1
|
Chen XR, Igumenova TI. Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Adv Biol Regul 2023; 87:100938. [PMID: 36496344 PMCID: PMC9992314 DOI: 10.1016/j.jbior.2022.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their cis-trans isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates. We conducted a survey of eukaryotic protein kinases that are regulated by Pin1 and whose Pin1 binding sites have been identified. Our analyses reveal that Pin1 target sites in kinases do not fall exclusively within the intrinsically disordered regions of these enzymes. Rather, they fall into three groups based on their location: (i) within the catalytic kinase domain, (ii) in the C-terminal kinase region, and (iii) in regulatory domains. Some of the kinases downregulated by Pin1 activity are tumor-suppressing, and all kinases upregulated by Pin1 activity are functionally pro-oncogenic. These findings further reinforce the rationale for developing Pin1-specific inhibitors as attractive pharmaceuticals for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Tan T, Wu C, Liu B, Pan BF, Hawke DH, Su Z, Liu S, Zhang W, Wang R, Lin SH, Kuang J. Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators. Mol Biol Cell 2022; 33:ar115. [PMID: 35976701 PMCID: PMC9635296 DOI: 10.1091/mbc.e22-04-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The term M-phase supershift denotes the phosphorylation-dependent substantial increase in the apparent molecular weight of numerous proteins of varied biological functions during M-phase induction. Although the M-phase supershift of multiple key mitotic regulators has been attributed to the multisite phosphorylation catalyzed by the Cdk1/cyclin B/Cks complex, this view is challenged by multiple lines of paradoxical observations. To solve this problem, we reconstituted the M-phase supershift of Xenopus Cdc25C, Myt1, Wee1A, APC3, and Greatwall in Xenopus egg extracts and characterized the supershift-producing phosphorylations. Our results demonstrate that their M-phase supershifts are each due to simultaneous phosphorylation of a considerable portion of S/T/Y residues in a long intrinsically disordered region that is enriched in both S/T residues and S/TP motifs. Although the major mitotic kinases in Xenopus egg extracts, Cdk1, MAPK, Plx1, and RSK2, are able to phosphorylate the five mitotic regulators, they are neither sufficient nor required to produce the M-phase supershift. Accordingly, inhibition of the four major mitotic kinase activities in Xenopus oocytes did not inhibit the M-phase supershift in okadaic acid-induced oocyte maturation. These findings indicate that the M-phase supershift is produced by a previously unrecognized category of mitotic phosphorylation that likely plays important roles in M-phase induction.
Collapse
Affiliation(s)
- Tan Tan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, The University of South China, Hengyang, Hunan 421001, China
| | - Chuanfen Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Boye Liu
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education
| | - Bih-Fang Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - David H. Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Zehao Su
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuaishuai Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruoning Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
3
|
Cheong A, Archambault D, Degani R, Iverson E, Tremblay KD, Mager J. Nuclear-encoded mitochondrial ribosomal proteins are required to initiate gastrulation. Development 2020; 147:dev.188714. [PMID: 32376682 DOI: 10.1242/dev.188714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential for energy production and although they have their own genome, many nuclear-encoded mitochondrial ribosomal proteins (MRPs) are required for proper function of the organelle. Although mutations in MRPs have been associated with human diseases, little is known about their role during development. Presented here are the null phenotypes for 21 nuclear-encoded mitochondrial proteins and in-depth characterization of mouse embryos mutant for the Mrp genes Mrpl3, Mrpl22, Mrpl44, Mrps18c and Mrps22 Loss of each MRP results in successful implantation and egg-cylinder formation, followed by severe developmental delay and failure to initiate gastrulation by embryonic day 7.5. The robust and similar single knockout phenotypes are somewhat surprising given there are over 70 MRPs and suggest little functional redundancy. Metabolic analysis reveals that Mrp knockout embryos produce significantly less ATP than controls, indicating compromised mitochondrial function. Histological and immunofluorescence analyses indicate abnormal organelle morphology and stalling at the G2/M checkpoint in Mrp null cells. The nearly identical pre-gastrulation phenotype observed for many different nuclear-encoded mitochondrial protein knockouts hints that distinct energy systems are crucial at specific time points during mammalian development.
Collapse
Affiliation(s)
- Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Danielle Archambault
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rinat Degani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Elizabeth Iverson
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
5
|
Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci 2020; 21:ijms21072346. [PMID: 32231094 PMCID: PMC7177758 DOI: 10.3390/ijms21072346] [Citation(s) in RCA: 648] [Impact Index Per Article: 129.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.
Collapse
|
6
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
7
|
Prognostic significance of CDC25C in lung adenocarcinoma: An analysis of TCGA data. Cancer Genet 2019; 233-234:67-74. [PMID: 31109596 DOI: 10.1016/j.cancergen.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/16/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Cell division cycle 25C (CDC25C) is involved in the regulation of the G2/M phase transition and is associated with various cancers, including non-small cell lung cancer. We evaluated its prognostic value in lung adenocarcinoma (LUAD) based on data from The Cancer Genome Atlas (TCGA). METHODS Kruskal-Wallis test, Wilcoxon signed-rank test, and logistic regression were used to evaluate relationships between clinical-pathologic features and CDC25C expression. Cox regression analyses and the Kaplan-Meier method were used to evaluate factors contributing to prognosis. Gene set enrichment analysis (GSEA) was performed. RESULTS High CDC25C expression in LUAD was associated with a high tumor extent (odds ratio (OR) = 2.23 (1.52-3.29), P < 0.001), regional lymph node invasion (OR = 2.18 (1.48-3.22), P < 0.001), OR = advanced stage (OR = 2.47 (1.72-3.59), P < 0.001), and poor status (OR = 1.87 (1.19-2.96), P = 0.007). A univariate analysis showed that high CDC25C expression is associated with a short overall survival (OS) (HR: 1.873; 95% CI: 1.385-2.535; P < 0.001) and poor progression-free survival (HR: 1.503; 95% CI: 1.173-1.926; P = 0.0012). In a multivariate analysis, high CDC25C expression was associated with poor OS (HR = 2.193; CI: 1.394-3.452, P = 0.001). GSEA showed the enrichment of cell cycle, apoptosis, p53-dependent G1 DNA damage response, S-phase, mitotic M-M G1 phases, and FA-mediated cell death in the CDC25C high-expression phenotype. CONCLUSIONS CDC25C predicts poor prognosis in LUAD and may function in cell cycle regulation and FAS-mediated apoptosis.
