyzed paired PDA-normal (n = 18), intraductal papillary mucinous neoplasms (IPMN; n = 5), pancreatic cystadenoma (n = 5), and 8 PDA cell lines with reverse transcriptase polymerase chain reaction, using unique primers that identify total COL6A3 gene and alternative splicing sites in several of its exons. Western blot analysis and immunohistochemistry were used to analyze the expression levels and localization of COL6A3 protein in the different lesions, and in 2 animal models of PDA. RESULTS COL6A3 protein levels were significantly upregulated in 77% of the paired PDA-adjacent tissue examined. COL6A3 was mainly present in the desmoplastic stroma of PDA, with high deposition around the malignant ducts and in between the sites of stromal fatty infiltration. Analysis of the COL6A3 splice variants showed tumor-specific consistent inclusion of exons 3 and 6 in 17 of the 18 (94%) paired PDA-adjacent tissues. Inclusion of exon 4 was exclusively tumor specific, with barely detectable expression in the adjacent tissues. IPMN and pancreatic cystadenomas showed no expression of any of the examined exons. Total COL6A3 mRNA and exon 6 were identified in 6 PDA cell lines, but only 2 cell lines (MIA PACA-2 and ASPC-1) expressed exons 3 and 4. In both the xenograft and transgenic models of PDA, COL6A3 immunoreactivity was present in the stroma and some PDA cells. CONCLUSION We have described, for the first time, a dynamic process of tumor-specific alternative splicing in several exons of stromal COL6A3. Alternatively spliced proteins may contribute to the etiology or progression of cancer and may serve as markers for cancer diagnosis. Identification of COL6A3 isoforms as PDA-specific provides the basis for future studies to explore the oncogenic and diagnostic potential of these alternative splicing events.
Collapse
Affiliation(s)
- Hwyda Arafat
- Department of Surgery, Jefferson Pancreatic, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The collagen VI-related myopathy known as Ullrich congenital muscular dystrophy is an early-onset disease that combines substantial muscle weakness with striking joint laxity and progressive contractures. Patients might learn to walk in early childhood; however, this ability is subsequently lost, concomitant with the development of frequent nocturnal respiratory failure. Patients with intermediate phenotypes of collagen VI-related myopathy display a lesser degree of weakness and a longer period of ambulation than do individuals with Ullrich congenital muscular dystrophy, and the spectrum of disease finally encompasses mild Bethlem myopathy, in which ambulation persists into adulthood. Dominant and recessive autosomal mutations in the three major collagen VI genes-COL6A1, COL6A2, and COL6A3-can underlie this entire clinical spectrum, and result in deficient or dysfunctional microfibrillar collagen VI in the extracellular matrix of muscle and other connective tissues, such as skin and tendons. The potential effects on muscle include progressive dystrophic changes, fibrosis and evidence for increased apoptosis, which potentially open avenues for pharmacological intervention. Optimized respiratory management, including noninvasive nocturnal ventilation together with careful orthopedic management, are the current mainstays of treatment and have already led to a considerable improvement in life expectancy for children with Ullrich congenital muscular dystrophy.
Collapse
|
27
|
Bönnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:81-96. [PMID: 21496625 DOI: 10.1016/b978-0-08-045031-5.00005-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutations in the genes COL6A1, COL6A2, and COL6A3, coding for three α chains of collagen type VI, underlie a spectrum of myopathies, ranging from the severe congenital muscular dystrophy-type Ullrich (UCMD) to the milder Bethlem myopathy (BM), with disease manifestations of intermediate severity in between. UCMD is characterized by early-onset weakness, associated with pronounced distal joint hyperlaxity and the early onset or early progression of more proximal contractures. In the most severe cases ambulation is not achieved, or it may be achieved only for a limited period of time. BM may be of early or later onset, but is milder in its manifestations, typically allowing for ambulation well into adulthood, whereas typical joint contractures are frequently prominent. A genetic spectrum is emerging, with BM being caused mostly by dominantly acting mutations, although rarely recessive inheritance of BM is also possible, whereas both dominantly as well as recessively acting mutations underlie UCMD.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, MD 20892-3705, USA.
