1
|
Gert KRB, Panser K, Surm J, Steinmetz BS, Schleiffer A, Jovine L, Moran Y, Kondrashov F, Pauli A. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nat Commun 2023; 14:3506. [PMID: 37316475 DOI: 10.1038/s41467-023-39317-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer's evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization.
Collapse
Affiliation(s)
- Krista R B Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Joachim Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Benjamin S Steinmetz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Fyodor Kondrashov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Evolutionary and Synthetic Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Abstract
The perpetuation and preservation of distinct species rely on mechanisms that ensure that only interactions between gametes of the same species can give rise to viable and fertile offspring. Species-specificity can act at various stages, ranging from physical/behavioral pre-copulatory mechanisms, to pre-zygotic incompatibility during fertilization, to post-zygotic hybrid incompatibility. Herein, we focus on our current knowledge of the molecular mechanisms responsible for species-specificity during fertilization. While still poorly understood, decades of research have led to the discovery of molecules implicated in species-specific gamete interactions, starting from initial sperm-egg attraction to the binding of sperm and egg. While many of these molecules have been described as species-specific in their mode of action, relatively few have been demonstrated as such with definitive evidence. Thus, we also raise remaining questions that need to be addressed in order to characterize gamete interaction molecules as species-specific.
Collapse
|
3
|
Soboleva SE, Burkova EE, Dmitrenok PS, Bulgakov DV, Menzorova NI, Buneva VN, Nevinsky GA. Extremely stable high molecular mass soluble multiprotein complex from eggs of sea urchin Strongylocentrotus intermedius with phosphatase activity. J Mol Recognit 2018; 31:e2753. [PMID: 30109746 DOI: 10.1002/jmr.2753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
It was proposed that most biological processes are performed by different protein complexes. In contrast to individual proteins and enzymes, their complexes usually have other biological functions, and their formation may be important system process for the expansion of diversity and biological functions of different molecules. Identification and characterization of embryonic components including proteins and their multiprotein complexes seem to be very important for an understanding of embryo function. We have isolated and analyzed for the first time a very stable multiprotein complex (SPC; approximately 1100 kDa) from the soluble fraction of extracts of the sea urchin embryos. By fast protein liquid chromatography (FPLC) gel filtration the SPC was well separated from other extract proteins. Stable multiprotein complex is stable in different drastic conditions but dissociates moderately in the presence of 8M urea + 1.0M NaCl. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis data, this complex contains many major, moderate and minor proteins with molecular masses from 10 to 95 kDa. The SPC was destroyed by 8M urea or SDS, and its components were separated using thin layer chromatography, ion-exchange chromatography, gel filtration, and reverse phase chromatography. Using matrix-assisted laser desorption/ionization mass spectrometry of partially dissociated SPC, it was shown that the complex contains not only proteins (10-95 kDa) but also few dozens of peptides with molecular masses from 2 to 9.5 kDa. Short peptides form very strong complexes, which at the treatment of SPC with urea or SDS can be partially break down into smaller complexes having different peptide compositions. Reverse phase chromatography of these complexes after all type of abovementioned chromatographies led to detection from 6 to 11 distinct peaks corresponding to new complexes containing up to a few dozens of peptides. The SPCs possess alkaline phosphatase activity. Progress in the study of embryos protein complexes can help to understand their biological functions.
Collapse
Affiliation(s)
- Svetlana E Soboleva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Evgeniya E Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Dmitrii V Bulgakov
- Far Eastern Branch of Russian Academy of Sciences, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Vladivostok, Russia
| | - Natalia I Menzorova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Valentina N Buneva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
Hart MW, Popovic I, Emlet RB. LOW RATES OF BINDIN CODON EVOLUTION IN LECITHOTROPHIC HELIOCIDARIS SEA URCHINS. Evolution 2012; 66:1709-21. [DOI: 10.1111/j.1558-5646.2012.01606.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Kamei N, Glabe CG. The species-specific egg receptor for sea urchin sperm adhesion is EBR1,a novel ADAMTS protein. Genes Dev 2003; 17:2502-7. [PMID: 14561772 PMCID: PMC218143 DOI: 10.1101/gad.1133003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Species-specific adhesion of sperm to the egg during sea urchin fertilization involves the interaction of the sperm adhesive protein,bindin, and a complementary receptor on the egg surface,and serves to restrict the gene pool to individuals of the same species. We used PCR representation difference analysis to clone the species-specific egg receptor for bindin, EBR1, from Strongylocentrotus franciscanus (Sf) and S. purpuratus (Sp). Sf-EBR1 contains a novel ADAMTS-like N-terminal domain followed by approximately 19 tandem EBR repeats consisting of alternating CUB and thrombospondin type 1 (TSP-1) domains where the last 10 EBR repeats are species-specific and highly conserved. Recombinant protein corresponding to the species-specific EBR repeat displays species-specific sperm adhesion and bindin-binding activity. The Sp-EBR1 ortholog has the same ADAMTS (a disintegrin and metalloprotease with thrombospondin type-1 modules) core region followed by eight and one-half tandem egg bindin receptor (EBR) repeats that share 88% identity with the Sf-EBR1 repeats,but has an entirely different species-specific domain consisting of hyalin-like (HYR) repeats. Thus,the species-specific domains of egg bindin receptor 1 (EBR1) from both species function as the egg surface receptor to mediate species-specific sperm adhesion.