Collapse
|
8
|
Divaricoside Exerts Antitumor Effects, in Part, by Modulating Mcl-1 in Human Oral Squamous Cell Carcinoma Cells. Comput Struct Biotechnol J 2019; 17:151-159. [PMID: 30788081 PMCID: PMC6369261 DOI: 10.1016/j.csbj.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiac glycosides (CGs), prescribed to treat congestive heart failure and arrhythmias, exert potent antitumor activity. In this study, divaricoside (DIV), a CG isolated from Strophanthus divaricatus was examined for its antitumor potency in oral squamous cell carcinoma (OSCC) cells. Cell growth was inhibited by DIV in a dose- and time-dependent manner in SCC2095 and OECM-1 OSCC cells using MTT assays. DIV induced S and G2/M phase arrest accompanied by downregulation of phosphorylated CDC25C, CDC25C, and CDC2 in SCC2095 cells. In addition, DIV induced apoptosis by activating caspase-3 and downregulating the expression of Mcl-1. Furthermore, overexpression of Mcl-1 partially reversed DIV-induced death in SCC2095 cells. Additionally, western blot and transmission electron microscopy analyses also indicated that DIV induced autophagy in SCC2095 cells. However, the combination of autophagy inhibitor did not affect DIV-mediated apoptosis in SCC2095 cells. Together, these findings suggest that translational potential of DIV to be developed as a therapeutic agent for OSCC treatment.
Collapse
|
9
|
Li QQ, Hsu I, Sanford T, Railkar R, Balaji N, Sourbier C, Vocke C, Balaji KC, Agarwal PK. Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M. Cell Mol Life Sci 2018; 75:939-963. [PMID: 29071385 PMCID: PMC7984729 DOI: 10.1007/s00018-017-2681-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
The protein kinase D (PKD) family of proteins are important regulators of tumor growth, development, and progression. CRT0066101, an inhibitor of PKD, has antitumor activity in multiple types of carcinomas. However, the effect and mechanism of CRT0066101 in bladder cancer are not understood. In the present study, we show that CRT0066101 suppressed the proliferation and migration of four bladder cancer cell lines in vitro. We also demonstrate that CRT0066101 blocked tumor growth in a mouse flank xenograft model of bladder cancer. To further assess the role of PKD in bladder carcinoma, we examined the three PKD isoforms and found that PKD2 was highly expressed in eight bladder cancer cell lines and in urothelial carcinoma tissues from the TCGA database, and that short hairpin RNA (shRNA)-mediated knockdown of PKD2 dramatically reduced bladder cancer growth and invasion in vitro and in vivo, suggesting that the effect of the compound in bladder cancer is mediated through inhibition of PKD2. This notion was corroborated by demonstrating that the levels of phospho-PKD2 were markedly decreased in CRT0066101-treated bladder tumor explants. Furthermore, our cell cycle analysis by flow cytometry revealed that CRT0066101 treatment or PKD2 silencing arrested bladder cancer cells at the G2/M phase, the arrest being accompanied by decreases in the levels of cyclin B1, CDK1 and phospho-CDK1 (Thr161) and increases in the levels of p27Kip1 and phospho-CDK1 (Thr14/Tyr15). Moreover, CRT0066101 downregulated the expression of Cdc25C, which dephosphorylates/activates CDK1, but enhanced the activity of the checkpoint kinase Chk1, which inhibits CDK1 by phosphorylating/inactivating Cdc25C. Finally, CRT0066101 was found to elevate the levels of Myt1, Wee1, phospho-Cdc25C (Ser216), Gadd45α, and 14-3-3 proteins, all of which reduce the CDK1-cyclin B1 complex activity. These novel findings suggest that CRT0066101 suppresses bladder cancer growth by inhibiting PKD2 through induction of G2/M cell cycle arrest, leading to the blockade of cell cycle progression.
Collapse
Affiliation(s)
- Qingdi Quentin Li
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Iawen Hsu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas Sanford
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Navin Balaji
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cathy Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - K C Balaji
- Wake Forest University School of Medicine, Winston Salem, NC, 27106, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Cai X, Guo L, Pei F, Chang X, Zhang R. Polyphyllin G exhibits antimicrobial activity and exerts anticancer effects on human oral cancer OECM-1 cells by triggering G2/M cell cycle arrest by inactivating cdc25C-cdc2. Arch Biochem Biophys 2018; 644:93-99. [PMID: 29352966 DOI: 10.1016/j.abb.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/29/2022]
Abstract
Plant natural products have long been considered to be important sources of bioactive molecules. A large number of antimicrobial and anticancer agents have been isolated form plants. In the present study we evaluated the antimicrobial and anticancer activity of a plant derived secondery metabolite, Polyphyllin G. The results of antibacterial assays showed that Polyphyllin G prevented the growth of both Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) ranging from 13.1 to 78 μg/ml. Antifungal activity measured as inhibition of mycelium growth ranged between 38.32 and 56.50%. Further Polyphyllin G was also evaluated against a panel of cancer cell lines. The IC50 of Polyphyllin G ranged from 10 to 65 μM. However the IC50 of Polyphyllin G was found to be comparatively high (120 μM) against the normal FR2 cancer cell line. The lowest IC50 of 10 μM was found against the oral cancer cell line OECM-1. Therefore further studies were carried out on this cell line only. Our results indicated that Polyphyllin G induced cell arrest in oral cancer OECM-1 cells by inactivation of cdc25C-cdc22 via ATM-Chk 1/2 stimulation. Therefore, we propose that Polyphyllin G might prove a lead molecule in the management of oral cancers and at the same time may prevent the growth of opportunistic microbes.
Collapse
Affiliation(s)
- Xiaoqing Cai
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China.
| | - Lele Guo
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Fei Pei
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Xiaoyun Chang
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Rui Zhang
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| |
Collapse
|
11
|
Hutter LH, Rata S, Hochegger H, Novák B. Interlinked bistable mechanisms generate robust mitotic transitions. Cell Cycle 2017; 16:1885-1892. [PMID: 28902568 PMCID: PMC5638388 DOI: 10.1080/15384101.2017.1371885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 12/26/2022] Open
Abstract
The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit, 1 and the mitotic checkpoint. 2 Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.