| |
Collapse
|
28
|
Huang FJ, You WK, Bonaldo P, Seyfried TN, Pasquale EB, Stallcup WB. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev Biol 2010; 344:1035-46. [PMID: 20599895 DOI: 10.1016/j.ydbio.2010.06.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 01/12/2023]
Abstract
Tightly regulated crosstalk between endothelial cells and pericytes is required for formation and maintenance of functional blood vessels. When the NG2 proteoglycan is absent from pericyte surfaces, vascularization of syngeneic tumors growing in the C57Bl/6 mouse brain is aberrant in several respects, resulting in retardation of tumor progression. In the NG2 null mouse brain, pericyte investment of the tumor vascular endothelium is reduced, causing deficiencies in both pericyte and endothelial cell maturation, as well as reduced basal lamina assembly. While part of this deficit may be due to the previously-identified role of NG2 in beta1 integrin-dependent periyte/endothelial cell crosstalk, the ablation of NG2 also appears responsible for loss of collagen VI anchorage, in turn leading to reduced collagen IV deposition. Poor functionality of tumor vessels in NG2 null brain is reflected by reduced vessel patency and increased vessel leakiness, resulting in large increases in tumor hypoxia. These findings demonstrate the importance of NG2-dependent pericyte/endothelial cell interaction in the development and maturation of tumor blood vessels, identifying NG2 as a potential target for anti-angiogenic cancer therapy.
Collapse
Affiliation(s)
- Feng-Ju Huang
- Sanford-Burnham Medical Research Institute, Cancer Center, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
29
|
Stallcup WB, Huang FJ. A role for the NG2 proteoglycan in glioma progression. Cell Adh Migr 2008; 2:192-201. [PMID: 19262111 PMCID: PMC2634088 DOI: 10.4161/cam.2.3.6279] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 05/13/2008] [Indexed: 01/18/2023] Open
Abstract
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of beta-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility and cell survival.
Collapse
Affiliation(s)
- William B Stallcup
- Burnham Institute for Medical Research, Cancer Research Center, La Jolla, California 92037, USA.
| | | |
Collapse
|
30
|
NG2, a novel proapoptotic receptor, opposes integrin alpha4 to mediate anoikis through PKCalpha-dependent suppression of FAK phosphorylation. Cell Death Differ 2008; 15:899-907. [PMID: 18292781 DOI: 10.1038/cdd.2008.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Disruption of cell-matrix interactions can lead to anoikis - apoptosis due to loss of matrix contacts. Altered fibronectin (FN) induces anoikis of primary human fibroblasts by a novel signaling pathway characterized by reduced phosphorylation of focal adhesion kinase (FAK). However, the receptors involved are unknown. FAK phosphorylation is regulated by nerve/glial antigen 2 (NG2) receptor signaling through PKCalpha a point at which signals from integrins and proteoglycans may converge. We found that an altered FN matrix induced anoikis in fibroblasts by upregulating NG2 and downregulating integrin alpha4. Suppressing NG2 expression or overexpressing alpha4 rescued cells from anoikis. NG2 overexpression alone induced apoptosis and, by reducing FAK phosphorylation, increased anoikis induced by an altered matrix. NG2 overexpression or an altered matrix also suppressed PKCalpha expression, but overexpressing integrin alpha4 enhanced FAK phosphorylation independently of PKCalpha. Cotransfection with NG2 cDNA and integrin alpha4 siRNA did not lower PKCalpha and pFAK levels more than transfection with either alone. PKCalpha was upstream of FAK phosphorylation, as silencing PKCalpha decreased FAK phosphorylation. PKCalpha overexpression reversed this behavior and rescued cells from anoikis. Thus, NG2 is a novel proapoptotic receptor, and NG2 and integrin alpha4 oppositely regulate anoikis in fibroblasts. NG2 and integrin alpha4 regulate FAK phosphorylation by PKCalpha-dependent and -independent pathways, respectively.