Collapse
Affiliation(s)
- Noriko Kamei
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, USA.
| | | |
Collapse
|
6
|
Ulrich AS, Tichelaar W, Förster G, Zschörnig O, Weinkauf S, Meyer HW. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer. Biophys J 1999; 77:829-41. [PMID: 10423429 PMCID: PMC1300375 DOI: 10.1016/s0006-3495(99)76935-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn(2+), which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into beta-sheet amyloid fibrils, whereas in the presence of Zn(2+) it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn(2+) does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an alpha-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn(2+) is to promote this local helical structure in B18 and to prevent its inactivation as beta-sheet fibrils.
Collapse
Affiliation(s)
- A S Ulrich
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Shilling FM, Magie CR, Nuccitelli R. Voltage-dependent activation of frog eggs by a sperm surface disintegrin peptide. Dev Biol 1998; 202:113-24. [PMID: 9758707 DOI: 10.1006/dbio.1998.8982] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fertilin, a sperm protein of the metalloprotease/disintegrin/cysteine-rich (MDC) family, plays a critical role in sperm-egg binding in mammals. Peptides corresponding to the disintegrin domain of fertilin and antibodies against fertilin have been shown to inhibit mammalian sperm-egg binding and fusion. A protein from the same family, xMDC16, was recently cloned from frog (Xenopus laevis) testis and was found to be involved in frog sperm-egg binding. Here we report that xMDC16 is localized predominantly on the posterior surface of egg jelly-activated sperm, and peptides from the disintegrin domain of this protein activate eggs when applied near the egg surface. Egg activation was dependent on (1) specific amino acid residues (KTX); (2) the presence of divalent cations, but not external Ca2+ alone; and (3) voltage across the egg plasma membrane. This is the first demonstration of egg activation in vertebrates by the surface application of a peptide derived from a sperm surface protein, supporting a model for egg activation that involves a signal transducing receptor for sperm in the egg's plasma membrane.
Collapse
Affiliation(s)
- F M Shilling
- Section of Molecular and Cellular Biology, University of California at Davis, Davis, California, 95616, USA
| | | | | |
Collapse
|
8
|
Ulrich AS, Otter M, Glabe CG, Hoekstra D. Membrane fusion is induced by a distinct peptide sequence of the sea urchin fertilization protein bindin. J Biol Chem 1998; 273:16748-55. [PMID: 9642230 DOI: 10.1074/jbc.273.27.16748] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization in the sea urchin is mediated by the membrane-associated acrosomal protein bindin, which plays a key role in the adhesion and fusion between sperm and egg. We have investigated the structure/function relationship of an 18-amino acid peptide fragment "B18," which represents the minimal membrane binding motif of the protein and resembles a putative fusion peptide. The peptide was found to mimic the behavior of its parent protein bindin with respect to (a) its high affinity for lipid bilayers, (b) the ability to aggregate and fuse vesicles, (c) the binding of Zn2+ by a histidine-rich motif, (d) the tendency to self-assemble, and (e), as indicated earlier, the adhesion to cell surface polysaccharides. Fluorescence and light scattering assays were used here to monitor peptide-induced lipid mixing, leakage, and aggregation of large unilamellar sphingomyelin/cholesterol vesicles. For these activities, B18 requires the presence of Zn2+ ions, with which it forms oligomeric complexes and assumes a partially alpha-helical conformation, as observed by circular dichroism. We conclude that aggregation and fusion involves a "trans-complex" between peptides on apposing vesicles that are connected by Zn2+ bridges.
Collapse
Affiliation(s)
- A S Ulrich
- Institute of Molecular Biology, University of Jena, Winzerlaer Strasse 10, 07745 Jena, Germany
| | | | | | | |
Collapse
|
9
|
SHILLING FRASERM, CARROLL DAVIDJ. Signal transduction during fertilization: Studies with proteases and heterologous receptors. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Abstract
Fertilization is the result of a series of successful recognition and binding events mediated by gamete surface molecules. Recent advances in the identification and characterization of some of these recognition molecules provide extremely valuable information necessary to understand sperm-egg recognition and subsequent egg activation. We discuss these new data in the context of the model of gamete recognition first proposed by F.R. Lillie in the early part of the 20th century, and revisited periodically in the subsequent literature, which relates fertilization events to those of immune cell recognition and activation events. Here we discuss the principles underlying the molecular recognition and activation mechanisms of gametes and immune cells.