Collapse
Affiliation(s)
- Lukas H. Hutter
- Department of Biochemistry, University of Oxford, Oxford, UK
- Biotop – Open Science Collective, Villach, Austria
| | - Scott Rata
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Béla Novák
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Schaefer-Ramadan S, Hubrack S, Machaca K. Transition metal dependent regulation of the signal transduction cascade driving oocyte meiosis. J Cell Physiol 2017; 233:3164-3175. [DOI: 10.1002/jcp.26157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | - Satanay Hubrack
- Department of Physiology and Biophysics; Weill Cornell Medicine-Qatar; Doha Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics; Weill Cornell Medicine-Qatar; Doha Qatar
| |
Collapse
|
13
|
Sinularin induces DNA damage, G2/M phase arrest, and apoptosis in human hepatocellular carcinoma cells. Altern Ther Health Med 2017; 17:62. [PMID: 28103869 PMCID: PMC5248443 DOI: 10.1186/s12906-017-1583-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/14/2017] [Indexed: 12/23/2022]
Abstract
Background Sinularin isolated from the cultured soft coral Sinularia flexibilis has been reported to exert potent cytotoxic effects against particular types of cancer. This study was carried out to investigate the cytotoxic effects in sinularin-treated human hepatocellular carcinoma cells, HepG2, and to subsequently explore the underlying molecular mechanisms. Methods TheMTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyl- tetrazolium bromide) method was used to evaluate the cytotoxicity of sinularin on HepG2 and Hep3B cell lines. Furthermore, the cell cycle distribution assay, apoptosis assay, and western blot analysis in vitro were used to explore the possible mechanisms of action. Results From the results of our study, cell viability was obviously inhibited by sinularin in a dose-dependent manner. In addition, our results suggested that sinularin triggered DNA damage and subsequently induced cell cycle G2/M arrest associated with up-regulation of p-ATM (Ser(1981)), p-Chk2 (Tyr(68)), p-cdc2 (Tyr(15)), and p53 coupled with increased expression of downstream proteins p21 and down-regulation of p-cdc25 (Ser(216)). Moreover, the results of the apoptosis assay and western blot analysis indicated that the cytotoxic activity could be related to mitochondrial apoptosis, characterized by decrease of Bcl-2 expression, disruption of mitochondrial membrane potential, and sequential activation of caspases and Poly (ADP-ribose) polymerase (PARP). Conclusions This study reveals for the first time the anti-HCC activities of sinularin, the active compound isolated from the cultured soft coral Sinularia flexibilis. We believe that our results warrant further evaluation of sinularin as a new anti-HCC chemotherapeutic agent.
Collapse
|
14
|
Lucena R, Alcaide-Gavilán M, Anastasia SD, Kellogg DR. Wee1 and Cdc25 are controlled by conserved PP2A-dependent mechanisms in fission yeast. Cell Cycle 2017; 16:428-435. [PMID: 28103117 DOI: 10.1080/15384101.2017.1281476] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wee1 and Cdc25 are conserved regulators of mitosis. Wee1 is a kinase that delays mitosis via inhibitory phosphorylation of Cdk1, while Cdc25 is a phosphatase that promotes mitosis by removing the inhibitory phosphorylation. Although Wee1 and Cdc25 are conserved proteins, it has remained unclear whether their functions and regulation are conserved across diverse species. Here, we analyzed regulation of Wee1 and Cdc25 in fission yeast. Both proteins undergo dramatic cell cycle-dependent changes in phosphorylation that are dependent upon PP2A associated with the regulatory subunit Pab1. The mechanisms that control Wee1 and Cdc25 in fission yeast appear to share similarities to those in budding yeast and vertebrates, which suggests that there may be common mechanisms that control mitotic entry in all eukaryotic cells.
Collapse
Affiliation(s)
- Rafael Lucena
- a Department of Molecular, Cell, and Developmental Biology , University of California , Santa Cruz, Santa Cruz , CA , USA
| | - Maria Alcaide-Gavilán
- a Department of Molecular, Cell, and Developmental Biology , University of California , Santa Cruz, Santa Cruz , CA , USA
| | - Steph D Anastasia
- a Department of Molecular, Cell, and Developmental Biology , University of California , Santa Cruz, Santa Cruz , CA , USA
| | - Douglas R Kellogg
- a Department of Molecular, Cell, and Developmental Biology , University of California , Santa Cruz, Santa Cruz , CA , USA
| |
Collapse
|
15
|
Kim HS, Fernandes G, Lee CW. Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses. Mol Cells 2016; 39:654-62. [PMID: 27669825 PMCID: PMC5050529 DOI: 10.14348/molcells.2016.0214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - Gary Fernandes
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351,
Korea
| |
Collapse
|
16
|
Ferrari S, Gentili C. Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Front Genet 2016; 7:128. [PMID: 27493659 PMCID: PMC4954828 DOI: 10.3389/fgene.2016.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| | - Christian Gentili
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| |
Collapse
|
17
|
Hégarat N, Rata S, Hochegger H. Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. Bioessays 2016; 38:627-43. [PMID: 27231150 DOI: 10.1002/bies.201600057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Scott Rata
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
18
|
Abstract
The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development.
Collapse
|
19
|
Tsuchiya Y, Murai S, Yamashita S. Dual inhibition of Cdc2 protein kinase activation during apoptosis inXenopusegg extracts. FEBS J 2015; 282:1256-70. [DOI: 10.1111/febs.13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| | - Shin Murai
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| | - Shigeru Yamashita
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| |
Collapse
|
20
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
21
|
Fang Y, Yu H, Liang X, Xu J, Cai X. Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer. Cancer Biol Ther 2014; 15:1268-79. [PMID: 24971465 DOI: 10.4161/cbt.29691] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The high morbidity and mortality of colorectal cancer pose a significant public health problem worldwide. Here we assessed the pro-cancer efficacy and mechanism of action of CCNB1 in different colorectal cancer cells. We provided evidence that CCNB1 mRNA and protein level were upregulated in a subset of human colorectal tumors, and positively correlated with Chk1 expression. Repression of Chk1 caused a significant decrease in cell proliferation and CCNB1 protein expression in colorectal cancer cells. Furthermore, downregulation of CCNB1 impaired colorectal cancer proliferation in vitro and tumor growth in vivo. Specifically, suppression of CCNB1 caused a strong G 2/M phase arrest in both HCT116 and SW480 cells, interfering with the expression of cdc25c and CDK1. Additionally, CCNB1 inhibition induced apoptotic death in certain colorectal cancer cells. Together, these results suggest that CCNB1 is activated by Chk1, exerts its oncogenic role in colorectal cancer cells, and may play a key role in the development of a novel therapeutic approach against colorectal cancer.