Collapse
|
31
|
Muscle Interstitial Fibroblasts Are the Main Source of Collagen VI Synthesis in Skeletal Muscle: Implications for Congenital Muscular Dystrophy Types Ullrich and Bethlem. J Neuropathol Exp Neurol 2008; 67:144-54. [DOI: 10.1097/nen.0b013e3181634ef7] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Wiranowska M, Ladd S, Smith SR, Gottschall PE. CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of glioma. ACTA ACUST UNITED AC 2007; 35:159-72. [DOI: 10.1007/s11068-007-9009-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 01/12/2007] [Accepted: 02/13/2007] [Indexed: 11/25/2022]
|
33
|
Erfurt C, Sun Z, Haendle I, Schuler-Thurner B, Heirman C, Thielemans K, van der Bruggen P, Schuler G, Schultz ES. Tumor-reactive CD4+ T cell responses to the melanoma-associated chondroitin sulphate proteoglycan in melanoma patients and healthy individuals in the absence of autoimmunity. THE JOURNAL OF IMMUNOLOGY 2007; 178:7703-9. [PMID: 17548607 DOI: 10.4049/jimmunol.178.12.7703] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To avoid immune escape by down-regulation or loss of Ag by the tumor cells, target Ags are needed, which are important for the malignant phenotype and survival of the tumor. We could identify a CD4(+) T cell epitope derived from the human melanoma-associated chondroitin sulfate proteoglycan (MCSP) (also known as high m.w.-melanoma-associated Ag), which is strongly expressed on >90% of human melanoma lesions and is important for the motility and invasion of melanoma cells. However, MCSP is not strictly tumor specific, because it is also expressed in a variety of normal tissues. Therefore, self tolerance should prevent the induction of strong T cell responses against these Ags by vaccination strategies. In contrast, breaking self tolerance to this Ag by effectively manipulating the immune system might mediate antitumor responses, although it would bear the risk of autoimmunity. Surprisingly, we could readily isolate CD4(+) Th cells from the blood of a healthy donor-recognizing peptide MCSP(693-709) on HLA-DR11-expressing melanoma cells. Broad T cell reactivity against this Ag could be detected in the peripheral blood of both healthy donors and melanoma patients, without any apparent signs of autoimmune disease. In some patients, a decline of T cell reactivity was observed upon tumor progression. Our data indicate that CD4(+) T cells are capable of recognizing a membrane glycoprotein that is important in melanoma cell function, and it may be possible that the sizable reactivity to this Ag in most normal individuals contributes to immune surveillance against cancer.
Collapse
Affiliation(s)
- Cornelia Erfurt
- Department of Dermatology, University Hospital of Erlangen, Hartmannstrasse 14, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Akeda K, An HS, Pichika R, Patel K, Muehleman C, Nakagawa K, Uchida A, Masuda K. The expression of NG2 proteoglycan in the human intervertebral disc. Spine (Phila Pa 1976) 2007; 32:306-14. [PMID: 17268261 DOI: 10.1097/01.brs.0000254108.08507.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemical and biochemical analyses of NG2 proteoglycan in the human intervertebral disc. OBJECTIVE To determine if the human intervertebral disc expresses NG2 proteoglycan. SUMMARY OF BACKGROUND DATA In the nervous system, NG2 has been reported to play an important role as an interactive extracellular matrix component and membrane receptor for growth factors. NG2 is also found in non-neuronal tissues, such as cartilage and bone; however, the expression of NG2 within the human intervertebral disc is unknown. METHODS NG2 expression in the intervertebral disc was examined through Western blotting, reverse transcriptase polymerase chain reaction, and immunohistochemistry. Confocal microscopy was used to assess the spatial association of NG2 with type VI collagen. To reveal changes in the content of NG2 with disc degeneration, Western blot analysis was used to assess the relative content of NG2 in human intervertebral disc tissues with varying degrees of degeneration. RESULTS NG2 was clearly identified in cells from both the anulus fibrosus and nucleus pulposus, and colocalized with both type VI collagen and beta-integrin, located in the inner area of the cell-associated matrix. Throughout the anterior and posterior regions of the disc tissues, most cells were confirmed to be NG2 positive. Cells expressed NG2 messenger ribonucleic acid, and Western blot confirmed the presence of the core protein of the NG2 protein, 250 kDa. A study comparing the different grades of disc degeneration showed that the content of NG2 was elevated in disc tissues in an advanced stage of degeneration compared to tissues in an early stage of degeneration. CONCLUSIONS Although the biologic role of NG2 remains to be elucidated, the colocalization of NG2 with type VI collagen in the pericellular area suggests that NG2 may play an important role in cell-matrix interactions. The high level of NG2 expression in advanced degeneration also suggests an important role of NG2 in the loss of disc integrity.