Collapse
Affiliation(s)
- R J Belton
- Department of Biological Sciences, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
11
|
Bégin S, Bérubé B, Boué F, Sullivan R. Comparative immunoreactivity of mouse and hamster sperm proteins recognized by an anti-P26h hamster sperm protein. Mol Reprod Dev 1995; 41:249-56. [PMID: 7654378 DOI: 10.1002/mrd.1080410216] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The binding of the spermatozoon to the zona pellucida is a species-specific phenomenon. We have previously shown that the binding of hamster sperm to the homologous zona pellucida involves a sperm 26-kDa glycoprotein, the P26h, originating in the epididymis. In order to establish to what extent this sperm protein is involved in the species-specific recognition of the egg's extracellular coat, we have compared the inhibitory properties of anti-P26h antibodies in a sperm-zona pellucida assay using hamster and mouse gametes. Anti-P26h IgGs inhibit, in a dose-dependent manner, gamete interactions in both species, although in a less efficient manner in the mouse than in the hamster. While anti-26kDa Fab fragments are as efficient as the intact IgG to inhibit hamster sperm-zona pellucida binding, they have no effect on mouse gamete interaction. ELISA, Western blot, and immunohistochemical experiments have been performed in order to characterize the mouse antigen(s) recognized by the anti-P26h antiserum. ELISA and Western blots showed that this antiserum recognized two proteins on mouse spermatozoa that are less reactive than the hamster P26h. These antigens are localized in the acrosomal region of epididymal spermatozoa of both species. These results indicate that the hamster P26H involved in zona pellucida interaction has certain unique epitopes, while others are common to the sperm of both species.
Collapse
Affiliation(s)
- S Bégin
- Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
Gamete recognition and binding are mediated by specific proteins on the surface of the sperm and egg. Identification and characterization of some of these proteins from several model systems, particularly mouse and sea urchin, have focused interest on the general properties and functions of gamete recognition proteins. Sperm-binding proteins located in egg extracellular coats as well as sperm-binding proteins that are localized to the egg plasma membrane are presented in the context of their structure and function in gamete binding. Unifying and disparate characteristics are discussed in light of the diverse biology of fertilization among species. Outstanding questions, alternative mechanisms and models, and strategies for future work are presented.
Collapse
Affiliation(s)
- K R Foltz
- Division of Molecular, Cell, and Developmental Biology, University of California at Santa Barbara 93106, USA
| |
Collapse
|
14
|
Shen SS. Mechanisms of calcium regulation in sea urchin eggs and their activities during fertilization. Curr Top Dev Biol 1995; 30:63-101. [PMID: 7555050 DOI: 10.1016/s0070-2153(08)60564-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S S Shen
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| |
Collapse
|
15
|
Abstract
Gamete interaction triggers a variety of responses within the egg, collectively referred to as egg activation. In addition to the hallmarks of calcium release and fertilization envelope elevation, there are cytoskeletal rearrangements, protein tyrosine phosphorylation, and an increase in pH, among others. The ultimate goal of these concerted activation events is entry of the newly fertilized egg into the cell cycle. However, the molecular mechanisms which promote downstream cell activation events remain poorly understood. One model suggests that sperm deliver an "activating factor" upon fusion with the egg plasma membrane, while a second model proposes that the egg receptor for sperm transduces a signal that mediates a cascade of subsequent events. It also is possible that multiple pathways are activated. As a first step toward testing the hypothesis of receptor-mediated signal transduction, we have investigated the tyrosine phosphorylation state of the sea urchin egg receptor for sperm using specific antibodies. The present work indicates that the sperm receptor is phosphorylated by an egg cortical tyrosine kinase in response to sperm or purified ligand (bindin) binding. Maximal phosphorylation was reached within 20 sec. These data support the hypothesis that the sperm receptor is a gamete recognition protein which responds to ligand binding and focus attention on the question of the role of this tyrosine phosphorylation signal in egg activation.
Collapse
Affiliation(s)
- Y A Abassi
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
16
|
Espey LL. Overview Oncologic, Endocrine & Metabolic: Female contraception: novel methods and developments. Expert Opin Ther Pat 1994. [DOI: 10.1517/13543776.4.6.629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Hofmann A, Glabe C. Die spezifische Zellerkennung. CHEM UNSERER ZEIT 1994. [DOI: 10.1002/ciuz.19940280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|