Collapse
Affiliation(s)
- Yifeng Fang
- The Second Department of General Surgery; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou, Zhejiang, PR China
| | - Hong Yu
- The Second Department of General Surgery; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou, Zhejiang, PR China
| | - Xiao Liang
- The Second Department of General Surgery; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou, Zhejiang, PR China
| | - Junfen Xu
- Department of Gynecologic Oncology; Women's Hospital; School of Medicine; Zhejiang University; Hangzhou, Zhejiang, PR China
| | - Xiujun Cai
- The Second Department of General Surgery; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou, Zhejiang, PR China
| |
Collapse
|
22
|
14-3-3 proteins in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 2013; 123:706-16. [PMID: 24319254 DOI: 10.1182/blood-2013-05-500033] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasome inhibitors have demonstrated that targeting protein degradation is effective therapy in multiple myeloma (MM). Here we show that deubiquitylating enzymes (DUBs) USP14 and UCHL5 are more highly expressed in MM cells than in normal plasma cells. USP14 and UCHL5 short interfering RNA knockdown decreases MM cell viability. A novel 19S regulatory particle inhibitor b-AP15 selectively blocks deubiquitylating activity of USP14 and UCHL5 without inhibiting proteasome activity. b-AP15 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma cells, and overcomes bortezomib resistance. Anti-MM activity of b-AP15 is associated with growth arrest via downregulation of CDC25C, CDC2, and cyclin B1 as well as induction of caspase-dependent apoptosis and activation of unfolded protein response. In vivo studies using distinct human MM xenograft models show that b-AP15 is well tolerated, inhibits tumor growth, and prolongs survival. Combining b-AP15 with suberoylanilide hydroxamic acid, lenalidomide, or dexamethasone induces synergistic anti-MM activity. Our preclinical data showing efficacy of b-AP15 in MM disease models validates targeting DUBs in the ubiquitin proteasomal cascade to overcome proteasome inhibitor resistance and provides the framework for clinical evaluation of USP14/UCHL5 inhibitors to improve patient outcome in MM.
Collapse
|
24
|
Abstract
The activation of the Cdk1 (cyclin-dependent kinase 1)-cyclin B complex to promote commitment to mitosis is controlled by the phosphorylation status of the Cdk1 catalytic subunit. Cdk1 phosphorylation by Wee1 kinases blocks activation until Cdc25 (cell division cycle 25) phosphatases remove this phosphate to drive division. Feedback inhibition of Wee1 and promotion of Cdc25 activities by the newly activated Cdk1-cyclin B complexes ensure that the transition from interphase to mitosis is a rapid and complete bi-stable switch. Although this level of molecular understanding of the mitotic commitment switch has been clear for over two decades, it is still unclear how the switch is engaged to promote division at the right time for a particular context. We discuss recent work in fission yeast that shows how the spatial organization of signalling networks, in particular events on the centrosome equivalent, the spindle pole body, plays a key role in ensuring that the timing of cell division is coupled to environmental cues.
Collapse
Affiliation(s)
- Iain M Hagan
- *Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, U.K
| | | |
Collapse
|
25
|
Silva VC, Cassimeris L. Stathmin and microtubules regulate mitotic entry in HeLa cells by controlling activation of both Aurora kinase A and Plk1. Mol Biol Cell 2013; 24:3819-31. [PMID: 24152729 PMCID: PMC3861079 DOI: 10.1091/mbc.e13-02-0108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
Depletion of stathmin, a microtubule (MT) destabilizer, delays mitotic entry by ∼4 h in HeLa cells. Stathmin depletion reduced the activity of CDC25 and its upstream activators, Aurora A and Plk1. Chemical inhibition of both Aurora A and Plk1 was sufficient to delay mitotic entry by 4 h, while inhibiting either kinase alone did not cause a delay. Aurora A and Plk1 are likely regulated downstream of stathmin, because the combination of stathmin knockdown and inhibition of Aurora A and Plk1 was not additive and again delayed mitotic entry by 4 h. Aurora A localization to the centrosome required MTs, while stathmin depletion spread its localization beyond that of γ-tubulin, indicating an MT-dependent regulation of Aurora A activation. Plk1 was inhibited by excess stathmin, detected in in vitro assays and cells overexpressing stathmin-cyan fluorescent protein. Recruitment of Plk1 to the centrosome was delayed in stathmin-depleted cells, independent of MTs. It has been shown that depolymerizing MTs with nocodazole abrogates the stathmin-depletion induced cell cycle delay; in this study, depolymerization with nocodazole restored Plk1 activity to near normal levels, demonstrating that MTs also contribute to Plk1 activation. These data demonstrate that stathmin regulates mitotic entry, partially via MTs, to control localization and activation of both Aurora A and Plk1.
Collapse
Affiliation(s)
- Victoria C. Silva
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
26
|
Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 2013; 14:563-80. [PMID: 23969844 DOI: 10.1038/nrm3640] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.
Collapse
Affiliation(s)
- H Christian Reinhardt
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
27
|
Purification and biochemical analysis of catalytically active human cdc25C dual specificity phosphatase. Biochimie 2013; 95:1450-61. [DOI: 10.1016/j.biochi.2013.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022]
|
28
|
Hunt T. On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis. Adv Biol Regul 2013; 53:173-178. [PMID: 23672858 DOI: 10.1016/j.jbior.2013.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
The process of mitosis involves a comprehensive reorganization of the cell: chromosomes condense, the nuclear envelope breaks down, the mitotic spindle is assembled, cells round up and release their ties to the substrate and so on and so forth. This reorganization is triggered by the activation of the protein kinase, Cyclin-Dependent Kinase 1 (CDK1). The end of mitosis is marked by the proteolysis of the cyclin subunit of CDK1, which terminates kinase activity. At this point, the phosphate moieties that altered the properties of hundreds of proteins to bring about the cellular reorganization are removed by protein phosphatases. At least one protein phosphatase, PP2A-B55, is completely shut off in mitosis. Depletion of this particular form of PP2A accelerates entry into mitosis, and blocks exit from mitosis. Control of this phosphatase is achieved by an inhibitor protein (α-endosulfine or ARPP-19) that becomes inhibitory when phosphorylated by a protein kinase called Greatwall, which is itself a substrate of CDK1. Failure to inhibit PP2A-B55 causes arrest of the cell cycle in G2 phase. I will discuss the role of this control mechanism in the control of mitosis.