Collapse
Affiliation(s)
- Koji Akeda
- Department of Orthopedic Surgery, Rush Medical College at Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstracts of the XXVII Italian Society for the Study of Connective Tissues (SISC) Meeting, Bologna, Italy, 8-10 November 2007. Connect Tissue Res 2007; 48:338-63. [PMID: 18075821 DOI: 10.1080/03008200701726970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Abstract
Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two conditions which were previously believed to be completely separate entities. BM is a relatively mild dominantly inherited disorder characterised by proximal weakness and distal joint contractures. UCMD was originally described as an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Here we review the clinical phenotypes of BM and UCMD and their diagnosis and management, and provide an overview of the current knowledge of the pathogenesis of collagen VI related disorders.
Collapse
Affiliation(s)
- A K Lampe
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ.
| | | |
Collapse
|
37
|
Dityatev A, Frischknecht R, Seidenbecher CI. Extracellular matrix and synaptic functions. Results Probl Cell Differ 2006; 43:69-97. [PMID: 17068968 DOI: 10.1007/400_025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Comprehensive analysis of neuromuscular junction formation and recent data on synaptogenesis and long-term potentiation in the central nervous system revealed a number of extracellular matrix (ECM) molecules regulating different aspects of synaptic differentiation and function. The emerging mechanisms comprise interactions of ECM components with their cell surface receptors coupled to tyrosine kinase activities (agrin, integrin ligands, and reelin) and interactions with ion channels and transmitter receptors (Narp, tenascin-R and tenascin-C). These interactions may shape synaptic transmission and plasticity of excitatory synapses either via regulation of Ca2+ entry and postsynaptic expression of transmitter receptors or via control of GABAergic inhibition. The ECM molecules, derived from both neurons and glial cells and secreted into the extracellular space in an activity-dependent manner, may also shape synaptic plasticity through setting diffusion constraints for neurotransmitters, trophic factors and ions.
Collapse
Affiliation(s)
- Alexander Dityatev
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Germany.
| | | | | |
Collapse
|
38
|
Petrini S, Tessa A, Stallcup WB, Sabatelli P, Pescatori M, Giusti B, Carrozzo R, Verardo M, Bergamin N, Columbaro M, Bernardini C, Merlini L, Pepe G, Bonaldo P, Bertini E. Altered expression of the MCSP/NG2 chondroitin sulfate proteoglycan in collagen VI deficiency. Mol Cell Neurosci 2006; 30:408-17. [PMID: 16169245 DOI: 10.1016/j.mcn.2005.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 06/09/2005] [Accepted: 08/10/2005] [Indexed: 01/27/2023] Open
Abstract
NG2, the rat homologue of the human melanoma chondroitin sulfate proteoglycan (MCSP), is a ligand for collagen VI (COL6). We have examined skeletal muscles of patients affected by Ullrich scleroatonic muscular dystrophy (UCMD), an inherited syndrome caused by COL6 genes mutations. A significant decrease of NG2 immunolabeling was found in UCMD myofibers, as well as in skeletal muscle and cornea of COL6 null-mice. In UCMD muscles, truncated NG2 core protein isoforms were detected. However, real-time RT-PCR analysis revealed marked increase in NG2 mRNA content in UCMD muscle compared to controls. We hypothesize that NG2 immunohistochemical and biochemical behavior may be compromised owing to the absence of its physiological ligand. MCSP/NG2 proteoglycan may be considered an important receptor mediating COL6-sarcolemma interactions, a relationship that is disrupted by the pathogenesis of UCMD muscle.