Collapse
Affiliation(s)
- Tim Hunt
- Clare Hall Laboratories, Cancer Research UK, South Mimms, Herts EN6 3LD, UK.
| |
Collapse
|
29
|
Abstract
The ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle-related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
30
|
Henderson L, Bortone DS, Lim C, Zambon AC. Classic "broken cell" techniques and newer live cell methods for cell cycle assessment. Am J Physiol Cell Physiol 2013; 304:C927-38. [PMID: 23392113 DOI: 10.1152/ajpcell.00006.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many common, important diseases are either caused or exacerbated by hyperactivation (e.g., cancer) or inactivation (e.g., heart failure) of the cell division cycle. A better understanding of the cell cycle is critical for interpreting numerous types of physiological changes in cells. Moreover, new insights into how to control it will facilitate new therapeutics for a variety of diseases and new avenues in regenerative medicine. The progression of cells through the four main phases of their division cycle [G(0)/G(1), S (DNA synthesis), G(2), and M (mitosis)] is a highly conserved process orchestrated by several pathways (e.g., transcription, phosphorylation, nuclear import/export, and protein ubiquitination) that coordinate a core cell cycle pathway. This core pathway can also receive inputs that are cell type and cell niche dependent. "Broken cell" methods (e.g., use of labeled nucleotide analogs) to assess for cell cycle activity have revealed important insights regarding the cell cycle but lack the ability to assess living cells in real time (longitudinal studies) and with single-cell resolution. Moreover, such methods often require cell synchronization, which can perturb the pathway under study. Live cell cycle sensors can be used at single-cell resolution in living cells, intact tissue, and whole animals. Use of these more recently available sensors has the potential to reveal physiologically relevant insights regarding the normal and perturbed cell division cycle.
Collapse
Affiliation(s)
- Lindsay Henderson
- Department of Biology, University of California San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
31
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
32
|
Cheng TMK, Goehring L, Jeffery L, Lu YE, Hayles J, Novák B, Bates PA. A structural systems biology approach for quantifying the systemic consequences of missense mutations in proteins. PLoS Comput Biol 2012; 8:e1002738. [PMID: 23093928 PMCID: PMC3475653 DOI: 10.1371/journal.pcbi.1002738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/23/2012] [Indexed: 12/27/2022] Open
Abstract
Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs) is an important topic in the pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level eventually affects a cell's behavior. This is because complex information at both the protein and pathway level has to be integrated. Given that the idea of integrating both protein and pathway dynamics to estimate the systemic impact of missense mutations in proteins remains predominantly unexplored, we investigate the practicality of such an approach by formulating mathematical models and comparing them with experimental data to study missense mutations. We present two case studies: (1) interpreting systemic perturbation for mutations within the cell cycle control mechanisms (G2 to mitosis transition) for yeast; (2) phenotypic classification of neuron-related human diseases associated with mutations within the mitogen-activated protein kinase (MAPK) pathway. We show that the application of simplified mathematical models is feasible for understanding the effects of small sequence changes on cellular behavior. Furthermore, we show that the systemic impact of missense mutations can be effectively quantified as a combination of protein stability change and pathway perturbation.
Collapse
Affiliation(s)
- Tammy M. K. Cheng
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Lucas Goehring
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Linda Jeffery
- Cell Cycle Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Yu-En Lu
- Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Jacqueline Hayles
- Cell Cycle Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Béla Novák
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| |
Collapse
|
33
|
Abstract
Cell cycle transitions depend on protein phosphorylation and dephosphorylation. The discovery of cyclin-dependent kinases (CDKs) and their mode of activation by their cyclin partners explained many important aspects of cell cycle control. As the cell cycle is basically a series of recurrences of a defined set of events, protein phosphatases must obviously be as important as kinases. However, our knowledge about phosphatases lags well behind that of kinases. We still do not know which phosphatase(s) is/are truly responsible for dephosphorylating CDK substrates, and we know very little about whether and how protein phosphatases are regulated. Here, we summarize our present understanding of the phosphatases that are important in the control of the cell cycle and pose the questions that need to be answered as regards the regulation of protein phosphatases.
Collapse
|
34
|
Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nat Commun 2012; 3:894. [PMID: 22692537 PMCID: PMC3621406 DOI: 10.1038/ncomms1886] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/04/2012] [Indexed: 01/28/2023] Open
Abstract
Correct execution of mitosis in eukaryotes relies on timely activation and inactivation of cyclin B-dependent kinase 1 (cdk1), the M-phase-promoting factor (MPF). Once activated, MPF is sustained until mitotic spindle assembly by phosphorylation-dependent feedback loops that prevent inhibitory phosphorylation of cdk1 and ubiquitin-dependent degradation of cyclin B. Whether subsequent MPF inactivation and anaphase onset require a specific phosphatase(s) to reverse these feedback loops is not known. Here we show through biochemical and genetic evidence that timely MPF inactivation requires activity of the essential RNA polymerase II-carboxy-terminal domain phosphatase Fcp1, in a transcription-independent manner. We identify Cdc20, a coactivator of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) required for cyclin degradation and anaphase onset, USP44, a deubiquitinating peptidase that opposes APC/C action, and Wee1, a cdk1 inhibitory kinase, as relevant Fcp1 targets. We propose that Fcp1 has a crucial role in the liaison between dephosphorylation and ubiquitination that drives mitosis exit. Cyclin B-dependent kinase 1, the M-phase-promoting factor, is precisely activated and inactivated to control mitosis. In this study, Fcp1—the RNA polymerase II-carboxy-terminal domain phosphatase—is identified as a phosphatase required to inactivate the M-phase-promoting factor and promote mitosis exit.
Collapse
|
35
|
Di Talia S, Wieschaus EF. Short-term integration of Cdc25 dynamics controls mitotic entry during Drosophila gastrulation. Dev Cell 2012; 22:763-74. [PMID: 22483720 DOI: 10.1016/j.devcel.2012.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/20/2011] [Accepted: 01/25/2012] [Indexed: 11/29/2022]
Abstract
Cells commit to mitosis by abruptly activating the mitotic cyclin-Cdk complexes. During Drosophila gastrulation, mitosis is associated with the transcriptional activation of cdc25(string), a phosphatase that activates Cdk1. Here, we demonstrate that the switch-like entry into mitosis observed in the Drosophila embryo during the 14(th) mitotic cycle is timed by the dynamics of Cdc25(string) accumulation. The switch operates as a short-term integrator, a property that can improve the reliable control of timing of mitosis. The switch is independent of the positive feedback between Cdk1 and Cdc25(string) and of the double negative feedback between Cdk1 and Wee1. We propose that the properties of the mitotic switch are established by the out-of-equilibrium properties of the covalent modification cycle controlling Cdk1 activity. Such covalent modification cycles, triggered by transcriptional expression of the activating enzymes, might be a widespread strategy to obtain reliable and switch-like control of cell decisions.
Collapse
Affiliation(s)
- Stefano Di Talia
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
36
|
Anastasia SD, Nguyen DL, Thai V, Meloy M, MacDonough T, Kellogg DR. A link between mitotic entry and membrane growth suggests a novel model for cell size control. ACTA ACUST UNITED AC 2012; 197:89-104. [PMID: 22451696 PMCID: PMC3317797 DOI: 10.1083/jcb.201108108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.
Collapse
Affiliation(s)
- Steph D Anastasia
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
37
|
Domingo-Sananes MR, Kapuy O, Hunt T, Novak B. Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Philos Trans R Soc Lond B Biol Sci 2012; 366:3584-94. [PMID: 22084385 DOI: 10.1098/rstb.2011.0087] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of the cyclin-dependent kinase (Cdk1) cyclin B (CycB) complex (Cdk1:CycB) in mitosis brings about a remarkable extent of protein phosphorylation. Cdk1:CycB activation is switch-like, controlled by two auto-amplification loops--Cdk1:CycB activates its activating phosphatase, Cdc25, and inhibits its inhibiting kinase, Wee1. Recent experimental evidence suggests that parallel to Cdk1:CycB activation during mitosis, there is inhibition of its counteracting phosphatase activity. We argue that the downregulation of the phosphatase is not just a simple latch that suppresses futile cycles of phosphorylation/dephosphorylation during mitosis. Instead, we propose that phosphatase regulation creates coherent feed-forward loops and adds extra amplification loops to the Cdk1:CycB regulatory network, thus forming an integral part of the mitotic switch. These network motifs further strengthen the bistable characteristic of the mitotic switch, which is based on the antagonistic interaction of two groups of proteins: M-phase promoting factors (Cdk1:CycB, Cdc25, Greatwall and Endosulfine/Arpp19) and interphase promoting factors (Wee1, PP2A-B55 and a Greatwall counteracting phosphatase, probably PP1). The bistable character of the switch implies the existence of a CycB threshold for entry into mitosis. The end of G2 phase is determined by the point where CycB level crosses the CycB threshold for Cdk1 activation.
Collapse
Affiliation(s)
- Maria Rosa Domingo-Sananes
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
38
|
Chan THM, Chen L, Liu M, Hu L, Zheng BJ, Poon VKM, Huang P, Yuan YF, Huang JD, Yang J, Tsao GSW, Guan XY. Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology 2012; 55:491-505. [PMID: 21953552 DOI: 10.1002/hep.24709] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Emerging evidence implicates the chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) as a specific oncogene in human hepatocellular carcinoma (HCC). To better understand the molecular mechanisms underlying HCC cases carrying CHD1L amplification (>50% HCCs), we identified a CHD1L target, translationally controlled tumor protein (TCTP), and investigated its role in HCC progression. Here, we report that CHD1L protein directly binds to the promoter region (nt -733 to -1,027) of TCTP and activates TCTP transcription. Overexpression of TCTP was detected in 40.7% of human HCC samples analyzed and positively correlated with CHD1L overexpression. Clinically, overexpression of TCTP was significantly associated with the advanced tumor stage (P = 0.037) and overall survival time of HCC patients (P = 0.034). In multivariate analyses, TCTP was determined to be an independent marker associated with poor prognostic outcomes. In vitro and in vivo functional studies in mice showed that TCTP has tumorigenic abilities, and overexpression of TCTP induced by CHD1L contributed to the mitotic defects of tumor cells. Further mechanistic studies demonstrated that TCTP promoted the ubiquitin-proteasome degradation of Cdc25C during mitotic progression, which caused the failure in the dephosphorylation of Cdk1 on Tyr15 and decreased Cdk1 activity. As a consequence, the sudden drop of Cdk1 activity in mitosis induced a faster mitotic exit and chromosome missegregation, which led to chromosomal instability. The depletion experiment proved that the tumorigenicity of TCTP was linked to its role in mitotic defects. CONCLUSION Collectively, we reveal a novel molecular pathway (CHD1L/TCTP/Cdc25C/Cdk1), which causes the malignant transformation of hepatocytes with the phenotypes of accelerated mitotic progression and the production of aneuploidy.
Collapse
Affiliation(s)
- Tim Hon Man Chan
- State Key Laboratory for Liver Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Pfeuty B, Bodart JF, Blossey R, Lefranc M. A dynamical model of oocyte maturation unveils precisely orchestrated meiotic decisions. PLoS Comput Biol 2012; 8:e1002329. [PMID: 22238511 PMCID: PMC3252271 DOI: 10.1371/journal.pcbi.1002329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/11/2011] [Indexed: 12/04/2022] Open
Abstract
Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI) and then to meiosis II (MII) is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions. In the life cycle of sexual organisms, a specialized cell division -meiosis- reduces the number of chromosomes in gametes or spores while fertilization or mating restores the original number. The essential feature that distinguishes meiosis from mitosis (the usual division) is the succession of two rounds of division following a single DNA replication, as well as the arrest at the second division in the case of oocyte maturation. The fact that meiosis and mitosis are similar but different raises several interesting questions: What is the meiosis-specific dynamics of cell-cycle regulators? Are there mechanisms which guarantee the occurence of two and only two rounds of division despite the presence of intrinsic and extrinsic noises ? The study of a model of the molecular network that underlies the meiotic maturation process in Xenopus oocytes provides unexpected answers to these questions. On the one hand, the modular organization of this network ensures separate controls of the first and second divisions. On the other hand, regulatory synergies ensure that these two stages are precisely and reliably sequenced during meiosis. We conclude that cells have evolved a sophisticated regulatory network to achieve a robust, albeit flexible, meiotic dynamics.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers, Atomes, et Molécules, CNRS, UMR8523, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France.