Collapse
Affiliation(s)
- Stefania Petrini
- Unit of Molecular Medicine, Bambino Gesù Hospital IRCCS, P.zza S. Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Higashi K, Higuchi I, Niiyama T, Uchida Y, Shiraishi T, Hashiguchi A, Saito A, Horikiri T, Suehara M, Arimura K, Osame M. Abnormal expression of proteoglycans in Ullrich's disease with collagen VI deficiency. Muscle Nerve 2005; 33:120-6. [PMID: 16258947 DOI: 10.1002/mus.20449] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patients with Ullrich's disease have generalized muscle weakness, multiple contractures of the proximal joints, and hyperextensibility of the distal joints. Recently we found a marked reduction of fibronectin receptors in the skin and cultured fibroblasts of two patients with Ullrich's disease with collagen VI deficiency, and speculated that an abnormality of cell adhesion may be involved in the pathogenesis of the disease. In this study, we investigated the expression of proteoglycans and adhesion molecules in Ullrich's disease and other muscle diseases. We found a reduction of NG2 proteoglycan in the membrane of skeletal muscle but not in the skin in Ullrich's disease. By contrast, we found the upregulation of tenascin C in the extracellular matrix of skeletal muscle in Ullrich's disease. Our findings suggest that abnormal expression of proteoglycans and adhesion molecules may be involved in the pathogenesis of the dystrophic muscle changes in Ullrich's disease.
Collapse
Affiliation(s)
- Keiko Higashi
- Department of Neurology and Geriatrics, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Smyth I, Du X, Taylor MS, Justice MJ, Beutler B, Jackson IJ. The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic epidermis. Proc Natl Acad Sci U S A 2004; 101:13560-5. [PMID: 15345741 PMCID: PMC518794 DOI: 10.1073/pnas.0402760101] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Indexed: 11/18/2022] Open
Abstract
Fraser syndrome is a rare recessive disorder characterized by cryptophthalmos, syndactyly, renal defects, and a range of other developmental abnormalities. Because of their extensive phenotypic overlap, the mouse blebbing mutants have been considered models of this disorder, and the recent isolation of mutations in Fras1 in both the blebbed mouse and human Fraser patients confirms this hypothesis. Here we report the identification of mutations in an extracellular matrix gene Fras1-related extracellular matrix gene 1 (Frem1) in both the classic head blebs mutant and in an N-ethyl-N-nitrosourea-induced allele. We show that inactivation of the gene results in the formation of in utero epidermal blisters beneath the lamina densa of the basement membrane and also in renal agenesis. Frem1 is expressed widely in the developing embryo in regions of epithelial/mesenchymal interaction and epidermal remodeling. Furthermore, Frem1 appears to act as a dermal mediator of basement membrane adhesion, apparently independently of the other known "blebs" proteins Fras1 and Grip1. Unlike both Fras1 and Grip1 mutants, collagen VI and Fras1 deposition in the basement membrane is normal, indicating that the protein plays an independent role in epidermal differentiation and is required for epidermal adhesion during embryonic development.
Collapse
Affiliation(s)
- Ian Smyth
- Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
41
|
Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46:225-51. [PMID: 15048847 DOI: 10.1002/glia.10315] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.
Collapse
Affiliation(s)
- Axel Sandvig
- Laboratory of Regenerative Neurobiology, Institute for Experimental Medical Research, Ullevål University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
42
|
Sherman-Baust CA, Weeraratna AT, Rangel LBA, Pizer ES, Cho KR, Schwartz DR, Shock T, Morin PJ. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 2003; 3:377-86. [PMID: 12726863 DOI: 10.1016/s1535-6108(03)00058-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms of drug resistance in cancer are poorly understood. Serial analysis of gene expression (SAGE) profiling of cisplatin-resistant and sensitive cells revealed many differentially expressed genes. Remarkably, many ECM genes were elevated in cisplatin-resistant cells. COL6A3 was one of the most highly upregulated genes, and cultivation of cisplatin-sensitive cells in the presence of collagen VI protein promoted resistance in vitro. Staining of ovarian tumors with collagen VI antibodies confirmed collagen VI expression in vivo and suggested reorganization of the extracellular matrix in the vicinity of the tumor. Furthermore, the presence of collagen VI correlated with tumor grade, an ovarian cancer prognostic factor. These results suggest that tumor cells may directly remodel their microenvironment to increase their survival in the presence of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Cheryl A Sherman-Baust
- Laboratory of Cellular and Molecular Biology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tillet E, Gential B, Garrone R, Stallcup WB. NG2 proteoglycan mediates beta1 integrin-independent cell adhesion and spreading on collagen VI. J Cell Biochem 2003; 86:726-36. [PMID: 12210739 DOI: 10.1002/jcb.10268] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Collagens V and VI have been previously identified as specific extracellular matrix (ECM) ligands for the NG2 proteoglycan. In order to study the functional consequences of NG2/collagen interactions, we have utilized the GD25 cell line, which does not express the major collagen-binding beta(1) integrin heterodimers. Use of these cells has allowed us to study beta(1) integrin-independent phenomena that are mediated by binding of NG2 to collagens V and VI. Heterologous expression of NG2 in the GD25 line endows these cells with the capability of attaching to surfaces coated with collagens V and VI. The specificity of this effect is emphasized by the failure of NG2-positive GD25 cells to attach to other collagens or to laminin-1. More importantly, NG2-positive GD25 cells spread extensively on collagen VI. beta(1) integrin-independent extension of ruffling lamellipodia demonstrates that engagement of NG2 by the collagen VI substratum triggers signaling events that lead to rearrangement of the actin cytoskeleton. In contrast, even though collagens V and VI each bind to the central segment of the NG2 ectodomain, collagen V engagement of NG2 does not trigger cell spreading. The distinct morphological consequences of NG2/collagen VI and NG2/collagen V interaction indicate that closely-related ECM ligands for NG2 differ in their ability to initiate transmembrane signaling via engagement of the proteoglycan.
Collapse
Affiliation(s)
- Emmanuelle Tillet
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086-Université Lyon I, 7 passage du Vercors, 69367 Lyon cedex 07, France.
| | | | | | | |
Collapse
|
44
|
Majumdar M, Vuori K, Stallcup WB. Engagement of the NG2 proteoglycan triggers cell spreading via rac and p130cas. Cell Signal 2003; 15:79-84. [PMID: 12401522 DOI: 10.1016/s0898-6568(02)00045-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cells that express the NG2 proteoglycan will spread on surfaces coated with monoclonal antibodies against this membrane-spanning protein. On surfaces coated with the N143 monoclonal antibody, this cell spreading occurs by extension of lamellipodia, suggesting that activation of the small GTPase rac is involved in the observed morphological change. Support for this hypothesis comes from the finding of increased levels of GTP-bound rac in cells spreading on N143-coated surfaces. Furthermore, lamellipodia extension is blocked by transfection of cells with the dominant negative rac construct N17rac, but not by transfection with N17cdc42. Formation of lamellipodia on the N143-coated surfaces is also inhibited by transfection of the dominant negative CasdeltaSD construct. This result implicates p130cas as an additional functional player in NG2-mediated cell spreading.
Collapse
Affiliation(s)
- Mousumi Majumdar
- The Burnham Institute, Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Chekenya M, Hjelstuen M, Enger PØ, Thorsen F, Jacob AL, Probst B, Haraldseth O, Pilkington G, Butt A, Levine JM, Bjerkvig R. NG2 proteoglycan promotes angiogenesis-dependent tumor growth in CNS by sequestering angiostatin. FASEB J 2002; 16:586-8. [PMID: 11919162 DOI: 10.1096/fj.01-0632fje] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During embryogenesis, the NG2 proteoglycan is expressed on immature capillary vessels, but as the vessels mature they lose this expression. NG2 is up-regulated in high-grade gliomas, but it is not clear to what extent it contributes to malignant progression. Using a combination of high spatial and temporal resolution functional magnetic resonance imaging and histopathological analyses, we show here that overexpression of NG2 increases tumor initiation and growth rates, neovascularization, and cellular proliferation, which predisposes to a poorer survival outcome. By confocal microscopy and cDNA gene array expression profiles, we also show that NG2 tumors express lower levels of hypoxia inducible factor-1a, vascular endothelial growth factor, and endogenous angiostatin in vivo compared with wild-type tumors. Moreover, we demonstrate that NG2-positive cells bind, internalize, and coimmunoprecipitate with angiostatin. These results indicate a unique role for NG2 in regulating the transition from small, poorly vascularized tumors to large, highly vascular gliomas in situ by sequestering angiostatin.