| | | | | | | |
Collapse
|
41
|
Johnson ES, Kornbluth S. Phosphatases driving mitosis: pushing the gas and lifting the brakes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:327-41. [PMID: 22340723 DOI: 10.1016/b978-0-12-396456-4.00008-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Entry into and progression through mitosis depends critically on the establishment and maintenance of protein phosphorylation. For this reason, studies on mitotic progression have focused heavily on the activation of MPF (M phase promoting factor), a cyclin-dependent kinase responsible for phosphorylating proteins that execute the dynamic events of mitosis. Recent work, however, has significantly expanded our understanding of mechanisms that allow accumulation of phosphoproteins at M phase, suggesting that mitotic entry relies not only on MPF activation but also on the inhibition of antimitotic phosphatases. It is now clear that there exists a separate, albeit equally important, signaling pathway for the inactivation of protein phosphatases at the G2/M transition. This pathway, which is governed by the kinase Greatwall is essential for both entry into and maintenance of M phase. This chapter will outline the molecular events regulating entry into mitosis, specifically highlighting the role that protein phosphorylation plays in triggering both MPF activation and the inhibition of phosphatase activity that would otherwise prevent accumulation of mitotic phosphoproteins. These intricate regulatory pathways are essential for maintaining normal cell division and preventing inappropriate cell proliferation, a central hallmark of cancer cells.
Collapse
Affiliation(s)
- Erika Segear Johnson
- Department of Pharmacology and Cancer Biology, Duke University Schoolof Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
42
|
Harvey SL, Enciso G, Dephoure N, Gygi SP, Gunawardena J, Kellogg DR. A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast. Mol Biol Cell 2011; 22:3595-608. [PMID: 21849476 PMCID: PMC3183015 DOI: 10.1091/mbc.e11-04-0340] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 01/07/2023] Open
Abstract
Entry into mitosis is initiated by synthesis of cyclins, which bind and activate cyclin-dependent kinase 1 (Cdk1). Cyclin synthesis is gradual, yet activation of Cdk1 occurs in a stepwise manner: a low level of Cdk1 activity is initially generated that triggers early mitotic events, which is followed by full activation of Cdk1. Little is known about how stepwise activation of Cdk1 is achieved. A key regulator of Cdk1 is the Wee1 kinase, which phosphorylates and inhibits Cdk1. Wee1 and Cdk1 show mutual regulation: Cdk1 phosphorylates Wee1, which activates Wee1 to inhibit Cdk1. Further phosphorylation events inactivate Wee1. We discovered that a specific form of protein phosphatase 2A (PP2A(Cdc55)) opposes the initial phosphorylation of Wee1 by Cdk1. In vivo analysis, in vitro reconstitution, and mathematical modeling suggest that PP2A(Cdc55) sets a threshold that limits activation of Wee1, thereby allowing a low constant level of Cdk1 activity to escape Wee1 inhibition in early mitosis. These results define a new role for PP2A(Cdc55) and reveal a systems-level mechanism by which dynamically opposed kinase and phosphatase activities can modulate signal strength.
Collapse
Affiliation(s)
- Stacy L Harvey
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gardino AK, Yaffe MB. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 2011; 22:688-95. [PMID: 21945648 DOI: 10.1016/j.semcdb.2011.09.008] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 12/11/2022]
Abstract
14-3-3 proteins play critical roles in the regulation of cell fate through phospho-dependent binding to a large number of intracellular proteins that are targeted by various classes of protein kinases. 14-3-3 proteins play particularly important roles in coordinating progression of cells through the cell cycle, regulating their response to DNA damage, and influencing life-death decisions following internal injury or external cytokine-mediated cues. This review focuses on 14-3-3-dependent pathways that control cell cycle arrest and recovery, and the influence of 14-3-3 on the apoptotic machinery at multiple levels of regulation. Recognition of 14-3-3 proteins as signaling integrators that connect protein kinase signaling pathways to resulting cellular phenotypes, and their exquisite control through feedforward and feedback loops, identifies new drug targets for human disease, and highlights the emerging importance of using systems-based approaches to understand signal transduction events at the network biology level.
Collapse
Affiliation(s)
- Alexandra K Gardino
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
44
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
45
|
Sakai K, Barnitz RA, Chaigne-Delalande B, Bidère N, Lenardo MJ. Human immunodeficiency virus type 1 Vif causes dysfunction of Cdk1 and CyclinB1: implications for cell cycle arrest. Virol J 2011; 8:219. [PMID: 21569376 PMCID: PMC3113979 DOI: 10.1186/1743-422x-8-219] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 05/11/2011] [Indexed: 12/16/2022] Open
Abstract
The two major cytopathic factors in human immunodeficiency virus type 1 (HIV-1), the accessory proteins viral infectivity factor (Vif) and viral protein R (Vpr), inhibit cell-cycle progression at the G2 phase of the cell cycle. Although Vpr-induced blockade and the associated T-cell death have been well studied, the molecular mechanism of G2 arrest by Vif remains undefined. To elucidate how Vif induces arrest, we infected synchronized Jurkat T-cells and examined the effect of Vif on the activation of Cdk1 and CyclinB1, the chief cell-cycle factors for the G2 to M phase transition. We found that the characteristic dephosphorylation of an inhibitory phosphate on Cdk1 did not occur in infected cells expressing Vif. In addition, the nuclear translocation of Cdk1 and CyclinB1 was disregulated. Finally, Vif-induced cell cycle arrest was correlated with proviral expression of Vif. Taken together, our results suggest that Vif impairs mitotic entry by interfering with Cdk1-CyclinB1 activation.
Collapse
Affiliation(s)
- Keiko Sakai
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
46
|
Ultrasensitivity in the Regulation of Cdc25C by Cdk1. Mol Cell 2011; 41:263-74. [PMID: 21292159 DOI: 10.1016/j.molcel.2011.01.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 07/29/2010] [Accepted: 12/22/2010] [Indexed: 01/14/2023]
Abstract
Cdc25C is a critical component of the interlinked positive and double-negative feedback loops that constitute the bistable mitotic trigger. Computational studies have indicated that the trigger's bistability should be more robust if the individual legs of the loops exhibit ultrasensitive responses. Here, we show that in Xenopus extracts two measures of Cdc25C activation (hyperphosphorylation and Ser 287 dephosphorylation) are highly ultrasensitive functions of the Cdk1 activity; estimated Hill coefficients were 11 to 32. Some of Cdc25C's ultrasensitivity can be reconstituted in vitro with purified components, and the reconstituted ultrasensitivity depends upon multisite phosphorylation. The response functions determined here for Cdc25C and previously for Wee1A allow us to formulate a simple mathematical model of the transition between interphase and mitosis. The model shows how the continuously variable regulators of mitosis work collectively to generate a switch-like, hysteretic response.
Collapse
|
47
|
Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol Biol Cell 2011; 22:1191-206. [PMID: 21325631 PMCID: PMC3078080 DOI: 10.1091/mbc.e10-07-0599] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of Cdk1 is rapid and switch-like due to positive feedback mechanisms. When Cdk1 is fully on, cells are capable of M-to-G1 transition. Inhibition of positive feedback prevents rapid Cdk1 activation and induces a mitotic “collapse” phenotype characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis. Mitosis requires precise coordination of multiple global reorganizations of the nucleus and cytoplasm. Cyclin-dependent kinase 1 (Cdk1) is the primary upstream kinase that directs mitotic progression by phosphorylation of a large number of substrate proteins. Cdk1 activation reaches the peak level due to positive feedback mechanisms. By inhibiting Cdk chemically, we showed that, in prometaphase, when Cdk1 substrates approach the peak of their phosphorylation, cells become capable of proper M-to-G1 transition. We interfered with the molecular components of the Cdk1-activating feedback system through use of chemical inhibitors of Wee1 and Myt1 kinases and Cdc25 phosphatases. Inhibition of Wee1 and Myt1 at the end of the S phase led to rapid Cdk1 activation and morphologically normal mitotic entry, even in the absence of G2. Dampening Cdc25 phosphatases simultaneously with Wee1 and Myt1 inhibition prevented Cdk1/cyclin B kinase activation and full substrate phosphorylation and induced a mitotic “collapse,” a terminal state characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis. This was blocked by the PP1/PP2A phosphatase inhibitor, okadaic acid. These findings suggest that the positive feedback in Cdk activation serves to overcome the activity of Cdk-opposing phosphatases and thus sustains forward progression in mitosis.
Collapse
|
48
|
Okadaic acid-sensitive phosphatase is related to MII/G1 transition in mouse oocytes. ZYGOTE 2011; 20:193-8. [PMID: 21306670 DOI: 10.1017/s0967199411000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is reported that okadaic acid (OA)-sensitive phosphatase is related to mitogen-activated protein kinase (MAPK)/p90rsk activation in mammalian oocytes. OA is also involved in the positive feedback loop between M phase-promoting factor (MPF) and cdc25c in Xenopus oocytes during meiotic maturation. However, the effect of phosphatase inhibition by OA on MPF and MAPK activities at the MII/G1 in oocytes remains unknown. The aim of this study is to clarify the relationship between OA-sensitive phosphatase and mitosis MII/G1 transition in mouse oocytes. MII-arrested oocytes were, isolated from mice, inseminated and cultured in TYH medium (control group) or TYH medium supplemented with 2.5 μM of OA (OA group). Histone H1 kinase and myelin basic protein (MBP) kinase activities were measured as indicators of MPF and p42 MAPK activities after insemination. Phosphorylation of cdc25c after insemination was analized in OA and control group by western blotting. Seven hours after insemination a pronucleus (PN) was formed in 84.1% (69/85) of oocytes in the control group. However, no PN was formed in oocytes of the OA group (p < 0.001). Although MPF and MAPK activities in the control group significantly decreased at 3, 4, 5, and 7 h after insemination, these decreases were significantly inhibited by OA addition (p < 0.05). Furthermore, OA addition prevented cdc25c dephosphorylation 7 h after insemination. In conclusion, OA-sensitive phosphatase correlates with inactivation of MPF and MAPK, and with the dephosphorylation of cdc25c at the MII/G1 transition in mouse oocytes.
Collapse
|
49
|
Haccard O, Jessus C. Greatwall kinase, ARPP-19 and protein phosphatase 2A: shifting the mitosis paradigm. Results Probl Cell Differ 2011; 53:219-234. [PMID: 21630148 DOI: 10.1007/978-3-642-19065-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Control of entry into mitosis has long been seen in terms of an explosive activation of cyclin-dependent kinase 1, the mitotic driver ensuring the phosphorylation of hundreds of proteins required for cell division. However, if these phosphorylations are maintained during M-phase, they must be removed when cells exit mitosis. It has been surmised that an "antimitotic" phosphatase must be inhibited to allow mitosis entry and activated for returning to interphase. This chapter discusses a series of recent works conducted on Xenopus egg extracts that provide the answers regarding the identity and the regulation of such a phosphatase. PP2A-B55δ is the major phosphatase controlling exit from mitosis; it is negatively regulated by the kinase Greatwall that phosphorylates the small protein ARPP-19 and converts it into a potent PP2A inhibitor. These findings provide a new element of paramount importance in the control of mitosis.
Collapse
Affiliation(s)
- Olivier Haccard
- UMR-CNRS 7622 Biologie du Développement, Université Paris 6, 9 quai Saint-Bernard, 75005 Paris, France
| | | |
Collapse
|
50
|
Domingo-Sananes MR, Novak B. Different effects of redundant feedback loops on a bistable switch. CHAOS (WOODBURY, N.Y.) 2010; 20:045120. [PMID: 21198132 DOI: 10.1063/1.3526967] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bistable switches have important roles in cellular decision-making processes. Bistability can be the consequence of positive or double-negative feedback loops. Although necessary, such feedback is not sufficient for bistability, which also requires nonlinearity. Nonlinearity can be provided by synergy of multiple feedback loops or by an ultrasensitive response within a single feedback loop. However, these two possibilities are not mutually exclusive; a combination of them is also possible. Here we analyze a biochemical regulatory network that controls a crucial cell cycle transition in all eukaryotic cells and contains multiple redundant feedback loops and nonlinearity. We show in this realistic biological example that two redundant feedback loops have different effects on the position of one of the saddle-node bifurcations of the system, which determines where the system switches. This illustrates that even though the roles of positive and double-negative feedbacks have been regarded as equivalent, the difference in their architectures can lead to differences in their effects on the system. We speculate that this conclusion could be general for other bistable systems with redundant feedback loops.
Collapse
Affiliation(s)
- Maria Rosa Domingo-Sananes
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|