Collapse
Affiliation(s)
- Martha Chekenya
- Department of Anatomy and Cell Biology, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Midwood KS, Salter DM. NG2/HMPG modulation of human articular chondrocyte adhesion to type VI collagen is lost in osteoarthritis. J Pathol 2001; 195:631-5. [PMID: 11745701 DOI: 10.1002/path.985] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
NG2/human melanoma proteoglycan (HMPG) is a chondroitin sulphate proteoglycan (CSPG), expressed by chondrocytes in fetal and in normal and osteoarthritic (OA) adult articular cartilage. NG2/HMPG is a receptor for extracellular matrix proteins, including type VI collagen, and regulates beta1 integrin binding to fibronectin. This study was undertaken to identify whether NG2/HMPG had similar activities in human articular chondrocytes (HACs). Normal and OA adult HAC adhesion to fibronectin, type II or type VI collagen was assessed using a methylene blue assay. The requirement for integrins, NG2/HMPG, and integrin-associated signalling molecules was investigated using anti-beta1 integrin and anti-HMPG antibodies and pharmacological inhibitors of signalling molecules. The adhesion of normal and OA HACs to fibronectin, type II and type VI collagen was beta1 integrin-dependent. Normal HAC adhesion to type VI collagen was stimulated by anti-HMPG antibodies. This effect was inhibited by pertussis toxin. Anti-HMPG antibodies had no effect on OA chondrocyte adhesion to type VI collagen, or on normal and OA cell adhesion to fibronectin and type II collagen. The results show that NG2/HMPG modulates integrin-mediated interactions of normal HACs with type VI collagen. Loss of this activity may be of importance in the progression of osteoarthritis.
Collapse
Affiliation(s)
- K S Midwood
- Department of Pathology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
47
|
Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 2001; 222:218-27. [PMID: 11668599 DOI: 10.1002/dvdy.1200] [Citation(s) in RCA: 461] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Immunofluorescence mapping demonstrates that the NG2 proteoglycan is invariably expressed by the mural cell component of mouse neovascular structures. This pattern is independent of the developmental mechanism responsible for formation of the vasculature (vasculogenesis or angiogenesis). Thus, NG2 is expressed in the embryonic heart by cardiomyocytes, in developing macrovasculature by smooth muscle cells, and in nascent microvessels by vascular pericytes. Due to the scarcity of proven markers for developing pericytes, NG2 is especially useful for identification of this cell type. The utility of NG2 as a pericyte marker is illustrated by two observations. First, pericytes are associated with endothelial tubes at an early point in microvessel development. This early interaction between pericytes and endothelial cells has important implications for the role of pericytes in the development and stabilization of microvascular tubes. Second, the pericyte to endothelial cell ratio in developing capillaries varies from tissue to tissue. Because the extent of pericyte investment is likely to affect the physical properties of the vessel in question, it is important to understand the mechanisms that control this process. Additional insight into these and other aspects of vascular morphogenesis should be possible through use of NG2 as a mural cell marker.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens/analysis
- Antigens/biosynthesis
- Aorta/cytology
- Aorta/embryology
- Eye/blood supply
- Eye/embryology
- Female
- Heart/embryology
- Mice
- Mice, Inbred C57BL
- Microcirculation/physiology
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/metabolism
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocardium/chemistry
- Myocardium/cytology
- Myocardium/metabolism
- Neovascularization, Physiologic/physiology
- Pericytes/chemistry
- Pericytes/metabolism
- Pregnancy
- Proteoglycans/analysis
- Proteoglycans/biosynthesis
Collapse
Affiliation(s)
- U Ozerdem
- The Burnham Institute, 10901 North Torrey Pines Road, San Diego, CA 92307, USA
| | | | | | | | | |
Collapse
|
48
|
Stallcup WB, Dahlin-Huppe K. Chondroitin sulfate and cytoplasmic domain-dependent membrane targeting of the NG2 proteoglycan promotes retraction fiber formation and cell polarization. J Cell Sci 2001; 114:2315-25. [PMID: 11493670 DOI: 10.1242/jcs.114.12.2315] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Targeting of the NG2 proteoglycan to cellular retraction fibers was studied by expressing mutant NG2 molecules lacking specific structural elements of the proteoglycan. Both the cytoplasmic domain and the chondroitin sulfate chain of NG2 appear to have roles in sorting NG2 to subcellular microdomains destined to become retraction fibers. Neither of these structural features alone is sufficient to allow optimal targeting of NG2 to retraction fibers, but together they promote efficient localization of the proteoglycan to these sites. This pattern of NG2 sorting seems to be necessary for optimal retraction fiber formation, as cells expressing poorly targeted NG2 mutants are noticeably deficient in their ability to extend retraction fibers. Furthermore, retraction fiber formation correlates strongly with the tendency of cells to assume a polarized morphology with NG2-positive retraction fibers at one pole of the cell and actin-rich lamellipodia at the other. This polarization can be triggered either through engagement of NG2 by the substratum or by exposure to lysophosphatidic acid, a potent activator of the rho GTPase. These results suggest a possible role for NG2 in regulating rho-dependent mechanisms in the trailing processes of motile cells.
Collapse
Affiliation(s)
- W B Stallcup
- The Burnham Institute, La Jolla Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Bu J, Akhtar N, Nishiyama A. Transient expression of the NG2 proteoglycan by a subpopulation of activated macrophages in an excitotoxic hippocampal lesion. Glia 2001; 34:296-310. [PMID: 11360302 DOI: 10.1002/glia.1063] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells that express the NG2 proteoglycan (NG2+ cells) constitute a large glial population in the normal mature rodent brain. They can differentiate into oligodendrocytes but are distinct from mature oligodendrocytes, astrocytes, microglia, and neurons. Changes in NG2+ cells were examined in kainic acid-induced excitotoxic lesions of the hippocampus, and the relationship between NG2+ cells and reactive astrocytes and microglia was investigated between 1 and 90 days after lesioning. Two types of reactive NG2+ cells with altered morphology and increased NG2 immunoreactivity were observed in the lesion. Early changes, consisting of an increase in NG2 immunoreactivity and the number of processes, were apparent 24 h after lesioning and persisted through 3 months. These cells were distinct from reactive astrocytes or activated microglia/macrophages. A second type of reactive NG2+ cells appeared 2 weeks after injection, following an influx of macrophages. They had large, round cell bodies with short processes and expressed the microglia/macrophage antigens OX42 and ED1. Single cells coexpressing NG2 and macrophage/microglial antigens could be isolated from the lesion. The number of NG2+/OX42+ cells gradually declined and disappeared by 3 months after injection. They did not express glial fibrillary acidic protein or the alpha receptor for platelet-derived growth factor, indicating that they are distinct from astrocytes or oligodendrocyte progenitor cells. Cells that coexpressed NG2 and OX42 were never observed in hippocampal slice cultures treated with kainic acid, suggesting that NG2+/OX42+ cells are not derived from endogenous resident brain cells. These findings demonstrate that NG2 expression is transiently upregulated on activated macrophages/microglia that appear during the chronic stage in an excitotoxic lesion in the adult CNS.
Collapse
Affiliation(s)
- J Bu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
50
|
Barritt DS, Pearn MT, Zisch AH, Lee SS, Javier RT, Pasquale EB, Stallcup WB. The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J Cell Biochem 2000. [DOI: 10.1002/1097-4644(20001101)79:2%3c213::aid-jcb50%3e3.0.co;2-g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|